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1



Overview of the course

1 Renormalization in Percolation

2 Quenched renormalization:

good and bad boxes

3 Quenched renormalization:

intensity of defects
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Renormalization in Percolation



Overview of this lecture

1 Renormalization in Percolation

Motivation

Introduction to Percolation

Renormalization in percolation

Dependent case
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Why renormalization in percolation?

Harry Kesten

Why renormalization?

• Very powerful technique

• Make intuitive descriptions rigorous

• Applies to many models

• It is pretty

Why percolation?

• Simple model

• Full of interesting phenomena

• Nice open questions

• Excellent testbed for renormalization
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Percolation
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Bernoulli percolation

• Introduced by Broadbent and Hammerley in 1957.

• Very simple model.

• Extensively studied.

• Fundamental open questions.

• Consider Z2 with edges between nearest neighbors.

• Fix p ∈ [0, 1].

• Every edge is declared open with probability p and closed w.p. (1− p).

• This is done independently for every edge.
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Phase transition

Consider:

[0↔∞] := there exists an open path from 0 to infinity. (1)

Its probability θ(p) is weakly monotone in p:

θ(p) := P[0↔∞] (2)

A beautiful path-counting argument (Peierls) shows that:

• θ(p) = 0 for p small;

• θ(p) > 0 for p close to one.

Phase transition! 7
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Phase transition

Consider:

[0↔∞] := there exists an open path from 0 to infinity. (1)

Its probability θ(p) is weakly monotone in p:

θ(p) := P[0↔∞] (2)

A beautiful path-counting argument (Peierls) shows that:

• θ(p) = 0 for p small; ← We will prove this. And more!

• θ(p) > 0 for p close to one.

Phase transition! 7



Open questions

Define pc = sup{p ∈ [0, 1]; θ(p) = 0}.

(Harris + Kesten) proved that for Z2:

• pc = 1/2;

• θ(p) is continuous in p.

There are still many question that remain open concerning this model:

• Is θ(p) continuous for dimensions 3, 4, ..., 10?

• How does θ(p) behave as p approaches pc?
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Multi-scale Renormalization

What we are going to prove?

Theorem

There exists p0 ∈ (0, 1) such that for p ≤ p0

Pp

[
0↔∞

]
= 0.

Actually

Pp

[
0↔ ∂Bn

]
≤ exp{−n0.1},

for all n ≥ 1.

Obs:

• Counting paths are easier and give better bounds (p0 and on decay)

• Renormalization is much more robust
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Outline of the proof

Steps of the proof:

A) Chose scales

B) Define “bad event”∗

C) Prove “cascading property”

D) Recursive inequalities∗∗

E) Perform triggering

∗Looks easy but it is hard

∗∗Looks hard but it is easy
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Step A (Choose scales)

Let Lk = 9k , for k ≥ 0.

Mk = {k} × Z2.

Also {Dm}m∈Mk
is a paving of Z2 with boxes of side Lk .

Step B (Define bad events)

Dm

D̃m

pk = P(Em), for some m ∈ Mk .
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Step C (Cascading Property)

Em =
Dm

D̃m

If m ∈ Mk+1,

Em ⊆
⋃

m1,m2

Em1 ∩ Em2 , with m1,m2 ∈ Mk .

Consequently

pk+1 ≤ 274p2
k .
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Step D (Recursive inequalities)

We want to prove that

pk ≤ exp
{
− L0.1

k

}
, for every k ≥ 0.

Induction step - Suppose true for k :

pk+1

exp{−L0.1
k+1}

Cascading
≤ 1

exp{−L0.1
k+1}

274p2
k

Induction
≤ 1

exp{−L0.1
k+1}

274 exp{−2L0.1
k }

= 274 exp
{
−
(
2L0.1

k − L0.1
k+1

)}
= 274 exp

{
−
(
2L0.1

k − 90.1L0.1
k

)}
k≥ko
≤ 1,

since 90.1 ∼ 1.24 . . .
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Step E (Triggering)

Still need for some k ≥ ko

pk ≤ exp{−L0.1
k }. (3)

Pick p small enough.

