Empirical distribution along geodesics in exponential last passage percolation

Lingfu Zhang (Joint work with Allan Sly)

Princeton University Department of Mathematics

Jun 12, 2020

Lingfu Zhang

Exactly solvable LPP: model and main results

Lingfu Zhang

We study the directed last passage percolation (LPP) on \mathbb{Z}^2 .

•
$$\xi(v) \sim \text{Exp}(1)$$
, i.i.d. $\forall v \in \mathbb{Z}^2$
• Passage time: $X_{u,v} := \max_{\gamma} \sum_{w \in \gamma} \xi(w)$
• Geodesic: $\Gamma_{u,v} := \operatorname{argmax}_{\gamma} \sum_{w \in \gamma} \xi(w)$

We study the directed last passage percolation (LPP) on \mathbb{Z}^2 .

■
$$\xi(v) \sim \text{Exp}(1)$$
, i.i.d. $\forall v \in \mathbb{Z}^2$
■ Passage time: $X_{u,v} := \max_{\gamma} \sum_{w \in \gamma} \xi(w)$
■ Geodesic: $\Gamma_{u,v} := \operatorname{argmax}_{\gamma} \sum_{w \in \gamma} \xi(w)$

Equivalent to TASEP, exactly solvable with 1 : 2 : 3 scaling.

Lingfu Zhang

```
■ X<sub>(0,0),(n,n)</sub> ~ 4n (Rost, 1981).
```


■ $2^{-4/3}n^{-1/3}(X_{(0,0),(n,n)} - 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).

■ $2^{-4/3}n^{-1/3}(X_{(0,0),(n,n)} - 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).

Point to line profile: stationary Airy₂ process minus a parabola (Borodin and Ferrari, 2008)

$$2^{-4/3}n^{-1/3}\left(X_{(0,0),(n-x(2n)^{2/3},n+x(2n)^{2/3})}-4n\right) \Rightarrow \mathcal{A}_{2}(x)-x^{2}$$

■ $2^{-4/3}n^{-1/3}(X_{(0,0),(n,n)} - 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).

Point to line profile: stationary Airy₂ process minus a parabola (Borodin and Ferrari, 2008)

$$2^{-4/3}n^{-1/3}\left(X_{(0,0),(n-x(2n)^{2/3},n+x(2n)^{2/3})}-4n\right) \Rightarrow \mathcal{A}_{2}(x)-x^{2}$$

 \mathcal{A}_2 is absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014).

■ $2^{-4/3}n^{-1/3}(X_{(0,0),(n,n)} - 4n)$ converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000).

Point to line profile: stationary Airy₂ process minus a parabola (Borodin and Ferrari, 2008)

$$2^{-4/3}n^{-1/3}\left(X_{(0,0),(n-x(2n)^{2/3},n+x(2n)^{2/3})}-4n\right) \Rightarrow \mathcal{A}_{2}(x)-x^{2}$$

 \mathcal{A}_2 is absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014).

 General initial data: KPZ fixed point (Matetski, Quastel, and Remenik, 2017).

$$x \mapsto n^{-1/3} \left(\sup_{y} f(y) + X_{(-y,y),(n-x(2n)^{2/3},n+x(2n)^{2/3})} - 4n \right)$$

■
$$\xi_s(v) := \{\xi(u)\}_{u \in \mathbb{Z}^2 : ||u-v||_{\infty} \le s} \in \mathbb{R}^{(2s+1)^2}, s \in \mathbb{Z}_{\ge 0}$$

■ Empirical measure $\mu_{n,s} := \frac{1}{2n} \sum_{v \in \Gamma_{(0,0),(n,n)}} \delta_{\xi_s(v)}$

Lingfu Zhang

Question: limiting behavior of $\mu_{n,s}$ as $n \to \infty$?

(First asked for the first passage percolation (FPP) model (e.g. AimPL, 2015))

$$\bullet \xi_{\boldsymbol{s}}(\boldsymbol{v}) := \{\xi(\boldsymbol{u})\}_{\boldsymbol{u} \in \mathbb{Z}^2 : \|\boldsymbol{u} - \boldsymbol{v}\|_{\infty} \le \boldsymbol{s}} \in \mathbb{R}^{(2s+1)^2}, \, \boldsymbol{s} \in \mathbb{Z}_{\ge 0}$$

• Empirical measure $\mu_{n,s} := \frac{1}{2n} \sum_{v \in \Gamma_{(0,0),(n,n)}} \delta_{\xi_s(v)}$

Question: limiting behavior of $\mu_{n,s}$ as $n \to \infty$?

