Problem 1. Find the sum of the series
\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (3^m n + 3^m m)}. \]

Problem 2. Prove that there exists a positive constant \(C \) such that for any polynomial \(P \in \mathbb{R}[x] \) of degree less than 2020, we have that
\[P(0) \leq C \cdot \int_{-1}^{1} |P(x)| \, dx. \]

Problem 3. The sequence \(\{a_n\} \) satisfies
\[a_1 = 1; \quad a_2 = 2; \quad a_3 = 24 \quad \text{and for } n \geq 4:\]
\[a_n = \frac{6a_{n-1}a_{n-3}}{a_{n-2}a_{n-3}} - 8a_{n-2}a_{n-3}. \]
Prove that for each positive integer \(n \), we have that \(a_n \) is an integer multiple of \(n \).

Problem 4. Let \(P \in \mathbb{C}[x] \) be a polynomial of degree \(n \) such that \(P(x) = Q(x) \cdot P''(x) \), where \(Q(x) \) is a quadratic polynomial and \(P'' \) is the double derivative of \(P \). Show that if \(P(x) \) has at least two distinct roots, then it must have \(n \) distinct roots.