For tomorrow: J Loop energy I) Weil-Petersson Teichmüller space

$$\rightarrow \text{ density of } \left(W_{t_0}, W_{t_1}, \cdots, W_{t_n} \right) \\ \propto \prod_{i=0}^{n-i} \exp\left(-\frac{\left(W_{t_{i+1}} - W_{t_i} \right)^2}{k 2 \left(t_{i+1} - t_i \right)} \right) dW_{t_{i+1}}$$

Physicists may write
"The density of V&B is

$$exp[-\frac{I(W)}{k}]DW$$
"
Ill-defined
Lebesgue mesure on the space
of function C⁰(IR+, IR)

where

$$I(W) := \frac{1}{2} \int_{0}^{\infty} \left(\frac{dW}{dt}\right)^{2} dt \qquad \text{if W is a.c.}$$

$$= \frac{1}{2} \sup \left(\frac{\sum_{i=0}^{n-1} \frac{|W_{tial} - W_{ti}|^{2}}{t_{ial} - t_{i}}\right)$$

$$= \frac{1}{2} \sup \left(\frac{\sum_{i=0}^{n-1} \frac{|W_{tial} - W_{ti}|^{2}}{t_{ial} - t_{i}}\right)$$

$$= \frac{1}{2} \sup \left(\frac{|W_{tial} - W_{ti}|^{2}}{t_{ial} - t_{i}}\right)$$

$$= \frac{1}{2} \sup \left(\frac{|W_{tial} - W_{ti}|^{2}}{t_{ial} - t_{i}}\right)$$

$$= \frac{1}{2} \sup \left(\frac{|W_{tial} - W_{tial}|^{2}}{t_{ial} - t_{i}}\right)$$

Schilder's theorem [asymptotic
$$k \rightarrow 0$$
]
 $I(W)$ is the large deviation rate function
of VEB as $k \rightarrow 0$.
Prob(VEB $2W$) ~ $exp(-\frac{I(W)}{k})$
More precisely, for any $\frac{I}{W} < 0$, consider
 B_{tort} as a random function in $C_0([0,T])$
 R for any Borel set $A = C_0([0,T])$
 $-inf I(W) \leq \lim_{W \rightarrow 0} K \log P(VEB \in A)$
 $W \in A$ $\leq I \leq k \log P(VEB \in A)$
 $E = inf I(W)$
Moreover, I is lower semi-continuous.
 $\left(\iint_{W} W = W + \int_{W} \int_{W} I(W) > I(W) \right)$
and I is good.
 $W = I > W = I(W) \leq I$ is
 $Compare.$

Remark: Large deviation results depend on
the topology!
· We can take
$$T = \infty$$
, but the topology
is the topology for uniform configure
on compart sets!
A 2D Brownian motion $(B_{\pm}^{\pm}, B_{\pm}^{\pm})$
independent
O: Random planar curve WITH out
Self - intersection?
A simulation of interface in critical Ising lattice
model, which approximates the SLE3.
(Interfrues in 2D Statistical
models modules e.g.)
Oded Schramm introduces SLE (198)

I Schromm Loewner explutions & Loewner energy
2) Loewner transform (Loewner 1923)
Let & be a simple chord in (H1, 0,000)

$$V_{t} = \frac{2}{2} + 0 + \frac{2t}{2} + \frac{2t}{2} + 0 + \frac{2t}{2} + \frac{2t}{2}$$

• Scaling: The driving function of
$$\lambda \delta$$

is the $\lambda W_{\lambda^{-2}t}$, on $[o, \lambda^{2}T]$
 ΔBM is invariant under these two transformations
• We can recover δ from W : $2 \in H$
 $\frac{d}{dt}g_{t}(2) = \frac{2}{g_{t}(2)-W_{t}}$, $g_{o}(2)=2$.
 $H_{t} := f_{2} \in H | g_{t}(2)$ well-defined $g = H \setminus \delta [o, t]$.

More generally, for an arbitrary continuous
function W, I Ht is still well-defined,
but
$$K_t := H + Ht$$
 may not
be a simple curve
 H
=) $(H_t)_{t>10}$ is a decreasing family of
simply connected domains which
contains a neighborhood of ∞ .

2) Loewner energy
Definition
The Leewner energy of a deterministic
chord 8 in (H1,0,00)

$$T_{H1,0,00}(8) := \frac{1}{2} \int_{0}^{\infty} (W_{1}')^{2} dt$$
 $E[0,00]$
where W is the Loewner driving function of 8.

Fact: If
$$\delta t \to \infty$$
 as too
and $I_{44,0,00}(\delta)$ (as to the Text
we will only consider this case
when we have chords reaching
the target point (917)

then
$$\tilde{W}_{t} = \int W \int_{z-2t}^{z} t$$

 $\int_{0}^{\infty} \tilde{W}_{t}^{2} dt = \frac{1}{2} \int_{0}^{\infty} (\lambda^{-1} \tilde{W}_{1}^{-2} t)^{2} dt$

Additivity: for octeT

$$\int_{2}^{1} \int_{0}^{1} \frac{1}{w_{s}^{2}} ds = \int_{2}^{1} \int_{0}^{1} \frac{1}{w_{s}^{2}} ds + \frac{1}{2} \int_{0}^{1} \frac{1}{w_{s}^{2}} ds$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{1}{2$$

$$I_{D,a,b}(\forall I_0,T) = I_{D,u,b}(\forall I_0,t])$$

$$+ I_{D\setminus T[0,t]}, \forall t, b^{(\forall tt,T)})$$

$$= \left(\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & &$$

$$\frac{(orformal invariance}{\Upsilon:(D,a,b)} \rightarrow (\widetilde{D},\widetilde{a},\widetilde{b})$$
Then $I_{D,a,b}(Y) = I_{\widetilde{D},\widetilde{a},\widetilde{b}}(Y(Y))$

Example:
$$I_{H_{1,0,\infty}}\left(\frac{10}{0}\right)$$
 with $0 \neq \frac{\pi}{2}$ is ∞ .
In fact, $W_t = (10) J t$

 \Rightarrow $I(Y) = \infty$

Remark: W has finite Dirichlet energy
=> W is Hölder -
$$\frac{1}{2}$$
 continuous
 $|W_t - W_s| = |\int_s^t \dot{w}_r dr| \le \delta t - s \sqrt{\int_s^t \dot{w}_r^2 dr}$
 $\le \delta t - s \sqrt{2} I(w)$

The
$$(W. 19)$$
 of in $(D, a.b)$
 $I_{D,a,b}(8) = I_{D,b,a}(8)$
Deterministic result
 $\int_{0}^{-\frac{1}{2}} \int_{0}^{-\frac{1}{2}} \int_{0$