## Quenched Multiscale Renormalization

## Online Open Probability School (OOPS) 2021

Augusto Teixeira 2021

Instituto de Matemática Pura e Aplicada Rio de Janeiro - Brazil

Based on a joint work with Hilário, Sá and Sanchis

## Overview of the course

1 Renormalization in Percolation

2 Quenched renormalization:
good and bad boxes

3 Quenched renormalization:
intensity of defects

Renormalization in Percolation

## Overview of this lecture

1 Renormalization in Percolation

- Motivation
- Introduction to Percolation
- Renormalization in percolation
- Dependent case


## Why renormalization in percolation?

Why renormalization?

- Very powerful technique
- Make intuitive descriptions rigorous
- Applies to many models
- It is pretty

Why percolation?

- Simple model
- Full of interesting phenomena
- Nice open questions
- Excellent testbed for renormalization


Harry Kesten

## Percolation



## Bernoulli percolation

- Introduced by Broadbent and Hammerley in 1957.
- Very simple model.
- Extensively studied.
- Fundamental open questions.

- Consider $\mathbb{Z}^{2}$ with edges between nearest neighbors.
- Fix $p \in[0,1]$.
- Every edge is declared open with probability $p$ and closed w.p. $(1-p)$.
- This is done independently for every edge.


## Phase transition

Consider:

$$
\begin{equation*}
[0 \leftrightarrow \infty]:=\text { there exists an open path from } 0 \text { to infinity. } \tag{1}
\end{equation*}
$$



Its probability $\theta(p)$ is weakly monotone in $p$ :

$$
\begin{equation*}
\theta(p):=P[0 \leftrightarrow \infty] \tag{2}
\end{equation*}
$$

A beautiful path-counting argument (Peierls) shows that:

- $\theta(p)=0$ for $p$ small;
- $\theta(p)>0$ for $p$ close to one.


## Phase transition

Consider:

$$
\begin{equation*}
[0 \leftrightarrow \infty]:=\text { there exists an open path from } 0 \text { to infinity. } \tag{1}
\end{equation*}
$$



Its probability $\theta(p)$ is weakly monotone in $p$ :

$$
\begin{equation*}
\theta(p):=P[0 \leftrightarrow \infty] \tag{2}
\end{equation*}
$$

A beautiful path-counting argument (Peierls) shows that:

- $\theta(p)=0$ for $p$ small; $\quad \leftarrow$ We will prove this.
- $\theta(p)>0$ for $p$ close to one.


## Phase transition

Consider:

$$
\begin{equation*}
[0 \leftrightarrow \infty]:=\text { there exists an open path from } 0 \text { to infinity. } \tag{1}
\end{equation*}
$$



Its probability $\theta(p)$ is weakly monotone in $p$ :

$$
\begin{equation*}
\theta(p):=P[0 \leftrightarrow \infty] \tag{2}
\end{equation*}
$$

A beautiful path-counting argument (Peierls) shows that:

- $\theta(p)=0$ for $p$ small; $\quad \leftarrow$ We will prove this. And more!
- $\theta(p)>0$ for $p$ close to one.


## Open questions

Define $p_{c}=\sup \{p \in[0,1] ; \theta(p)=0\}$.
(Harris + Kesten) proved that for $\mathbb{Z}^{2}$ :

- $p_{c}=1 / 2$;
- $\theta(p)$ is continuous in $p$.


There are still many question that remain open concerning this model:

- Is $\theta(p)$ continuous for dimensions $3,4, \ldots, 10$ ?
- How does $\theta(p)$ behave as $p$ approaches $p_{c}$ ?


## Multi-scale Renormalization

What we are going to prove?

## Theorem

There exists $p_{0} \in(0,1)$ such that for $p \leq p_{0}$

$$
\mathbb{P}_{p}[0 \leftrightarrow \infty]=0
$$

Actually

$$
\mathbb{P}_{p}\left[0 \leftrightarrow \partial B_{n}\right] \leq \exp \left\{-n^{0.1}\right\}
$$

for all $n \geq 1$.

## Multi-scale Renormalization

What we are going to prove?

## Theorem

There exists $p_{0} \in(0,1)$ such that for $p \leq p_{0}$

$$
\mathbb{P}_{p}[0 \leftrightarrow \infty]=0
$$

Actually

$$
\mathbb{P}_{p}\left[0 \leftrightarrow \partial B_{n}\right] \leq \exp \left\{-n^{0.1}\right\}
$$

for all $n \geq 1$.

## Obs:

- Counting paths are easier and give better bounds ( $p_{0}$ and on decay)
- Renormalization is much more robust


## Outline of the proof

Steps of the proof:
A) Chose scales
B) Define "bad event" *
C) Prove "cascading property"
D) Recursive inequalities**
E) Perform triggering
${ }^{*}$ Looks easy but it is hard
${ }^{* *}$ Looks hard but it is easy

## Step A (Choose scales)

Let $L_{k}=9^{k}$, for $k \geq 0$.
$M_{k}=\{k\} \times \mathbb{Z}^{2}$.
Also $\left\{D_{m}\right\}_{m \in M_{k}}$ is a paving of $\mathbb{Z}^{2}$ with boxes of side $L_{k}$.

