Math 310 - Sec. 201 - 2013 - Prof. Juan Souto
Final exam: 8:30 - 11:00

Notation. Throughout this exam, V is a complex vector spaces of finite dimension endowed with an inner product $⟨·,·⟩$. The vector space of all complex polynomials is denoted by \mathcal{P}; the subspace consisting of those polynomials of degree at most n is denoted by \mathcal{P}_n.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>38</td>
</tr>
<tr>
<td>Question 2</td>
<td>25</td>
</tr>
<tr>
<td>Question 3</td>
<td>20</td>
</tr>
<tr>
<td>Question 4</td>
<td>15</td>
</tr>
<tr>
<td>Question 5</td>
<td>17</td>
</tr>
<tr>
<td>Question 6</td>
<td>20</td>
</tr>
<tr>
<td>Question 7</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
</tr>
</tbody>
</table>
Question 1. Mark true or false.

<table>
<thead>
<tr>
<th>Expression</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>{P(x) \in \mathcal{P}</td>
<td>P(-1) + P(2) = 0} is a subspace of \mathcal{P}.</td>
<td></td>
</tr>
<tr>
<td>{P(x) \in \mathcal{P}</td>
<td>P(0) = 1} is a subspace of \mathcal{P}.</td>
<td></td>
</tr>
<tr>
<td>{P(x) \in \mathcal{P}</td>
<td>\int_0^1 P(t)dt = 0} is a subspace of \mathcal{P}.</td>
<td></td>
</tr>
<tr>
<td>If (V \subset \mathbb{C}^n) is such that (v + w \in V) for all (v, w \in V), then (V) is a subspace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consider (\mathbb{C}^n) as a complex vectorspace; (\mathbb{R}^n) is a subspace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The union of two subspaces (U_1, U_2) of (V) is a subspace if and only if either (U_1 \subset U_2) or (U_2 \subset U_1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The intersection of three subspaces of (V) is a subspace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A vector space has infinite dimension if and only if it contains a subspace of dimension (n) for all (n).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If (W \subset V) is a subspace with (\dim(W) = \dim(V)) then (W = V).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If (W_1, W_2 \subset V) are subspaces with (\dim(W_1) = \dim(W_2)) then (W_1 = W_2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T : \mathcal{P} \rightarrow \mathcal{P}, \quad T(a_0 + a_1x + \cdots + a_n x^n) = a_0 + a_1x + a_2x^2) is linear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T : \mathcal{P} \rightarrow \mathbb{C}^3, \quad T(P(x)) = P(1) + P(2) - P(3)) is linear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T : \mathcal{P} \rightarrow \mathbb{C}, \quad T(a_0 + a_1x + \cdots + a_n x^n) = a_0^2) is linear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T : \mathcal{P} \rightarrow \mathbb{C}, \quad T(a_0 + a_1x + \cdots + a_n x^n) = a_0 - a_1 + a_2 - a_3) is linear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If (T : V \rightarrow V) is linear and maps a basis of (V) to a basis of (V), then (T) is invertible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The linear map (T : \mathcal{P}_2 \rightarrow \mathbb{C}^5, \quad T(P(x)) = (P(1), P(2), P(3), P(10))) is invertible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If (W_1, W_2 \subset V) are subspaces with (\dim(W_1) = \dim(W_2)) then there is a linear map (T : V \rightarrow V) with (T(W_1) = W_2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statement</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Every linear map $T : V \to V$ has an eigenvalue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T : V \to V$ is surjective if and only if $\ker(T) = 0$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the image of a linear map $T : P_2 \to P_4$ contains 3 linearly independent polynomials, then T is injective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is a surjective linear map $T : P_2 \to P_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For every $d = 0, 1, \ldots, 5$ there is a linear map $T : P_4 \to P_4$ whose kernel has dimension d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the kernel of a linear map $T : P_n \to P_{n-2}$ has dimension 7 then T is surjective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is an injective linear map $T : P_n \to P_{n-2}$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is a unique matrix associated to every linear map $T : V \to W$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T : V \to V$ is diagonalizable if and only if all eigenvalues of T are distinct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If all eigenvalues of T are distinct, then T is diagonalizable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is a basis with respect to which the matrix of T is upper triangular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T is injective if and only if 0 is not an eigenvalue of T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T has an eigenvalue if and only if T is normal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If T is normal, then T is diagonalizable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If T is normal, then there is a ON-basis of V consisting of eigenvectors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda \in \mathbb{C}$ is an eigenvalue of T if and only if $\ker((T - \lambda \text{Id})^5) \neq 0$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If T is normal and v is an eigenvector of T, then v is also an eigenvector of T^*.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If $T^5 = 0$, then $T = 0$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If T^* is diagonalizable, then T is diagonalizable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let $T^$ be the adjoint of T. If $T^ = 0$, then $T = 0$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The matrix of T^* with respect to an arbitrary basis of V is the transpose conjugate of that of T.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 2. Let $T : V \rightarrow V$ be a linear map.