Conclusion

P[0↔∞] ≤ P[BLk ↔ ∂3BLk ] ≤ exp{−L0.1
k } −→

k
0.

Advantages

• Not restricted to percolation

• Quantitative results

• Robust to microscopic changes

• Robust to dependence

• Implicit condition (3).
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Review

Steps of the proof:

A) Chose scales

B) Define “bad event”

C) Prove “cascading property”

D) Recursive inequalities

E) Perform triggering

15



Dependent percolation

Model:

• {Xi}i≥0 is a PPP with intensity u

• {Ri}i≥0 i.i.d. radii P[Ri > r ] ≤ r−20

• Add edges inside B(Xi ,Ri )

Percolation is dependent, but satisfies

L1.5

L

L

A

B

P(A ∩ B) ≤ P(A)P(B) + L−10. (?)
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Step A (Choose scales)

Let L0 = 100,

Lk+1 ∼ L1.5
k (actually bL0.5

k cLk)

Entropy problem?

Mk = {k} × Z2.

Also {Dm}m∈Mk
is a paving of Z2 with boxes of side Lk .

Step B (Define bad events)

Dm

D̃m

pk = P(Em), for some m ∈ Mk .
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Step C (Cascading Property)

Em =
Dm

D̃m

3Lk

L1.5
k

Consequently

pk+1 ≤
(3Lk+1

Lk

)4
sup
m1,m2

P
(
Em1 ∩ Em2

)
≤ 34L2

k

(
p2
k + L−10

k+1

)
.
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Step D (Recursive inequalities)

We want to prove that

pk ≤ L−8
k , for every k ≥ 0.

Induction step - Suppose true for k :

pk+1

L−8
k+1

Cascading
≤ 1

L−8
k+1

34L2
k

(
p2
k + L−10

k

)
Induction
≤ 34L8

k+1L
2
k

(
L−16
k + L−10

k+1

)
= 34L12+2

k

(
2L−15

k

)
k≥ko
≤ 1,

since 15 > 14.
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Step E (Triggering)

Still need for some k ≥ ko

pk ≤ exp{−L0.1
k }. (4)

Pick u small enough.

Approximate independence is uniform over u ≤ 1 !!!

Conclusion

P[0↔∞] ≤ P[BLk ↔ ∂3BLk ] ≤ L−8
k −→k 0.
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Thank you!

60
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Quenched renormalization:

good and bad boxes



Overview of this lecture

2 Quenched renormalization:

good and bad boxes

Columnar defects

Negative results

Environment: Good-box, Bad-box

Percolation

What comes next
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What are we exercising?

Let us flex our technique:

• Quenched renormalization

• Crazy scales

• Crazy cascading property
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Inhomogeneous Percolation

Difficulty to represent different media.
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A different model

(a) A typical layered rock

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6

x0 x1 x2 x3 x4 x5 x6Λ :

(b) A new model

Our model for graph G :

• The set of vertices of G is Z2
+;

• Horizontal nearest neighbor edges: add them all;

• Given integers 0 = x0 < x1 < x2 < . . .

• Vertical nearest neighbor edges:

add the ones that lie in some line {xi} × R, for i ≥ 0.
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How we chose xi ’s?

Pick ξ1, ξ2, . . . i.i.d integer random variables (tail of defects).

Let

Xi =
i∑

i=1

ξi (5)

This is a Renewal Process.

Observation

It is clear that our graph G is a subgraph of Z2 (with n.n. edges)

Therefore, for p ≤ 1/2 we have θ(p) = 0 (thus pc ≥ 1/2).

Question

• Is pc < 1 (phase transition)?

• How the above question depends on the distribution of ξ?
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Simulation
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Previous work

Theorem (Bramson, Durrett, Schonmann)

Suppose that there is some c > 0 such that

P(ξi > k) ≤ e−ck , for every k large enough, (6)

then pc < 1 for a.e. realization of Xi ’s.