## Step B (Define bad events)



$$
p_{k}=\mathbb{P}\left(E_{m}\right), \text { for some } m \in M_{k} .
$$

## Step C (Cascading Property)



If $m \in M_{k+1}$,

$$
E_{m} \subseteq \bigcup_{m_{1}, m_{2}} E_{m_{1}} \cap E_{m_{2}}, \quad \text { with } m_{1}, m_{2} \in M_{k}
$$

Consequently

$$
p_{k+1} \leq 27^{4} p_{k}^{2} .
$$

## Step D (Recursive inequalities)

We want to prove that

$$
p_{k} \leq \exp \left\{-L_{k}^{0.1}\right\}, \quad \text { for every } k \geq 0
$$

Induction step - Suppose true for $k$ :

$$
\begin{aligned}
\frac{p_{k+1}}{\exp \left\{-L_{k+1}^{0.1}\right\}} & \stackrel{\text { Cascading }}{\leq} \frac{1}{\exp \left\{-L_{k+1}^{0.1}\right\}} 27^{4} p_{k}^{2} \\
& \stackrel{\text { Induction }}{\leq} \frac{1}{\exp \left\{-L_{k+1}^{0.1}\right\}} 27^{4} \exp \left\{-2 L_{k}^{0.1}\right\} \\
& =27^{4} \exp \left\{-\left(2 L_{k}^{0.1}-L_{k+1}^{0.1}\right)\right\} \\
& =27^{4} \exp \left\{-\left(2 L_{k}^{0.1}-9^{0.1} L_{k}^{0.1}\right)\right\} \\
& \leq 1,
\end{aligned}
$$

since $9^{0.1} \sim 1.24 \ldots$

## Step E (Triggering)

Still need for some $k \geq k_{0}$

$$
\begin{equation*}
p_{k} \leq \exp \left\{-L_{k}^{0.1}\right\} \tag{3}
\end{equation*}
$$

Pick p small enough.

Conclusion

$$
\mathbb{P}[0 \leftrightarrow \infty] \leq \mathbb{P}\left[B_{L_{k}} \leftrightarrow \partial 3 B_{L_{k}}\right] \leq \exp \left\{-L_{k}^{0.1}\right\} \underset{k}{\longrightarrow} 0 .
$$

## Advantages

- Not restricted to percolation
- Quantitative results
- Robust to microscopic changes
- Robust to dependence
- Implicit condition (3).


## Review

## Steps of the proof:

A) Chose scales
B) Define "bad event"
C) Prove "cascading property"
D) Recursive inequalities
E) Perform triggering

## Dependent percolation



## Model:

- $\left\{X_{i}\right\}_{i \geq 0}$ is a PPP with intensity $u$
- $\left\{R_{i}\right\}_{i \geq 0}$ i.i.d. radii $P\left[R_{i}>r\right] \leq r^{-20}$
- Add edges inside $B\left(X_{i}, R_{i}\right)$

Percolation is dependent, but satisfies


## Step A (Choose scales)

Let $L_{0}=100$,

$$
L_{k+1} \sim L_{k}^{1.5} \quad\left(\text { actually }\left\lfloor L_{k}^{0.5}\right\rfloor L_{k}\right)
$$

Entropy problem?
$M_{k}=\{k\} \times \mathbb{Z}^{2}$
Also $\left\{D_{m}\right\}_{m \in M_{k}}$ is a paving of $\mathbb{Z}^{2}$ with boxes of side $L_{k}$.

## Step B (Define bad events)



$$
p_{k}=\mathbb{P}\left(E_{m}\right), \text { for some } m \in M_{k} \text {. }
$$

## Step C (Cascading Property)



Consequently

$$
\begin{aligned}
p_{k+1} & \leq\left(\frac{3 L_{k+1}}{L_{k}}\right)^{4} \sup _{m_{1}, m_{2}} \mathbb{P}\left(E_{m_{1}} \cap E_{m_{2}}\right) \\
& \leq 3^{4} L_{k}^{2}\left(p_{k}^{2}+L_{k+1}^{-10}\right) .
\end{aligned}
$$

## Step D (Recursive inequalities)

We want to prove that

$$
p_{k} \leq L_{k}^{-8}, \quad \text { for every } k \geq 0
$$

Induction step - Suppose true for $k$ :

$$
\begin{aligned}
& \frac{p_{k+1}}{L_{k+1}^{-8}} \stackrel{\text { Cascading }}{\leq} \frac{1}{L_{k+1}^{-8}} 3^{4} L_{k}^{2}\left(p_{k}^{2}+L_{k}^{-10}\right) \\
& \quad \begin{array}{l}
\text { Induction } \\
\leq \\
\quad \\
\quad 3^{4} L_{k+1}^{8} L_{k}^{2}\left(L_{k}^{-16}+L_{k+1}^{-10}\right) \\
\quad 3^{4} L_{k}^{12+2}\left(2 L_{k}^{-15}\right) \\
\quad \leq 1,
\end{array}
\end{aligned}
$$

since $15>14$.

## Step E (Triggering)

Still need for some $k \geq k_{0}$

$$
\begin{equation*}
p_{k} \leq \exp \left\{-L_{k}^{0.1}\right\} . \tag{4}
\end{equation*}
$$

Pick u small enough.

## Step E (Triggering)

Still need for some $k \geq k_{0}$

$$
\begin{equation*}
p_{k} \leq \exp \left\{-L_{k}^{0.1}\right\} . \tag{4}
\end{equation*}
$$

Pick $u$ small enough.

Approximate independence is uniform over $u \leq 1$ !!!

## Step E (Triggering)

Still need for some $k \geq k_{0}$

$$
\begin{equation*}
p_{k} \leq \exp \left\{-L_{k}^{0.1}\right\} . \tag{4}
\end{equation*}
$$

Pick $u$ small enough.

Approximate independence is uniform over $u \leq 1$ !!!

Conclusion

$$
\mathbb{P}[0 \leftrightarrow \infty] \leq \mathbb{P}\left[B_{L_{k}} \leftrightarrow \partial 3 B_{L_{k}}\right] \leq L_{k}^{-8} \underset{k}{\longrightarrow} 0 .
$$

## Thank you!



Quenched renormalization: good and bad boxes

## Overview of this lecture

2 Quenched renormalization:
good and bad boxes

- Columnar defects
- Negative results
- Environment: Good-box, Bad-box
- Percolation
- What comes next


## What are we exercising?

Let us flex our technique:

- Quenched renormalization
- Crazy scales
- Crazy cascading property


## Inhomogeneous Percolation



Difficulty to represent different media.

## A different model


(a) A typical layered rock

(b) A new model

Our model for graph $G$ :

- The set of vertices of $G$ is $\mathbb{Z}_{+}^{2}$;
- Horizontal nearest neighbor edges: add them all;
- Given integers $0=x_{0}<x_{1}<x_{2}<\ldots$
- Vertical nearest neighbor edges: add the ones that lie in some line $\left\{x_{i}\right\} \times \mathbb{R}$, for $i \geq 0$.


