Problem 1. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be a function satisfying the relation:
\[
f(x+y+xy) = f(x) + f(y) + f(xy)
\]
for each \(x, y, \in \mathbb{R} \).
Prove that \(f(x+y) = f(x) + f(y) \) for each \(x, y \in \mathbb{R} \).

Solution. Letting \(x = y = 0 \) we obtain \(f(0) = 3f(0) \) and so, \(f(0) = 0 \). Then letting \(y = -1 \) (and \(x \) arbitrary) we obtain
\[
f(-1) = f(x) + f(-1) + f(-x),
\]
which yields \(f(-x) = -f(x) \) for all \(x \in \mathbb{R} \). Now, we simply replace \(x \) and \(y \) by \(-x \), respectively \(-y\) and obtain
\[
f(xy - x - y) = f(xy) + f(-x) + f(-y) = f(xy) - f(x) - f(y)
\]
which combined with the main relation yields
\[
f(xy - (x+y)) + f(xy + (x+y)) = 2f(xy).
\]
Now, for fixed \(xy = a \), we observe that \(x+y \) varies on the entire set of real numbers (i.e., it can be arbitrarily large and negative and also arbitrarily large and positive). This proves that for all \(a, b \in \mathbb{R} \) we have
\[
f(a-b) + f(a+b) = 2f(a).
\]
However, letting \(a = b \) in the above expression we get that
\[
f(0) + f(2a) = 2f(a)
\]
and so, \(f(2a) = 2f(a) \) because \(f(0) = 0 \).
Thus, \(f(a-b) + f(a+b) = f(2a) \) for all \(a, b \in \mathbb{R} \) which yields the relation asked in the problem.

Problem 2. Find all positive real numbers \(a \) with the property that the equation \(\log_a(x) - x = 0 \) has exactly one real solution.

Solution. We split our analysis into several cases:

Case 1. \(0 < a < 1 \).
In this case, \(\log_a(x) \) decreases from \(+\infty\) to \(-\infty\), while \(x \) increases from 0 to \(+\infty\); so, using that \(f(x) := \log_a(x) - x \) is a continuous function (on \((0, +\infty)\)), then we conclude that for each \(a \in (0, 1) \) there exists a unique \(x \in (0, +\infty) \) such that \(f(x) = 0 \), i.e., \(\log_a(x) = x \).

Case 2. \(a > 1 \).
In this case the derivative of the above defined function \(f(x) \) is
\[
f'(x) = \frac{1}{x \cdot \ln(a)} - 1
\]
and so, \(f(x) \) is increasing on \((0, 1/\ln(a))\), while \(f(x) \) is decreasing on \((1/\ln(a), +\infty)\). We compute the global maximum of \(f(x) \) on \((0, +\infty)\):

\[
f\left(\frac{1}{\ln(a)}\right) = \frac{\ln\left(\frac{1}{\ln(a)}\right)}{\ln(a)} - \frac{1}{\ln(a)} = -\frac{\ln(\ln(a)) + 1}{\ln(a)}.
\]

Now, if the global maximum of \(f(x) \) is 0 then there exists indeed a single value of \(x \) for which \(\log_a(x) = x \); so,

Subcase 2(i). If \(a = e^{\frac{1}{2}} \) then there exists a unique value of \(x \) such that \(\log_a(x) = x \).

Now, if \(\ln(\ln(a)) + 1 > 0 \), then the global maximum of \(f(x) \) is negative and therefore,

Subcase 2(ii). If \(a > e^{\frac{1}{2}} \) then there exists no \(x \) such that \(\log_a(x) = x \).

Finally, if \(\ln(\ln(a)) + 1 < 0 \), then the global maximum of \(f(x) \) is positive and then we conclude that

Subcase 2(iii). If \(1 < a < e^{\frac{1}{2}} \) then there exist exactly two values of \(x \) (one in the interval \((0, 1/\ln(a))\) and the other in \((1/\ln(a), +\infty)\)) since \(\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = -\infty \) such that \(\log_a(x) = x \).

Problem 3.

(a) Find all integers \(n > 2 \) for which there exists an integer \(m \geq n \) such that \(m \) divides the least common multiple of \(m-1, m-2, \ldots, m-n+1 \).

(b) Find all positive integers \(n > 2 \) for which there exists exactly one integer \(m \geq n \) such that \(m \) divides the least common multiple of \(m-1, m-2, \ldots, m-n+1 \).

Solution. Let \(p^a \) be a prime power appearing in the prime power factorization of \(m \). Then \(m \) dividing \(\text{lcm}[m-1, \ldots, m-(n-1)] \) yields that \(p^a \) must divide one of the numbers \(m-i \) (for \(i = 1, \ldots, n-1 \)) and so, \(p^a \) must divide \(m-(m-i) = i \).

In conclusion, \(m \) divides \(\text{lcm}[m-1, \ldots, m-(n-1)] \) if and only if \(m \) divides \(\text{lcm}[1, \ldots, n-1] := L(n) \). So, the existence of at least one integer \(m \geq n \) with the property that it divides \(\text{lcm}[m-1, \ldots, m-(n-1)] \) is equivalent with asking that \(L(n) \geq n \). Now, since \(L(n) \geq (n-1)(n-2) \) and

\[
(n-1)(n-2) \geq n \quad \text{for all} \quad n \geq 4,
\]

while \(L(3) = 2 < 3 \) and \(L(2) = 1 < 2 \), we conclude that for all \(n \geq 4 \) there exists at least one integer \(m \) such that \(m \) divides \(\text{lcm}[m-1, \ldots, m-(n-1)] \).

Now, if we require that there exists precisely one integer \(m \geq n \) dividing \(\text{lcm}[m-1, \ldots, m-(n-1)] \) then we actually ask that there exists precisely one integer at least equal to \(n \) which divides \(L(n) \), i.e., that integer would be \(L(n) \). So, we’re asking in this case for which \(n \geq 4 \) we have that the only divisor of \(\text{lcm}[1, \ldots, n-1] \) at least equal to \(n \) is \(L(n) \). We claim that in this case we must have that \(n = 4 \).

First of all, we have \(L(4) = \text{lcm}[1,2,3] = 6 \) and so indeed only 6 is at least equal to 4 and divides 6. Now, if \(n \geq 5 \), then both \((n-1)(n-2) \) and also \((n-2)(n-3) \) are greater than \(n \) and they divide \(\text{lcm}[1, \ldots, n-1] \), which finishes our proof.

Problem 4. Find the minimum of

\[
\max\{a+b+c, b+c+d, c+d+e, d+e+f, e+f+g\}
\]
where the real numbers a, b, c, d, e, f, g vary among all the possible nonnegative solutions to the equation $a + b + c + d + e + f + g = 1$.

Solution. We have that
\[
(a + b + c) + (d + e + f) + (e + f + g) \geq a + b + c + d + e + f + g = 1
\]
and therefore,
\[
M := \max\{a + b + c, b + c + d, c + d + e, d + e + f, e + f + g\} \geq \frac{1}{3}.
\]
On the other hand, this minimum value of $\frac{1}{3}$ for M is attained in the case
\[
a = \frac{1}{3}, \quad b = c = 0, \quad d = \frac{1}{3}, \quad e = f = 0, \quad g = \frac{1}{3}.
\]