Observations

• BDS was originally stated for the contact process.

• Our article is very inspired by BDS (questions and proof).

• Hoffman: horizontal lines removed as well (more on that later).

• Kensten, Sidoravicius, Vares: oriented case.

• Duminil-Copin, Hilário, Kozma, Sidoravicius: near-critical.
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Main results

Theorem (Hilário, Sá, Sanchis, T.)

Suppose that for some η > 1 we have E (ξη) <∞. Then pc < 1 for a.e.

realization of Xi ’s.

Theorem (Hilário, Sá, Sanchis, T.)

Suppose that for some η < 1 we have E (ξη) =∞. Then pc = 1 for a.e.

realization of Xi ’s.

Observations

• Interpreting the “thickness of defects”.

• What happens if E (ξ) =∞?

• What if E (ξ) <∞?
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Absence of percolation

Suppose E (ξη) =∞ for some η < 1.

Fixing η < η′ < 1, consider the rectangle[
0, i
)
×
[
0, exp{i1/η′}

)
. (7)

With reasonable probability:

• There will be some ξi > i1/η.

• The percolation will not survive this long corridor.

End with Borel-Cantelli.
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An alternative definition

We can alternatively study

Yn = 1{Xi = h; for some i}, for n ≥ 0. (8)

We then change the first jump to χ to make the renewal process stationary:

(Y0,Y1, . . . )
d∼ (Yl ,Yl+1, . . . ). (9)
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Decoupling

m n m+ n

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0Y :
A B

Lemma

Let ξi ≥ 1 be an i.i.d, aperiodic, integer-valued sequence of increments

satifying

E (ξ1+ε) <∞, for some η > 1. (10)

Then, there is c = c(ξ, ε) such that for any pair of events

A ∈ σ(Yi ; 0 ≤ i ≤ n) and B ∈ σ(Yi ; i ≥ m + n), (11)

we have that

P(A ∩ B) = P(A)P(B)± cn−ε. (12)
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Recall our 5 steps!!!

Steps of the proof:

A) Chose scales

B) Define “bad event”

C) Prove “cascading property”

D) Recursive inequalities

E) Perform triggering
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Multiscale renormalization

Choosing appropriately L0 ≥ 1 and γ > 1 we define

Lk+1 = LkbLγ−1
k c ∼ Lγk , for k ≥ 1. (13)

We also pave Z+ with the intervals

I kj = [jLk , (j + 1)Lk), for j ≥ 0 (14)

Cover I k+1
j with blocks at scale k

Ik+1
0 Ik+1

4

0 Lk+1 2Lk+1 3Lk+1 4Lk+1 5Lk+1Lk

34



Good and Bad intervals

Step B (Define bad events)

Scale 0: no good column.

Good Bad Good Good Good0 L12L0 3L0 4L0L0

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0

Scale k + 1: two non-consecutive bad blocks at scale k.

0 Lk+1Lk Lk+2

Good Good Bad Good Bad

0 Lk+1 Lk+2
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Good and Bad intervals

Step B (Define bad events)

Scale 0: no good column.

Good Bad Good Good Good0 L12L0 3L0 4L0L0
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Typical boxes are good

Define

pk := P
[
Ik is bad

]
Lemma

There exists α > 0 such that

pk ≤ L−αk , (15)

for every k ≥ 0.

Step C (Cascading Property)
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Typical boxes are good

Define

pk := P
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Ik is bad

]
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Step C (Cascading Property)
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Step D (Recursive inequalities)

We want to prove that

pk ≤ L−αk , for every k ≥ ko .

Induction step - Suppose true for k :

pk+1

L−αk+1

Cascading
≤ 1

L−αk+1

(Lk+1

Lk

)2
sup
m1,m2

P
[
Bad(m1) ∩ Bad(m2)

]
≤ L

2(γ−1)+γα
k

(
p2
k + L−εk

)
Induction
≤ 2L

2(γ−1)+γα−2α∧ε
k

k≥ko
≤ 1,

since we pick 2α < ε and 2− γ > 2(γ−1)
α .
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Step E (Triggering)

Choose L0 large.