(First asked for the first passage percolation (FPP) model (e.g. AimPL, 2015))

Theorem (Sly and Z., 2020)

For each $s \in \mathbb{Z}_{\geq 0}$, there exists a (deterministic) measure μ_s on $\mathbb{R}^{(2s+1)^2}$, such that $\mu_{n,s} \to \mu_s$ weakly in probability as $n \to \infty$.

Ingredients of the proof

Lingfu Zhang

Weights along the geodesic are asymptotically i.i.d.

General idea

Weights along the geodesic are asymptotically i.i.d.

Lingfu Zhang

General idea

Weights along the geodesic are asymptotically i.i.d.

Find some Ψ_{n,s}, s.t. ∀α, β, as n → ∞, the joint law of ξ_s(v_α), ξ_s(v_β) is close to Ψ_{n,s} × Ψ_{n,s}.

Lingfu Zhang

General idea

Weights along the geodesic are asymptotically i.i.d.

- Find some $\Psi_{n,s}$, s.t. $\forall \alpha, \beta$, as $n \to \infty$, the joint law of $\xi_s(v_\alpha), \xi_s(v_\beta)$ is close to $\Psi_{n,s} \times \Psi_{n,s}$.
- $\Psi_{n,s}$ converges as $n \to \infty$.

Mostly depends on a strip

Lingfu Zhang

Princeton

Jun 12, 2020

Mostly depends on a strip

Conditioned on $\xi(v)$ for $v \notin S_{\alpha}$, the law of $\xi_s(v_{\alpha})$ is close to $\Psi_{n,s}, \forall \alpha$.

Mostly depends on a strip

Conditioned on $\xi(v)$ for $v \notin S_{\alpha}$, the law of $\xi_s(v_{\alpha})$ is close to $\Psi_{n,s}, \forall \alpha$.

 S_{α} being disjoint from $S_{\beta} \implies$ asymptotic independence.

Lingfu Zhang

Princeton

Jun 12, 2020

- Take L_- , L_+ being δn away from $x + y = \alpha n$.
- Consider the passage times from (0,0) to L_− and from (n, n) to L₊: H_−, H₊.
- $X_{(0,0),(n,n)} = \max_{u \in L_-, w \in L_+} X_{u,w} + \mathcal{H}_-(u) + \mathcal{H}_+(w).$ Geodesic between L_- and L_+ : $\Gamma_{\mathcal{H}_-,\mathcal{H}_+}$.

Lingfu Zhang

Princeton

Jun 12, 2020

- Conditioned on $\xi(v)$ for $v \notin S_{\alpha}$, \mathcal{H}_{-} , \mathcal{H}_{+} are locally Brownian.
- Around $\operatorname{argmax} \mathcal{H}_{-} + \mathcal{H}_{+}$, (with rescaling) the law of $\mathcal{H}_{-}, \mathcal{H}_{+}$ is close to B_{-}, B_{+} , where $B_{-} + B_{+}$ is 3D-Bessel and $B_{-} B_{+}$ is Brownian motion.
- Using KPZ fixed point formulae.

Replace H₋, H₊ by B₋, B₊.
With high prob Γ_{B-,B+} largely overlaps with Γ_{H-,H+}.
With high prob v_α = Γ_{H-,H+} ∩ {x + y = αn} = Γ_{B-,B+} ∩ {x + y = αn}.

Lingfu Zhang

Princeton

Jun 12, 2020

Cover geodesics by length $\sim m$ geodesics, for large fixed *m*.

Lingfu Zhang

Cover geodesics by length $\sim m$ geodesics, for large fixed *m*.

Lingfu Zhang

Cover geodesics by length $\sim m$ geodesics, for large fixed *m*.

A 1 – ϵ portion of vertices in $\Gamma_{(0,0),(n,n)}$ are covered $\implies \Psi_{n,s}$ is close to $\Psi_{m,s}$.

Thank you!

Lingfu Zhang

AimPL. (2015). First passage percolation. [available at http://aimpl.org/firstpercolation].

- Borodin, A., & Ferrari, P. (2008). Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab., 13, 1380–1418.
- Corwin, I., & Hammond, A. (2014). Brownian Gibbs property for Airy line ensembles. Invent. Math., 195(2), 441–508.
 - Johansson, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phys., 209(2), 437–476.
 - Matetski, K., Quastel, J., & Remenik, D. (2017). The KPZ fixed point [arXiv preprint arXiv:1701.00018]. arXiv preprint arXiv:1701.00018.
 - Rost, H. (1981). Non-equilibrium behaviour of a many particle process: Density profile and local equilibria. Zeitschrift f. Warsch. Verw. Gebiete, 58(1), 41–53.
 - Sly, A., & Z., L. (2020). Empirical distribution along geodesics in exponential last passage percolation.