## How we chose $x_{i}$ 's?

Pick $\xi_{1}, \xi_{2}, \ldots$ i.i.d integer random variables (tail of defects).
Let

$$
\begin{equation*}
X_{i}=\sum_{i=1}^{i} \xi_{i} \tag{5}
\end{equation*}
$$

This is a Renewal Process.

## Observation

It is clear that our graph $G$ is a subgraph of $\mathbb{Z}^{2}$ (with n.n. edges)
Therefore, for $p \leq 1 / 2$ we have $\theta(p)=0 \quad$ (thus $p_{c} \geq 1 / 2$ ).

## Question

- Is $p_{c}<1$ (phase transition)?
- How the above question depends on the distribution of $\xi$ ?


## Simulation



## Previous work

## Theorem (Bramson, Durrett, Schonmann)

Suppose that there is some $c>0$ such that

$$
\begin{equation*}
P\left(\xi_{i}>k\right) \leq e^{-c k}, \text { for every } k \text { large enough, } \tag{6}
\end{equation*}
$$

then $p_{c}<1$ for a.e. realization of $X_{i}$ 's.

## Observations

- BDS was originally stated for the contact process.
- Our article is very inspired by BDS (questions and proof).
- Hoffman: horizontal lines removed as well (more on that later).
- Kensten, Sidoravicius, Vares: oriented case.
- Duminil-Copin, Hilário, Kozma, Sidoravicius: near-critical.


## Main results

## Theorem (Hilário, Sá, Sanchis, T.)

Suppose that for some $\eta>1$ we have $E\left(\xi^{\eta}\right)<\infty$. Then $p_{c}<1$ for a.e. realization of $X_{i}$ 's.

Theorem (Hilário, Sá, Sanchis, T.)
Suppose that for some $\eta<1$ we have $E\left(\xi^{\eta}\right)=\infty$. Then $p_{c}=1$ for a.e. realization of $X_{i}$ 's.

## Observations

- Interpreting the "thickness of defects".
- What happens if $E(\xi)=\infty$ ?
- What if $E(\xi)<\infty$ ?


## Absence of percolation

Suppose $E\left(\xi^{\eta}\right)=\infty$ for some $\eta<1$.

Fixing $\eta<\eta^{\prime}<1$, consider the rectangle

$$
[0, i) \times\left[0, \exp \left\{i^{1 / \eta^{\prime}}\right\}\right)
$$

With reasonable probability:

- There will be some $\xi_{i}>i^{1 / \eta}$.
- The percolation will not survive this long corridor.

End with Borel-Cantelli.

## An alternative definition



We can alternatively study

$$
\begin{equation*}
Y_{n}=\mathbf{1}\left\{X_{i}=h ; \text { for some } i\right\}, \text { for } n \geq 0 \tag{8}
\end{equation*}
$$

We then change the first jump to $\chi$ to make the renewal process stationary:

$$
\begin{equation*}
\left(Y_{0}, Y_{1}, \ldots\right) \stackrel{d}{\sim}\left(Y_{l}, Y_{l+1}, \ldots\right) \tag{9}
\end{equation*}
$$

## Decoupling



## Lemma

Let $\xi_{i} \geq 1$ be an i.i.d, aperiodic, integer-valued sequence of increments satifying

$$
\begin{equation*}
E\left(\xi^{1+\epsilon}\right)<\infty, \text { for some } \eta>1 \tag{10}
\end{equation*}
$$

Then, there is $c=c(\xi, \epsilon)$ such that for any pair of events

$$
\begin{equation*}
A \in \sigma\left(Y_{i} ; 0 \leq i \leq n\right) \quad \text { and } \quad B \in \sigma\left(Y_{i} ; i \geq m+n\right), \tag{11}
\end{equation*}
$$

we have that

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) \pm c n^{-\epsilon} \tag{12}
\end{equation*}
$$

## Recall our 5 steps!!!

Steps of the proof:
A) Chose scales
B) Define "bad event"
C) Prove "cascading property"
D) Recursive inequalities
E) Perform triggering

## Multiscale renormalization

Choosing appropriately $L_{0} \geq 1$ and $\gamma>1$ we define

$$
\begin{equation*}
L_{k+1}=L_{k}\left\lfloor L_{k}^{\gamma-1}\right\rfloor \sim L_{k}^{\gamma}, \text { for } k \geq 1 \tag{13}
\end{equation*}
$$

We also pave $\mathbb{Z}_{+}$with the intervals

$$
\begin{equation*}
I_{j}^{k}=\left[j L_{k},(j+1) L_{k}\right), \text { for } j \geq 0 \tag{14}
\end{equation*}
$$

Cover $l_{j}^{k+1}$ with blocks at scale $k$


## Good and Bad intervals

## Step B (Define bad events)

Scale 0: no good column.


## Good and Bad intervals

## Step B (Define bad events)

Scale 0: no good column.


Scale $k+1$ : two non-consecutive bad blocks at scale $k$.


## Typical boxes are good

Define

$$
p_{k}:=P\left[I_{k} \text { is bad }\right]
$$

## Lemma

There exists $\alpha>0$ such that

$$
\begin{equation*}
p_{k} \leq L_{k}^{-\alpha} \tag{15}
\end{equation*}
$$

for every $k \geq 0$.

## Typical boxes are good

Define

$$
p_{k}:=P\left[I_{k} \text { is bad }\right]
$$

## Lemma

There exists $\alpha>0$ such that

$$
\begin{equation*}
p_{k} \leq L_{k}^{-\alpha}, \tag{15}
\end{equation*}
$$

for every $k \geq 0$.