It is actually tricky because k0 grows !!!

Conclusion

P[Ik is bad] = pk ≤ L−αk −→
k

0.

Now we need to deal with percolation.

Thus the name “Quenched Renormalization”.
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Percolation

Step A (Choose scales)

Vertical scales (fix µ ∈ ( 1
ν , 1))

H0 = 100 and Hk+1 = 2dexp(Lµk+1)eHk , for k ≥ 0. (16)

Step B (Define bad events)

Crossing events: Cm and Dm

I ki I ki+1

jHk

(j + 1)Hk

(j + 2)Hk

rk := max
Λ; I ki ,I

k
i+1

good

PΛ
p

(
(Cm)c

)
sk := max

Λ; I ki
good

PΛ
p

(
(Dm)c

)
.
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Percolation

Step A (Choose scales)

Vertical scales (fix µ ∈ ( 1
ν , 1))

H0 = 100 and Hk+1 = 2dexp(Lµk+1)eHk , for k ≥ 0. (16)
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p

(
(Cm)c

)
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good

PΛ
p

(
(Dm)c

)
.
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We want to prove

Lemma

There exists p0, k0, β > 0 such that for p > p0

max{rk , sk} ≤ exp
{
− Lβk

}
, for all k ≥ k0.

We actually do this in two steps:

Lemma (R-Lemma)

If max{rk , sk} ≤ exp{−Lβk}, then
rk+1 ≤ exp

{
− Lβk+1

}
.

Lemma (S-Lemma)

If max{rk , sk} ≤ exp{−Lβk}, then
sk+1 ≤ exp

{
− Lβk+1

}
.
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If max{rk , sk} ≤ exp{−Lβk}, then
rk+1 ≤ exp

{
− Lβk+1

}
.

Lemma (S-Lemma)

If max{rk , sk} ≤ exp{−Lβk}, then
sk+1 ≤ exp

{
− Lβk+1

}
.

40



R-Lemma

Step C (Cascading Property)

If Cm fails, no crossing in any corridor (exp{Lµk+1} many of them).

I k+1
0 I k+1

1

0

2Hk

4Hk

6Hk

...

Hk+1

...
...

If a corridor is not crossed, one event below fails

2Hk

3Hk

4Hk

I k0 I k1 · · · · · ·

I k+1
0 I k+1

1 41



Step D (Recursive inequalities) for R-Lemma

Induction step -

rk+1

exp{−Lβk+1}

Cascading
≤ 1

exp{−Lβk+1}

(
1−

(
1− rk

)Lγ−1
k
(
1− sk

)Lγ−1
k

)exp{Lµk+1}

Induction
≤ exp{Lβk+1}

(
1−

(
1− 2Lγ−1

k exp{−Lβk}
))exp{Lµk+1}

= exp{Lβk+1}
(
2Lγ−1

k exp{−Lβk}
)exp{Lµk+1}

k large
= exp{Lβk+1}2

− exp{Lµk+1}

k≥ko
≤ 1,

That was easy, right !?!?

Sorry
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What was wrong?

We forgot the bad boxes.

rk := max
Λ; I ki ,I

k
i+1

good

PΛ
p

(
(Cm)c

)

A good box k + 1 can have two bad boxes inside!
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Second chance

If Cm fails, no crossing in any corridor (exp{Lµk+1} many of them).

I k+1
0 I k+1

1

0

2Hk

4Hk

6Hk

...

Hk+1

...
...

