1. [15]
The flow field given by a source located at \(z = 1 \) is modified by the introduction of an infinite barrier at \(x = 0 \). For what values of \(y \) is the speed on the barrier \(k \) times the speed at the same location without the barrier? What is the possible range of \(k \)? Explain.

2. [30]
(a) Evaluate:
\[
I = \int_{0}^{\infty} \frac{xdx}{8 + x^3}.
\]
Hint: you should consider using a contour that includes the ray \(\theta = \frac{2\pi}{3} \).

(b) By integrating around the finite branch cut \([-1, 1]\) (and using symmetry), evaluate
\[
J = \int_{0}^{1} \frac{x^4dx}{(1 - x^2)^{\frac{1}{2}}(1 + x^2)}.
\]

(c) Show by considering the two cases \(x > 0 \) and \(x < 0 \) that
\[
p.v. \int_{-\infty}^{\infty} \frac{e^{ix\omega}}{\omega^2 - 1}d\omega = -\pi \sin |x|.
\]

3. [20]
(a) Find a conformal mapping \(w = f(z) \) that takes the region \(\{|z - 1| < \sqrt{2}\} \cap \{|z + 1| < \sqrt{2}\} \) into a portion of the right half plane.
Draw rough sketches of the regions in both the \(z \) and \(w \) planes.
It might be useful to check the image of \(z = 0 \).

(b) Find \(\phi(x, y) \) that satisfies
\[
\nabla^2 \phi = 0 \text{ in } \{|z - 1| < \sqrt{2}\} \cap \{|z + 1| < \sqrt{2}\}
\]
with: \(\phi = 1 \) on \(|z + 1| = \sqrt{2} \), and \(\phi = 2 \) on \(|z - 1| = \sqrt{2} \).

4. [20]
Let \(f(x) \) and \(g(x) \) be two absolutely integrable functions. Solve the boundary-value problem using Fourier transform, assuming \(|u(x, y)| \) decays rapidly as \((x, y) \to \infty \).
\[
u_{xx} + u_{yy} = f(x)e^{-y}, \quad -\infty < x < \infty, \quad 0 < y,
\]
\[
u(x, 0) = g(x), \quad -\infty < x < \infty.
\]

5. [15]
Solve the following ODE using Laplace transform and Bromwich formula:
\[
y''' + y = 1, \quad (t > 0); \quad y(0) = y'(0) = 0, \quad y''(0) = 1.
\]
Do not replace exponential functions by trigonometric functions in your solution.