## Step C (Cascading Property)

## Step D (Recursive inequalities)

We want to prove that

$$
p_{k} \leq L_{k}^{-\alpha}, \quad \text { for every } k \geq k_{0} .
$$

Induction step - Suppose true for $k$ :

$$
\begin{aligned}
\frac{p_{k+1}}{L_{k+1}^{-\alpha}} & \stackrel{\text { Cascading }}{\leq} \frac{1}{L_{k+1}^{-\alpha}}\left(\frac{L_{k+1}}{L_{k}}\right)^{2} \sup _{m_{1}, m_{2}} P\left[\operatorname{Bad}\left(m_{1}\right) \cap \operatorname{Bad}\left(m_{2}\right)\right] \\
& \leq L_{k}^{2(\gamma-1)+\gamma \alpha}\left(p_{k}^{2}+L_{k}^{-\epsilon}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { Induction }}{\leq} 2 L_{k}^{2(\gamma-1)+\gamma \alpha-2 \alpha \wedge \epsilon} \\
& \stackrel{k \geq k_{0}}{\leq} 1,
\end{aligned}
$$

since we pick $2 \alpha<\epsilon$ and $2-\gamma>\frac{2(\gamma-1)}{\alpha}$.

## Step E (Triggering)

Choose $L_{0}$ large.

## Step E (Triggering)

Choose $L_{0}$ large.
It is actually tricky because $k_{0}$ grows !!!

## Step E (Triggering)

Choose $L_{0}$ large.
It is actually tricky because $k_{0}$ grows !!!

Conclusion

$$
\mathbb{P}\left[I_{k} \text { is bad }\right]=p_{k} \leq L_{k}^{-\alpha} \underset{k}{\longrightarrow} 0 .
$$

## Step E (Triggering)

Choose $L_{0}$ large.
It is actually tricky because $k_{0}$ grows !!!

Conclusion

$$
\mathbb{P}\left[I_{k} \text { is bad }\right]=p_{k} \leq L_{k}^{-\alpha} \underset{k}{\longrightarrow} 0 .
$$

Now we need to deal with percolation.

Thus the name "Quenched Renormalization".

## Percolation

## Step A (Choose scales)

Vertical scales (fix $\mu \in\left(\frac{1}{\nu}, 1\right)$ )

$$
\begin{equation*}
H_{0}=100 \quad \text { and } \quad H_{k+1}=2\left\lceil\exp \left(L_{k+1}^{\mu}\right)\right\rceil H_{k}, \quad \text { for } k \geq 0 . \tag{16}
\end{equation*}
$$

## Step B (Define bad events)

Crossing events: $C_{m}$ and $D_{m}$


## Percolation

## Step A (Choose scales)

Vertical scales (fix $\mu \in\left(\frac{1}{\nu}, 1\right)$ )

$$
\begin{equation*}
H_{0}=100 \quad \text { and } \quad H_{k+1}=2\left\lceil\exp \left(L_{k+1}^{\mu}\right)\right\rceil H_{k}, \quad \text { for } k \geq 0 . \tag{16}
\end{equation*}
$$

## Step B (Define bad events)

Crossing events: $C_{m}$ and $D_{m}$


$$
r_{k}:=\max _{\substack{\Lambda ; l_{i}^{k}, l_{i+1}^{k} \\ \text { good }}} \mathbb{P}_{p}^{\wedge}\left(\left(C_{m}\right)^{c}\right) \quad s_{k}:=\max _{\substack{\Lambda ; l_{i}^{k} \\ \operatorname{good}}} \mathbb{P}_{p}^{\wedge}\left(\left(D_{m}\right)^{c}\right)
$$

We want to prove

## Lemma

There exists $p_{0}, k_{0}, \beta>0$ such that for $p>p_{0}$

$$
\max \left\{r_{k}, s_{k}\right\} \leq \exp \left\{-L_{k}^{\beta}\right\}, \text { for all } k \geq k_{0}
$$

We want to prove

## Lemma

There exists $p_{0}, k_{0}, \beta>0$ such that for $p>p_{0}$

$$
\max \left\{r_{k}, s_{k}\right\} \leq \exp \left\{-L_{k}^{\beta}\right\}, \text { for all } k \geq k_{0}
$$

We actually do this in two steps:

## Lemma (R-Lemma)

If $\max \left\{r_{k}, s_{k}\right\} \leq \exp \left\{-L_{k}^{\beta}\right\}$, then

$$
r_{k+1} \leq \exp \left\{-L_{k+1}^{\beta}\right\} .
$$

## Lemma (S-Lemma)

If $\max \left\{r_{k}, s_{k}\right\} \leq \exp \left\{-L_{k}^{\beta}\right\}$, then

$$
s_{k+1} \leq \exp \left\{-L_{k+1}^{\beta}\right\}
$$

## R-Lemma

## Step C (Cascading Property)

If $C_{m}$ fails, no crossing in any corridor $\left(\exp \left\{L_{k+1}^{\mu}\right\}\right.$ many of them $)$.


If a corridor is not crossed, one event below fails


## Step D (Recursive inequalities) for R-Lemma

## Induction step -

$$
\begin{aligned}
\frac{r_{k+1}}{\exp \left\{-L_{k+1}^{\beta}\right\}} & \stackrel{\text { Cascading }}{\leq} \frac{1}{\exp \left\{-L_{k+1}^{\beta}\right\}}\left(1-\left(1-r_{k}\right)^{L_{k}^{\gamma-1}}\left(1-s_{k}\right)^{L_{k}^{\gamma-1}}\right)^{\exp \left\{L_{k+1}^{\mu}\right\}} \\
& \quad \text { Induction } \\
\leq & \left.\exp \left\{L_{k+1}^{\beta}\right\}\left(1-\left(1-2 L_{k}^{\gamma-1} \exp \left\{-L_{k}^{\beta}\right\}\right)\right)\right)^{\exp \left\{L_{k+1}^{\mu}\right\}} \\
& =\exp \left\{L_{k+1}^{\beta}\right\}\left(2 L_{k}^{\gamma-1} \exp \left\{-L_{k}^{\beta}\right\}\right\} \exp ^{\exp \left\{L_{k+1}^{\mu}\right\}} \\
& \stackrel{\text { large }}{=} \exp \left\{L_{k+1}^{\beta}\right\} 2^{-\exp \left\{L_{k+1}^{\mu}\right\}} \\
& \stackrel{k \geq k_{0}}{\leq} 1,
\end{aligned}
$$