If a corridor is not crossed, one event below fails

2Hk

3Hk

4Hk

I k0 I k1 · · · · · ·I kj0 I kj1

I k+1
0 I k+1

1 44



Step D (Recursive inequalities) for R-Lemma

Induction step -

rk+1

exp{−Lβk+1}

p>1/2

≤ exp{Lβk+1}
(

1− 2−8Lk−1
)exp{Lµk+1}

= exp
{
Lβk+1 − 2−8Lk−1eL

µ
k+1

}
= exp

{
Lβk+1 − 2−8Lk−1eL

µγ
k

}
k large
≤ 1,

because γµ > 1.
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S-Lemma

Step C (Cascading Property)

I ki I ki+1· · · · · ·

jHk

(j + 1)Hk

(j + 2)Hk

i

j
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S-Lemma

Step C (Cascading Property)

I ki I ki+1· · · · · ·

jHk

(j + 1)Hk

(j + 2)Hk

i

j
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S-Lemma

Step C (Cascading Property)

I ki I ki+1· · · · · ·

jHk

(j + 1)Hk
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i

j
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S-Lemma

Step C (Cascading Property)

I ki I ki+1· · · · · ·

jHk

(j + 1)Hk

(j + 2)Hk

i

j
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S-Lemma

Step C (Cascading Property)

I ki I ki+1· · · · · ·

jHk

(j + 1)Hk

(j + 2)Hk

i

j
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Step D (Recursive inequalities) for S-Lemma

Induction step -

sk+1

exp{−Lβk+1}

Cascading
≤ eL

β
k+1

∑
n

P
[
“dashed”, blocking path of length n

]
Induction
≤ eL

β
k+1

∑
n≥Lγ−1

k

exp{Lµk+1}︸ ︷︷ ︸
starting point

8n︸︷︷︸
# of paths

exp{−Lβk}
n/7︸ ︷︷ ︸

probability of path

≤ exp
{
Lβk+1 + Lγµk

} ∑
n≥Lγ−1

k

8n exp{−Lβk}
n/7

≤ C exp
{
Lβγk + Lγµk

}
8L

γ−1
k exp{−LβkL

γ−1
k /7}

k≥ko
≤ 1,

since β + γ − 1 > max{γβ, γµ} (β < 1, but close).
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Final comments

Where to go next?

• Good/bad boxes are well suited for large defects

• Use up a lot of vertical space

• If we remove horizontal lines, the argument breaks
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Thank you!

100
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Quenched renormalization:

intensity of defects



Recalling last lecture

In the last lecture:

• Defects on x-axis only,

• Large defects,

• Defects could be considered catastrophic,

• Needed a lot of vertical room.
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Overview of this lecture

3 Quenched renormalization:

intensity of defects

Model

Environment: Intensity of defects

Percolation: good boxes

How to cross a trap
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The definition of the model

The model

• Two sequences ξ1, ξ2 of i.i.d. Geo(ρ) random variables

• Stretch the lattice horizontally (by ξ1) and vertically (by ξ2)

1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ξ1
1 ξ1

2 ξ1
3 ξ1

4 ξ1
5 ξ1

6

ξ2
1

ξ2
2

ξ2
3

ξ2
4

Perform Bernoulli percolation p on this stretched lattice.
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Simulation

Figure 4
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History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For ρ > 0 small and p < 1 large, there is

percolation.

Answer 2005

[Hoffman] Indeed

Theorem (Hoffman)

There exists ρ > 0 and p < 1 such that

Pρp[0↔∞] > 0.

Hoffman’s proof follows a dynamic renormalization.

We will sketch a proof of this result using a static renormalization.

Very inspired by Hoffman.

54



History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For ρ > 0 small and p < 1 large, there is

percolation.

Answer 2005

[Hoffman] Indeed

Theorem (Hoffman)

There exists ρ > 0 and p < 1 such that

Pρp[0↔∞] > 0.

Hoffman’s proof follows a dynamic renormalization.

We will sketch a proof of this result using a static renormalization.

Very inspired by Hoffman.

54



History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For ρ > 0 small and p < 1 large, there is

percolation.

Answer 2005

[Hoffman] Indeed

Theorem (Hoffman)

There exists ρ > 0 and p < 1 such that

Pρp[0↔∞] > 0.

Hoffman’s proof follows a dynamic renormalization.

We will sketch a proof of this result using a static renormalization.

Very inspired by Hoffman.

54



History of the problem

Conjecture 2000

[Jonasson, Mossel, Peres] For ρ > 0 small and p < 1 large, there is

percolation.

