PARTIAL MATCH QUERIES IN RANDOM QUADTREES

Imagine that points are falling uniformly on the unit square according to a Poisson process. At each time a point falls in a rectangle, it splits this rectangle into four subrectangles according to its horizontal and vertical coordinates. This process is called the uniform quadtree structure (see Fig.below).

Figure 1: The first 7 splittings of a quadtree.

We are interested in the so-called partial match query. Equivalently, for $x \in[0,1]$, we focus on the number $N_{t}(x)$ of rectangles in the quadtree at time t whose horizontal coordinate intersects x. This quantity has been studied for a long time since the work of Flajolet, Gonnet, Puech and Robson in were that showed that $N_{t}(x)$ should be roughly of order t^{β} where $\beta=(\sqrt{17}-3) / 2$. In a very recent breakthrough, Broutin, Neininger and Sulzbach used the "contraction method" to obtain a convergence in distribution of the rescaled processes $\left\{t^{-\beta} N_{t}(x): 0 \leq x \leq 1\right\}$ towards a random continuous process $\left\{\tilde{M}_{\infty}(x): 0 \leq x \leq 1\right\}$ characterized by a recursive decomposition. We will show that this convergence actually holds in a stronger sense:

Theorem 1. For every $x \in[0,1]$ we have the following almost sure convergence

$$
t^{-\beta} N_{t}(x) \xrightarrow[t \rightarrow \infty]{\text { a.s. }} K_{0} \cdot \tilde{M}_{\infty}(x) .
$$

Figure 2: An illustration of the strong convergence of the partial match queries. The curves above the quadtree represent the renormalized processes $t^{-\beta}\left(N_{t}(x)\right)_{x \in[0,1]}$ for $t=20,50,100,500$ and 3000 .

Our approach shares many similarities with the theory of self-similar fragmentations.