## Step D (Recursive inequalities) for R-Lemma

## Induction step -

$$
\begin{aligned}
\frac{r_{k+1}}{\exp \left\{-L_{k+1}^{\beta}\right\}} & \stackrel{\text { Cascading }}{\leq} \frac{1}{\exp \left\{-L_{k+1}^{\beta}\right\}}\left(1-\left(1-r_{k}\right)^{L_{k}^{\gamma-1}}\left(1-s_{k}\right)^{L_{k}^{\gamma-1}}\right)^{\exp \left\{L_{k+1}^{\mu}\right\}} \\
& \left.\stackrel{\text { Induction }}{\leq} \exp \left\{L_{k+1}^{\beta}\right\}\left(1-\left(1-2 L_{k}^{\gamma-1} \exp \left\{-L_{k}^{\beta}\right\}\right)\right)\right)^{\exp \left\{L_{k+1}^{\mu}\right\}} \\
& =\exp \left\{L_{k+1}^{\beta}\right\}\left(2 L_{k}^{\gamma-1} \exp \left\{-L_{k}^{\beta}\right\}\right) \exp \left\{L_{k+1}^{\mu}\right\} \\
& \stackrel{\text { large }}{=} \exp \left\{L_{k+1}^{\beta}\right\} 2^{-\exp \left\{L_{k+1}^{\mu}\right\}} \\
& \stackrel{k \geq k_{0}}{\leq} 1,
\end{aligned}
$$

That was easy, right !?!?

## Step D (Recursive inequalities) for R-Lemma

## Induction step -

$\frac{r_{k+1}}{\exp \left\{-L_{k+1}^{\beta}\right\}} \stackrel{\text { Cascading }}{\leq} \frac{1}{\exp \left\{-L_{k+1}^{\beta}\right\}}\left(1-\left(1-r_{k}\right)^{L_{k}^{\gamma-1}}\left(1-s_{k}\right)^{L_{k}^{\gamma-1}}\right)^{\exp \left\{L_{k+1}^{\mu}\right\}}$

$$
\begin{aligned}
& \text { Induction } \exp \left\{L_{k+1}^{\beta}\right\}\left(1-\left(1-2 L_{k}^{\gamma-1} \exp \left\{-L_{k}^{\beta}\right\}\right)\right)^{\exp \left\{L_{k+1}^{\mu}\right\}} \\
& \quad=\exp \left\{L_{k+1}^{\beta}\right\}\left(2 L_{k}^{\gamma-1} \exp \left\{-L_{k}^{\beta}\right\}\right)^{\exp \left\{L_{k+1}^{\mu}\right\}}
\end{aligned}
$$

$$
\stackrel{k \text { large }}{=} \exp \left\{L_{k+1}^{\beta}\right\} 2^{-\exp \left\{L_{k+1}^{\mu}\right\}}
$$

$$
\stackrel{k \geq k_{0}}{\leq} \quad 1
$$

That was easy, right !?!?

Sorry


## What was wrong?

We forgot the bad boxes.

$$
r_{k}:=\max _{\substack{\Lambda ; l_{i}^{k}, l_{i+1}^{k} \\ \text { good }}} \mathbb{P}_{p}^{\wedge}\left(\left(C_{m}\right)^{c}\right)
$$

A good box $k+1$ can have two bad boxes inside!

## Second chance

If $C_{m}$ fails, no crossing in any corridor $\left(\exp \left\{L_{k+1}^{\mu}\right\}\right.$ many of them $)$.


If a corridor is not crossed, one event below fails


## Step D (Recursive inequalities) for R-Lemma

## Induction step -

$$
\begin{aligned}
\frac{r_{k+1}}{\exp \left\{-L_{k+1}^{\beta}\right\}} & \stackrel{p>1 / 2}{\leq} \exp \left\{L_{k+1}^{\beta}\right\}\left(1-2^{-8 L_{k}-1}\right)^{\exp \left\{L_{k+1}^{\mu}\right\}} \\
& =\exp \left\{L_{k+1}^{\beta}-2^{-8 L_{k}-1} e^{L_{k+1}^{\mu}}\right\} \\
& =\exp \left\{L_{k+1}^{\beta}-2^{-8 L_{k}-1} e^{L_{k}^{\mu \gamma}}\right\} \\
& \begin{aligned}
& \text { large } \\
& \leq 1
\end{aligned}
\end{aligned}
$$

because $\gamma \mu>1$.

## S-Lemma

## Step C (Cascading Property)




## S-Lemma

## Step C (Cascading Property)



## S-Lemma

## Step C (Cascading Property)



## S-Lemma

## Step C (Cascading Property)



## S-Lemma

## Step C (Cascading Property)



## Step D (Recursive inequalities) for S-Lemma

## Induction step -

$$
\frac{s_{k+1}}{\exp \left\{-L_{k+1}^{\beta}\right\}} \stackrel{\text { Cascading }}{\leq} e^{L_{k+1}^{\beta}} \sum_{n} P[\text { "dashed", blocking path of length } n]
$$

$$
\stackrel{\substack{\text { Induction }}}{\leq L_{k+1}^{\beta}} \sum_{n \geq L_{k}^{\gamma-1}} \underbrace{\exp \left\{L_{k+1}^{\mu}\right\}}_{\text {starting point }} \underbrace{8^{n}}_{\text {of paths }} \underbrace{\exp \left\{-L_{k}^{\beta}\right\}^{n / 7}}_{\text {probability of path }}
$$

$$
\leq \exp \left\{L_{k+1}^{\beta}+L_{k}^{\gamma \mu}\right\} \sum_{n \geq L_{k}^{\gamma-1}} 8^{n} \exp \left\{-L_{k}^{\beta}\right\}^{n / 7}
$$

$$
\leq \quad C \exp \left\{L_{k}^{\beta \gamma}+L_{k}^{\gamma \mu}\right\} 8^{L_{k}^{\gamma-1}} \exp \left\{-L_{k}^{\beta} L_{k}^{\gamma-1} / 7\right\}
$$

$$
\stackrel{k \geq k_{0}}{\leq} \quad 1,
$$

$$
\text { since } \beta+\gamma-1>\max \{\gamma \beta, \gamma \mu\} \quad(\beta<1, \text { but close })
$$

## Final comments

Where to go next?