Answer 2005

[Hoffman] Indeed

Theorem (Hoffman)

There exists ρ > 0 and p < 1 such that

Pρp[0↔∞] > 0.

Hoffman’s proof follows a dynamic renormalization.

We will sketch a proof of this result using a static renormalization.

Very inspired by Hoffman.
54



Outline of the proof

Here is a quick guide

• Our 5-step guide to success for the environment

• Our 5-step guide to success for percolation on good boxes

• How to traverse obstacles
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Important observation:

• We look at the values of ξi only

• ξ1
i refers to “east edge”

• ξ2
i refers to “north edge”

• Edge is open with probability

pξi+1 ξ1
1

ξ2
1

ξ1
2

ξ2
2

ξ1
3

ξ2
3

ξ1
4

ξ2
4

ξ1
5

ξ2
5

Step A (Choose scales)

Lk = 500k , for k ≥ 0.

As before

I kj = [j500k , (j + 1)500k) ∩ Z

These are nested intervals

Ik+1
0 Ik+1

4

0 Lk+1 2Lk+1 3Lk+1 4Lk+1 5Lk+1Lk
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Environment

We want to “grade” defects:

• For each interval I kj , we associate a defect Hk
j = 0, 1, . . .

• An interval with H = 0 is called good, otherwise bad.

Scale 0 -

• L0 = 1,

• I kj = {j},
• Hk

j = ξj .

Scale k + 1 -

Hk+1
j =


0, if all sub-intervals are good

Hk
jo
− 1, if jo is the only bad sub-interval∑L

l=0 H
k
jl

+ 20L if j0, . . . , jL are the bad intervals

57



Environment

We want to “grade” defects:

• For each interval I kj , we associate a defect Hk
j = 0, 1, . . .

• An interval with H = 0 is called good, otherwise bad.

Scale 0 -

• L0 = 1,

• I kj = {j},
• Hk

j = ξj .

Scale k + 1 -

Hk+1
j =


0, if all sub-intervals are good

Hk
jo
− 1, if jo is the only bad sub-interval∑L

l=0 H
k
jl

+ 20L if j0, . . . , jL are the bad intervals

57



Step C (Cascading Property)

Define

pk = P[I kj is bad] = P[Hk
0 ≥ 1].

Lemma

For ρ small enough

pk ≤ L−10
k ,

for every k ≥ 0.

Typical boxes are good:

H = 1

Here we assume this single bad box is far from the extremes!

And other simplifications along the way!
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We actually prove

Lemma

For ρ small enough

P
[
Hk

0 = h
]
≤ 500−10k−20h

Trying to prove more makes it easier (induction).

Scale 0 -

P
[
H0

0 = h
]

= P[ξ0 = h] = ρh ≤ 500−20h.

Scale k + 1 - Roughly

P
[
Hk+1

0 = h
]
≤

∑
h0,...,hL;

h=
∑

hl−20L

L∏
l=0

500−10k−20hl

≤ · · · ≤ 500−10k−20h.
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Good rectangles

Retangles

Rk
i ,j =

[
iLk , (i + 1)Lk

)
×
[
jLk , (j + 1)Lk

)

We call them good if

Hk
i = Hk

j = 0

Observation

There exists ρ > 0 so that

P
[
Rk

(0,0) is good for all k ≥ 0
]
> 0

Just notice that∑
k

L−10
k =

∑
k

500−10k < 1
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Definition of filled boxes

Scale 0

• L0 = 1,

• R0
i ,j = (i , j),

• It is filled if its north and east edges are open,

• P[R0 filled] = p2.

• Its cluster is Cki ,j = {(i , j)}

Scale 1

• all good sub-boxes are filled, except for at most one

• all clusters of filled sub-boxes are connected (we call it Cki ,j)
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Percolation

A filled box and its cluster Cki,j in gray

Define

rk = sup
ω;Rk

i,j is good

P
[
Rk
i ,j is not filled

]
.
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Proof of percolation

Lemma

There exists p < 1 such that

rk ≤ 500−2k−100, for every k ≥ 0.

