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Plan for today
1 Brownian Motion and Dirichlet energy
I SLE and Loewner energy
1 SLE large deviations

For tomorrow

2 Loop energy
I Weil Petersson Teichmiller space

On Thursday

1 Radial SLE a large deviations

1 Foliations by Weil Petersson quasicircles



1 Brownian Motion and Dirichlet energy
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Schilder's theorem I asymptotic k so
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Remark Large deviation results depend on

the topology

We can take Fa but the topology
is the topology for uniform convergence
on compact sets

A 2D Brownian motion BI BI
t sas independent

Q Random planar curve Without
self intersection

Interfaces in 2D statistical
mechanics models e.g

Oded Schramm introduces SLE 1991



I Schramm Loewner evolutions Loewner energy
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Properties

Additivity
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Scaling
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More generally for an arbitrary
continuous

function W He is still welldefined

but Kt H She may not
be a simple curve
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Universality of BM
SLE are the unique random process of non self
intersecting

curve which satisfy

Conformal invariance
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2 Loewner
energy

Definition
The Learner energy of a deterministic
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So I b ab it is well defined and

does not depend on the choice of Y
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Conformal invariance
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1 SLE large
deviations

Than Peltola W 2020

let X simplecurves in ID from 1 to 13
endowed with the Hausdorff distance The

random curve SLE in X satisfy the LDP
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Remark W has finiteDirichletenergy

W is Hilder I continuous
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Deterministic result
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