- Good/bad boxes are well suited for large defects
- Use up a lot of vertical space
- If we remove horizontal lines, the argument breaks


## Thank you!



100

Quenched renormalization: intensity of defects

## Recalling last lecture

In the last lecture:

- Defects on $x$-axis only,
- Large defects,
- Defects could be considered catastrophic,
- Needed a lot of vertical room.


## Overview of this lecture

3 Quenched renormalization: intensity of defects

- Model
- Environment: Intensity of defects
- Percolation: good boxes
- How to cross a trap


## The definition of the model

The model

- Two sequences $\xi^{1}, \xi^{2}$ of i.i.d. $\operatorname{Geo}(\rho)$ random variables
- Stretch the lattice horizontally (by $\xi^{1}$ ) and vertically (by $\xi^{2}$ )


Perform Bernoulli percolation $p$ on this stretched lattice.

## Simulation



Figure 4

## History of the problem

## Conjecture 2000

[Jonasson, Mossel, Peres] For $\rho>0$ small and $p<1$ large, there is percolation.

## History of the problem

Conjecture 2000
[Jonasson, Mossel, Peres] For $\rho>0$ small and $p<1$ large, there is percolation.

Answer 2005
[Hoffman] Indeed

## History of the problem

Conjecture 2000
[Jonasson, Mossel, Peres] For $\rho>0$ small and $p<1$ large, there is percolation.

Answer 2005
[Hoffman] Indeed

## Theorem (Hoffman)

There exists $\rho>0$ and $p<1$ such that

$$
\mathbb{P}_{p}^{\rho}[0 \leftrightarrow \infty]>0 .
$$

Hoffman's proof follows a dynamic renormalization.

## History of the problem

Conjecture 2000
[Jonasson, Mossel, Peres] For $\rho>0$ small and $p<1$ large, there is percolation.

Answer 2005
[Hoffman] Indeed

## Theorem (Hoffman)

There exists $\rho>0$ and $p<1$ such that

$$
\mathbb{P}_{p}^{\rho}[0 \leftrightarrow \infty]>0 .
$$

Hoffman's proof follows a dynamic renormalization.
We will sketch a proof of this result using a static renormalization.
Very inspired by Hoffman.

## Outline of the proof

Here is a quick guide

- Our 5-step guide to success for the environment
- Our 5-step guide to success for percolation on good boxes
- How to traverse obstacles


## Important observation:

- We look at the values of $\xi_{i}$ only
- $\xi_{i}^{1}$ refers to "east edge"
- $\xi_{i}^{2}$ refers to "north edge"
- Edge is open with probability $p^{\xi_{i}+1}$


## Important observation:

- We look at the values of $\xi_{i}$ only
- $\xi_{i}^{1}$ refers to "east edge"
- $\xi_{i}^{2}$ refers to "north edge"
- Edge is open with probability

$$
p^{\xi_{i}+1}
$$



Step A (Choose scales)

$$
L_{k}=500^{k}, \quad \text { for } k \geq 0
$$

As before

$$
I_{j}^{k}=\left[j 500^{k},(j+1) 500^{k}\right) \cap \mathbb{Z}
$$

These are nested intervals


## Environment

We want to "grade" defects:

- For each interval $l_{j}^{k}$, we associate a defect $H_{j}^{k}=0,1, \ldots$
- An interval with $H=0$ is called good, otherwise bad.

Scale 0 -

- $L_{0}=1$,
- $l_{j}^{k}=\{j\}$,
- $H_{j}^{k}=\xi_{j}$.


## Environment

We want to "grade" defects:

- For each interval $l_{j}^{k}$, we associate a defect $H_{j}^{k}=0,1, \ldots$
- An interval with $H=0$ is called good, otherwise bad.


## Scale 0 -

- $L_{0}=1$,
- $l_{j}^{k}=\{j\}$,
- $H_{j}^{k}=\xi_{j}$.

Scale $k+1$ -

$$
H_{j}^{k+1}= \begin{cases}0, & \text { if all sub-intervals are good } \\ H_{j_{o}}^{k}-1, & \text { if } j_{o} \text { is the only bad sub-interval } \\ \sum_{l=0}^{L} H_{j l}^{k}+20 L & \text { if } j_{0}, \ldots, j_{L} \text { are the bad intervals }\end{cases}
$$

## Step C (Cascading Property)

Define

$$
p_{k}=\mathbb{P}\left[l_{j}^{k} \text { is bad }\right]=\mathbb{P}\left[H_{0}^{k} \geq 1\right] .
$$

## Lemma

For $\rho$ small enough

$$
p_{k} \leq L_{k}^{-10}
$$

for every $k \geq 0$.

## Step C (Cascading Property)

Define

$$
p_{k}=\mathbb{P}\left[l_{j}^{k} \text { is bad }\right]=\mathbb{P}\left[H_{0}^{k} \geq 1\right]
$$

## Lemma

For $\rho$ small enough

$$
p_{k} \leq L_{k}^{-10}
$$

for every $k \geq 0$.

Typical boxes are good:


## Step C (Cascading Property)

Define

$$
p_{k}=\mathbb{P}\left[l_{j}^{k} \text { is bad }\right]=\mathbb{P}\left[H_{0}^{k} \geq 1\right] .
$$

## Lemma

For $\rho$ small enough

$$
p_{k} \leq L_{k}^{-10}
$$

for every $k \geq 0$.

Typical boxes are good:


Here we assume this single bad box is far from the extremes!

## Step C (Cascading Property)

Define

$$
p_{k}=\mathbb{P}\left[l_{j}^{k} \text { is bad }\right]=\mathbb{P}\left[H_{0}^{k} \geq 1\right] .
$$

## Lemma

For $\rho$ small enough

$$
p_{k} \leq L_{k}^{-10}
$$

for every $k \geq 0$.

Typical boxes are good:


Here we assume this single bad box is far from the extremes!
And other simplifications along the way!

We actually prove

## Lemma

For $\rho$ small enough

$$
\mathbb{P}\left[H_{0}^{k}=h\right] \leq 500^{-10 k-20 h}
$$

Trying to prove more makes it easier (induction).

We actually prove

## Lemma

For $\rho$ small enough

$$
\mathbb{P}\left[H_{0}^{k}=h\right] \leq 500^{-10 k-20 h}
$$

Trying to prove more makes it easier (induction).

## Scale 0 -

$$
\mathbb{P}\left[H_{0}^{0}=h\right]=\mathbb{P}\left[\xi_{0}=h\right]=\rho^{h} \leq 500^{-20 h}
$$

We actually prove

## Lemma

For $\rho$ small enough

$$
\mathbb{P}\left[H_{0}^{k}=h\right] \leq 500^{-10 k-20 h}
$$

Trying to prove more makes it easier (induction).

## Scale 0 -

$$
\mathbb{P}\left[H_{0}^{0}=h\right]=\mathbb{P}\left[\xi_{0}=h\right]=\rho^{h} \leq 500^{-20 h}
$$

Scale $k+1$ - Roughly

$$
\begin{aligned}
\mathbb{P}\left[H_{0}^{k+1}=h\right] \leq & \sum_{\substack{h_{0}, \ldots, h_{L} ; \\
h=\sum h_{l}-20 L}} \prod_{l=0}^{L} 500^{-10 k-20 h_{l}} \\
& \leq \cdots \leq 500^{-10 k-20 h} .
\end{aligned}
$$

## Good rectangles

Retangles

$$
R_{i, j}^{k}=\left[i L_{k},(i+1) L_{k}\right) \times\left[j L_{k},(j+1) L_{k}\right)
$$

## Good rectangles

Retangles

$$
R_{i, j}^{k}=\left[i L_{k},(i+1) L_{k}\right) \times\left[j L_{k},(j+1) L_{k}\right)
$$

We call them good if

$$
H_{i}^{k}=H_{j}^{k}=0
$$

## Observation

There exists $\rho>0$ so that

$$
\mathbb{P}\left[R_{(0,0)}^{k} \text { is good for all } k \geq 0\right]>0
$$

Just notice that


$$
\sum_{k} L_{k}^{-10}=\sum_{k} 500^{-10 k}<1
$$

## Definition of filled boxes

## Scale 0

- $L_{0}=1$,
- $R_{i, j}^{0}=(i, j)$,
- It is filled if its north and east edges are open,
- $P\left[R^{0}\right.$ filled $]=p^{2}$.
- Its cluster is $\mathcal{C}_{i, j}^{k}=\{(i, j)\}$


## Scale 1

- all good sub-boxes are filled, except for at most one
- all clusters of filled sub-boxes are connected (we call it $\mathcal{C}_{i, j}^{k}$ )


## Percolation



A filled box and its cluster $\mathcal{C}_{i, j}^{k}$ in gray

Define

$$
r_{k}=\sup _{\omega ; R_{i, j}^{k} \text { is good }} \mathbb{P}\left[R_{i, j}^{k} \text { is not filled }\right] .
$$

## Proof of percolation

## Lemma

There exists $p<1$ such that

$$
r_{k} \leq 500^{-2 k-100}, \quad \text { for every } k \geq 0
$$

## Proof of main theorem.

Assuming the lemma above:

$$
\mathbb{P}\left[R_{(0,0)}^{k} \text { filled } \forall k \geq 0 \mid R_{(0,0)}^{k} \text { good } \forall k \geq 0\right]>0
$$



$$
\text { Just notice that } \sum_{k} r_{k}<1 .
$$

## Proof of percolation

## Lemma

There exists $p<1$ such that

$$
r_{k} \leq 500^{-2 k-100}, \quad \text { for every } k \geq 0
$$

## Proof of main theorem.

Assuming the lemma above:

$$
\mathbb{P}\left[R_{(0,0)}^{k} \text { filled } \forall k \geq 0 \mid R_{(0,0)}^{k} \text { good } \forall k \geq 0\right]>0
$$



$$
\text { Just notice that } \sum_{k} r_{k}<1 .
$$

All we need to prove is the lemma!

We really wanted to have

$$
r_{k+1} \leq 500^{4} r_{k}^{2}
$$

but there are bad columns.

We really wanted to have

$$
r_{k+1} \leq 500^{4} r_{k}^{2}
$$

but there are bad columns.
Define

$$
s_{k}=\sup _{\substack{H_{(0,0)}^{k}=H_{(2,0)}^{k}=0, H_{(1,0)}^{k}=1}} \mathbb{P}\left[\left[\text { either } R_{(0,0)}^{k} \text { or } R_{(2,0)}^{k} \text { is not filled }\right] \cup\left[\mathcal{C}_{(0,0)}^{k} \nless \mathcal{C}_{(2,0)}^{k}\right]\right]
$$



We call this a "crossing a trap".

## Lemma

Suppose that for $k \geq 0$,

$$
r_{k} \leq 500^{-2 k-100} \quad \text { and } \quad s_{k} \leq 500^{-2 k-80}
$$

Then

$$
r_{k+1} \leq 500^{-2(k+1)-100}
$$

## Proof.

If $R^{k+1}$ is not filled:

- there are two good but non-filled sub-boxes,
- there are two disjoint non-crossed traps.

$$
\begin{aligned}
r_{k+1} & \leq 500^{4} r_{k}^{2}+1000^{2} s_{k}^{2} \\
& \leq 2 \cdot 500^{4-4 k-160} \leq 500^{-(k+1)-100}
\end{aligned}
$$

## Crossing defects!

## Crossing traps

We need to cross $H=1$.

## Crossing traps

We need to cross $H=1$.
For this we need to cross all values of $H$.

## Crossing traps

We need to cross $H=1$.
For this we need to cross all values of $H$.


## Armies

## Definition

$S$ is called regular if

- $S$ only intersects good intervals: $S \cap I_{j}^{k} \neq \varnothing \Rightarrow H_{j}^{k}=0$
- $S$ is spread out: $S$ intersects at most 400 sub-intervals of any interval.

Motivation:

- crossing in a bad line is hard.
- packed armies are inefficient.


## Observation

Every filled box contains a regular set of size $400^{k}$ at its right face.

## Intuition

Simple algebraic intuition:

> Regular army
> of size $400^{k+(h-1) / 2}$
$\overrightarrow{\text { defect } H=h}$
becomes regular army of size $400^{k}$

## Intuition

Simple algebraic intuition:

$$
\begin{aligned}
& \begin{array}{c}
\text { Regular army } \\
\text { of size } 400^{k+(h-1) / 2}
\end{array} \quad \xrightarrow[\text { defect } H=h]{ }
\end{aligned}
$$

becomes regular army of size $400^{k}$

Making this rigorous

$$
v_{k}=\sup _{h, S, \omega} \mathbb{P}\left[\text { survivors do not contain a regular army of size } 400^{k}\right],
$$

where the suppremum is taken over

- $h \geq 0$,
- $\omega$ such that $H$ (column) $=h$,
- $S$ regular with $|S| \geq 400^{k+(h-1) / 2}$.


## Last step of the proof

## $v_{k}$ is stronger than $s_{k}!!!$

Control on $r_{k}$ and $v_{k} \Rightarrow$ control on $r_{k}$ and $s_{k} \Rightarrow$ control on $r_{k+1}$.

## Last step of the proof

## $v_{k}$ is stronger than $s_{k}!!!$

Control on $r_{k}$ and $v_{k} \Rightarrow$ control on $r_{k}$ and $s_{k} \Rightarrow$ control on $r_{k+1}$.
Control over $v_{k}$ :

## Scale 0 -

- Subsets of regular sets are regular,
- Surviving army is $\operatorname{Bin}\left(400^{(h-1) / 2}, p^{h+1}\right)$,
- If $p$ is large, $P$ [no survivors] $<500^{-90}$, for every $h \geq 1$.


## Last step of the proof

## $v_{k}$ is stronger than $s_{k}!!!$

Control on $r_{k}$ and $v_{k} \Rightarrow$ control on $r_{k}$ and $s_{k} \Rightarrow$ control on $r_{k+1}$.
Control over $v_{k}$ :

## Scale 0 -

- Subsets of regular sets are regular,
- Surviving army is $\operatorname{Bin}\left(400^{(h-1) / 2}, p^{h+1}\right)$,
- If $p$ is large, $P$ [no survivors] $<500^{-90}$, for every $h \geq 1$.


## Lemma

Suppose

$$
r_{k} \leq 500^{-2 k-100}, \quad \text { and } \quad v_{k} \leq 500^{-2 k-90}
$$

then

$$
v_{k+1} \leq 500^{-2 k-90} .
$$

## Two cases to consider


single bad sub-box

multiple bad sub-boxes

## Many bad sub-boxes

In this case

$$
h=\sum_{l=0}^{L} h_{l}+20 L .
$$

We start with

$$
\begin{aligned}
|S|= & 400^{k+1+(h-1) / 2} \\
= & 400^{h_{0} / 2+20} \\
& \times 400^{k+1+\left(h_{1}+\cdots+h_{L}-1\right) / 2+20(L-1)}
\end{aligned}
$$

## Many bad sub-boxes

In this case

$$
h=\sum_{l=0}^{L} h_{l}+20 L .
$$

We start with

$$
\begin{aligned}
|S|= & 400^{k+1+(h-1) / 2} \\
= & 400^{h_{0} / 2+20} \\
& \times 400^{k+1+\left(h_{1}+\cdots+h_{L}-1\right) / 2+20(L-1)}
\end{aligned}
$$

One can split $S$ into $S_{i}, \ldots, S_{J}$ with

- $\left|S_{j}\right| \geq 400^{k+\left(h_{0}-1\right) / 2}$,
- $|J| \geq 400^{\left(h_{1}+\cdots+h_{L}-1\right) / 2+20(L-1)}$



## Many bad sub-boxes

In this case

$$
h=\sum_{l=0}^{L} h_{l}+20 L .
$$

We start with

$$
\begin{aligned}
|S|= & 400^{k+1+(h-1) / 2} \\
= & 400^{h_{0} / 2+20} \\
& \times 400^{k+1+\left(h_{1}+\cdots+h_{L}-1\right) / 2+20(L-1)}
\end{aligned}
$$

One can split $S$ into $S_{i}, \ldots, S_{J}$ with

- $\left|S_{j}\right| \geq 400^{k+\left(h_{0}-1\right) / 2}$,
- $|J| \geq 400^{\left(h_{1}+\cdots+h_{L}-1\right) / 2+20(L-1)}$


We use $v_{k}$ and repeat this for each defect. With high probability we end up with $400^{k}$ points.

## Single bad sub-box

In this case

$$
h=h_{0}-1
$$

Then

$$
|S|=400^{k+1+(h-1) / 2}
$$

## Single bad sub-box

In this case

$$
h=h_{0}-1
$$

Then

$$
|S|=400^{k+1+(h-1) / 2}
$$

Use the control on $v_{k}$ and get with high probability

$$
\left|S^{\prime}\right| \geq 400^{k+1 / 4}
$$

after the defect.
Finally we use $r_{k}$ and $s_{k}$ to recover $\left|S^{\prime \prime}\right| \geq 400^{k+1}$ (w.h.p.).

$H=1$
$H=1$

## Takeaways

Main takeaways:

- There is a "story-telling" in renormalization.
- Beautiful algebraic interplay between environment and process.
- There are many directions to go from here.


## Takeaways

Main takeaways:

- There is a "story-telling" in renormalization.
- Beautiful algebraic interplay between environment and process.
- There are many directions to go from here.
"What is a sequence of i.i.d. Bernoulli random variables?"
Vladas Sidoravicius


## Thank you!