Proof of main theorem.

Assuming the lemma above:

P
[
Rk

(0,0) filled ∀k ≥ 0
∣∣∣Rk

(0,0) good ∀k ≥ 0
]
> 0.

Just notice that
∑

k rk < 1.

All we need to prove is the lemma!
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We really wanted to have

rk+1 ≤ 5004r2
k ,

but there are bad columns.

Define

sk = sup
Hk

(0,0)
=Hk

(2,0)
=0,

Hk
(1,0)

=1

P
[[

either Rk
(0,0) or Rk

(2,0) is not filled
]
∪
[
Ck(0,0) 6↔ C

k
(2,0)

]]

We call this a “crossing a trap”.
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Lemma

Suppose that for k ≥ 0,

rk ≤ 500−2k−100 and sk ≤ 500−2k−80,

Then

rk+1 ≤ 500−2(k+1)−100.

Proof.

If Rk+1 is not filled:

• there are two good but non-filled sub-boxes,

• there are two disjoint non-crossed traps.

rk+1 ≤ 5004r2
k + 10002s2

k

≤ 2 · 5004−4k−160 ≤ 500−(k+1)−100.
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Crossing defects!
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Crossing traps

We need to cross H = 1.

For this we need to cross all values of H.

S

cross defect
H=h
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Armies

Definition

S is called regular if

• S only intersects good intervals: S ∩ I kj 6= ∅ ⇒ Hk
j = 0

• S is spread out: S intersects at most 400 sub-intervals of any interval.

Motivation:

• crossing in a bad line is hard.

• packed armies are inefficient.

Observation

Every filled box contains a regular set of size 400k at its right face.

68



Intuition

Simple algebraic intuition:

Regular army

of size 400k+(h−1)/2
−−−−−−−−→

defect H = h

becomes regular army

of size 400k

Making this rigorous

vk = sup
h,S ,ω

P
[
survivors do not contain a regular army of size 400k

]
,

where the suppremum is taken over

• h ≥ 0,

• ω such that H(column) = h,

• S regular with |S | ≥ 400k+(h−1)/2.
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Last step of the proof

vk is stronger than sk!!!

Control on rk and vk ⇒ control on rk and sk ⇒ control on rk+1.

Control over vk :

Scale 0 -

• Subsets of regular sets are regular,

• Surviving army is Bin
(
400(h−1)/2, ph+1

)
,

• If p is large, P[no survivors] < 500−90, for every h ≥ 1.

Lemma

Suppose

rk ≤ 500−2k−100, and vk ≤ 500−2k−90,

then

vk+1 ≤ 500−2k−90.
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Two cases to consider

S S

single bad sub-box multiple bad sub-boxes
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Many bad sub-boxes

In this case

h =
L∑

l=0

hl + 20L.

We start with

|S | = 400k+1+(h−1)/2

= 400h0/2+20

× 400k+1+(h1+···+hL−1)/2+20(L−1)

One can split S into Si , . . . ,SJ with

• |Sj | ≥ 400k+(h0−1)/2,

• |J| ≥ 400(h1+···+hL−1)/2+20(L−1)
h0 h0

S

S1

S2

S3

S4

S5

S6

S7

S8

We use vk and repeat this for each defect.

With high probability we end up with 400k points.
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Single bad sub-box

In this case

h = h0 − 1

Then

|S | = 400k+1+(h−1)/2

Use the control on vk and get with

high probability

|S ′| ≥ 400k+1/4

after the defect.

Finally we use rk and sk to recover

|S ′′| ≥ 400k+1 (w.h.p.).

h + 1
Hm = h

H = 1

H = 1

H = 1
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Takeaways

Main takeaways:

• There is a “story-telling” in renormalization.

• Beautiful algebraic interplay between environment and process.

• There are many directions to go from here.

“What is a sequence of i.i.d. Bernoulli random variables?”

Vladas Sidoravicius
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Thank you!
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