(1) Define the kernel\(^1\) $\text{Ker}(T)$ of T.

(2) Prove that $\text{Ker}(T)$ is a subspace of V.

(3) Prove that T is injective if and only if $\text{Ker}(T) = 0$.

\(^1\)or equivalently, the nullspace.
(4) Give an example of a linear map $T : V \to V$ with $\text{Ker}(T) \neq \text{Ker}(T^2) \neq \text{Ker}(T^3)$.

(5) Suppose that $\text{Ker}(T) = \text{Ker}(T^2)$. Prove that $\text{Ker}(T^2) = \text{Ker}(T^3)$.
Question 3. Given $x_0, \ldots, x_n, y_0, \ldots, y_n \in \mathbb{C}$ suppose that $x_i \neq x_j$ for $i \neq j$. Prove that there is a unique polynomial $P(x) \in \mathcal{P}_n$ of degree at most n satisfying $P(x_i) = y_i$ for all $i = 0, \ldots, n$.
Problem 4.
(1) Let $v_1, \ldots, v_r \in V$. Define (v_1, \ldots, v_r) is linearly independent.

(2) Let $T : V \to V$ be linear. Suppose that $v_1 \in \ker(T^2)$, $v_2 \in \ker(T - \text{Id})$ and $v_3 \in \ker(T + \text{Id})$ are non-zero vectors. Prove that (v_1, v_2, v_3) is linearly independent.
Question 5. Let $T : V \to V$ be linear and (v_1, \ldots, v_d) a basis of V. Prove that the following statements are equivalent:

1. The matrix of T with respect to the basis (v_1, \ldots, v_d) is upper triangular.
2. $T(v_j) \in \text{Span}(v_1, \ldots, v_j)$ for all $j = 1, \ldots, d$.
Question 6. Let $T : V \to V$ be linear.

(1) Suppose that $T : V \to V$ is diagonalizable. Prove that there is $S : V \to V$ linear with $S^\dim(V) = T$.

(2) Give an example of a complex vector space V of finite dimension and of a non-zero operator $T : V \to V$ with $T^\dim(V) = 0$.
(3) Suppose that $T : V \to V$ is a non-zero operator with $T^{\dim(V)} = 0$. Prove that there is no operator $S : V \to V$ with $S^{\dim(V)} = T$.
Question 7. Let $T : V \to V$ be linear.

(1) Define T is normal.

Suppose from now on that $T : V \to V$ is normal and recall that this implies that $\|T(v)\| = \|T^*(v)\|$ for all $v \in V$.

(2) Prove that $v \in V$ is an eigenvector of T if and only if it is an eigenvector of T^*.
(3) Suppose that \(v \in V \) is an eigenvector of \(T \). Prove that the orthogonal complement of \(\text{Span}(v) \) is \(T \)-invariant.
Name: ____________________________ UBC ID: ___________
Name:

UBC ID: