Problem 1. Consider the two sequences \(\{a_m\}_{m \in \mathbb{N}} \) and \(\{b_n\}_{n \in \mathbb{N}} \) defined by
\[
a_1 = 3 \quad \text{and for each } m \geq 1, \quad a_{m+1} = 3^{a_m}
\]
and
\[
b_1 = 100 \quad \text{and for each } n \geq 1, \quad b_{n+1} = 100^{b_n}.
\]
Find the smallest possible integer \(n \) such that \(b_n > a_{2019} \).

Solution. Clearly, \(b_1 > a_2 = 27 \) and then an easy induction yields that \(b_n > a_{n+1} \) for all \(n \geq 1 \). Next we prove the following (surprising) result.

Claim 0.1. For each \(n \geq 1 \), we have that \(b_n < a_{n+2} \).

Proof of Claim 0.1. Actually, we’ll prove by induction an even stronger claim:
\[
a_{n+2} > 2 + 5b_n \quad \text{for each } n \geq 1.
\]
Inequality (1) holds (easily) for \(n = 1 \) and then, using the inductive hypothesis, we get
\[
a_{n+3} = 3^{a_{n+2}} > 3^{2+5b_n} = 9 \cdot 243^{b_n} > 9 \cdot b_{n+1} > 2 + 5b_{n+1},
\]
as claimed. This concludes our proof of Claim 0.1.

Clearly, Claim 0.1 (coupled with the easy inequality \(b_n > a_{n+1} \)) yields that \(b_{2017} < a_{2019} < b_{2018} \) and so, the desired integer in this problem is \(2018 \).

Problem 2. Let \(n > 1 \) be an integer and let \(a > 0 \) be a real number. Let \(x_1, \ldots, x_n \) be nonnegative real numbers satisfying: \(\sum_{i=1}^n x_i = a \). Find the maximum of \(\sum_{i=1}^{n-1} x_i x_{i+1} \).

Solution. Let \(x := \max_{1 \leq i \leq n} x_i \). Then
\[
\sum_{i=1}^{n-1} x_i x_{i+1} \leq x(a-x) \leq \frac{a^2}{4}
\]
with equality if (for example) \(x_1 = x_2 = \frac{a}{2} \).

Problem 3. Let \(N \) be the number of integer solutions to the equation \(x^3 - y^3 = z^5 - t^5 \) with the property that \(0 \leq x, y, z, t \leq 2019^{2019} \). Let \(M \) be the number of integer solutions to the equation \(x^3 - y^3 = z^5 - t^5 + 1 \) with the property that \(0 \leq x, y, z, t \leq 2019^{2019} \). Prove that \(N > M \).

Solution. For each \(0 \leq i \leq 2019^{3 \cdot 2019} + 2019^{5 \cdot 2019} := L \), we let \(n_i \) be the number of integers \(0 \leq a, b \leq 2019^{2019} \) with the property that \(a^3 + b^5 = i \). Then
\[
N = n_0^2 + n_1^2 + \cdots + n_L^2
\]
and \(M = n_0 n_1 + n_1 n_2 + \cdots + n_{L-1} n_L \). Then we see that
\[
N - M = \frac{n_0^2 + (n_0 - n_1)^2 + (n_1 - n_2)^2 + \cdots + (n_{L-1} - n_L)^2 + n_L^2}{2} > 0
\]
since \(n_0 = n_L = 1 \).

Problem 4. Find all \(n \in \mathbb{N} \) such that \(2^8 + 2^{11} + 2^n \) is a perfect square.

Solution. If \(n \geq 8 \), then letting \(x := n - 8 \) then we need that
\[
(2^4)^2 \cdot (9 + 2^x)
\]
be a perfect square, which is equivalent with \(9 + 2^x \) be a perfect square \(y^2 \). Thus
\[
2^x = (y - 3)(y + 3)
\]
and so, both \(y - 3 \) and \(y + 3 \) are powers of 2 which yields that the only possibility is

\[
y - 3 = 2^1 \quad \text{and} \quad y + 3 = 2^3,
\]
i.e., \(y = 5 \) and hence \(x = 4 \). So, \(n = 12 \); note that
\[
2^8 + 2^{11} + 2^{12} = 80^2.
\]
Now, if \(n < 8 \) then \(2^8 + 2^{11} + 2^n \) is divisible by \(2^n \) but not by \(2^{n+1} \); thus \(n \) must be even. So, we only need to check \(n \in \{2, 4, 6\} \) and since
\[
1 + 2^6 + 2^0 = 577 \text{ is not a perfect square}
\]
\[
1 + 2^4 + 2^7 = 145 \text{ is not a perfect square}
\]
\[
1 + 2^2 + 2^5 = 37,
\]
we conclude that \(n = 12 \) is the only solution.