The *-Edge Reinforced random walk, Bayesian statistics and statistical physics

Pierre Tarrès, NYU Shanghai, CNRS, Courant Institute for Mathematical Sciences

Open Online Probability School, 12-15 July 2021

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline I

Pólya urn (Eggenberger and Pólya, 1923)

Definition Notion of exchangeability Results and statistical view Statistical view of Pólya urn: consequences How to find the limit law?

Edge-Reinforced Random Walk (ERRW): introduction

Definition

Simulations

Partial exchangeability (Diaconis-Freedman, 1980) Statistical view

How to find the limit measure?

"Magic formula" for ERRW

How to show the limit measure is correct?

Early results 1986-2009

ERRW, VRJP and statistical physics

 $\mathsf{ERRW} \longleftrightarrow \mathsf{VRJP}$ (Vertex Reinforced Jump Process)

Outline II

VRJP: three timescales Partial exchangeability of VRJP Bayesian approach to find limit measure of VRJP VRJP \longleftrightarrow random Schrödinger operator Applications : recurrence/transience

-Edge-Reinforced Random Walk (-ERRW)

- Definition and remarks
- *-ERRW: partial exchangeability
- *-ERRW: statistical view
- *-ERRW: results

Correspondence *-ERRW \leftrightarrow *-VRJP

- Limiting manifold and measure
- *-VRJP: Random Schrödinger version

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pólya urn: definition

- Introduced by Eggenberger and Pólya in 1923: "Über die Statistik verketteter Vorgänge", i.e. "On statistics of linked behaviors".
- Urn with balls of two colors: green and red.
- lnitially a, resp. b > 0 balls of green, red color.
- G_n , R_n numbers of balls of green, red color added until *n*-th draw, $G_0 = R_0 = 0$.
- Reinforcement rule: pick one ball at random and put it back together with another ball of same color:

$$\mathbb{P}(G_{n+1} = G_n + 1 \mid G_k, R_k \mid k \leq n) = \frac{a + G_n}{a + G_n + b + R_n} =: \alpha_n.$$

The notion of exchangeability (de Finetti)

Definition

Let $(X_i)_{i \ge 1}$ random process taking values in $\{0, 1\}$. Then X is called exchangeable if, for all $n \in \mathbb{N}$ and $\sigma \in S_n$,

$$\mathcal{L}\left((X_{\sigma(i)})_{1\leqslant i\leqslant n}\right) = \mathcal{L}\left((X_i)_{1\leqslant i\leqslant n}\right).$$

Theorem (de Finetti)

If $(X_i)_{i \ge 1}$ is exchangeable, then there exists a random variable $\alpha \in [0, 1]$ such that

$$\frac{1}{n}\sum_{i=1}^n X_i \longrightarrow_{n\to\infty} \alpha.$$

Conditionally on α , $(X_i)_{i \ge 1}$ is an i.i.d. sequence of Bernoulli random variables with success probability α , which we call P^{α} .

Exchangeability of Pólya urn

Let $\mathbb{P}^{a,b}$ be the law of the Pólya urn starting from *a*, resp. b > 0 balls of green, red color.

If $a \in \mathbb{R}$, $n \in \mathbb{N}$, define

$$(a, n) = a \dots (a + n - 1) = \prod_{i=0}^{n-1} (a + i) = \frac{\Gamma(a + n)}{\Gamma(a)},$$

where Γ is the Gamma function, and

$$C(a,b)=rac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

Lemma

Let $(G_n)_{n \ge 0}$ be a Pólya urn, and set $X_n := G_n - G_{n-1}$. Then $(X_n)_{n \ge 1}$ is exchangeable and, if $p = \sum_{i=1}^n \epsilon_i$, q = n - p, then

$$\mathbb{P}^{a,b}(X_i = \epsilon_i, \ 1 \leqslant i \leqslant n) = \frac{C(a+p, b+q)}{C(a,b)}$$

Pólya urn: statistical view

- Given sequence of i.i.d. Bernoulli random variables with unknown random success probability α, how can we estimate α?
- Bayesian approach: choose prior distribution on random variable α.
- Let $\mathcal{L}(a, b)$ be the law of the random variable α under $\mathbb{P}^{a, b}$.
- If prior on α is $\mathcal{L}(a, b)$, then by definition

 $\mathcal{L}^{\alpha \sim \mathcal{L}(a,b)}(P^{\alpha}\left((\mathbf{1}_{\mathsf{success at time }n})_{n \geqslant 1}\right)) = \mathbb{P}^{a,b}((G_n - G_{n-1})_{n \geqslant 1})),$

where $(G_n)_{n \in \mathbb{N}}$ defined from Pólya urn above.

Statistical view of Pólya urn: consequences

- Hence, if the prior on α is L(a, b), then the posterior distribution conditioned on p successes and q failures is L(a + p, b + q), as the distribution of α for the Pólya urn starting from a + p green balls and b + q red balls.
- The prior and posterior are in the same family of probability distributions, and are thus called conjuguate priors.
- (G_n, R_n) is a sufficient statistic for α at time *n*:
 - Informally: no other statistic that can be calculated from the sequence (G_k)_{k≤n} provides any additional information as to the value of the parameter α.
 - Formally: given statistical model {P_α : α ∈ (0, 1)}, where P_α is the law of i.i.d. sequences with success probability α, P_α((G_k)_{k≤n}|G_n) does not depend on α (Exercise).
 - It is a minimal sufficient statistics: there is no sufficient statistics that needs less information.

Pólya urn: how to find $\mathcal{L}(a, b)$? (I)

- Assume that the law of α under P^{a,b} has a smooth integrable density measure φ^{a,b} w.r.t. Lebesgue measure on [0, 1].
- ► Under P^{a,b}, the posterior distribution conditioned on p successes and q failures is L(a + p, b + q).

• But, if
$$p = \sum_{i=1}^{n} \epsilon_i$$
, $q = n - p$, then

$$\mathbb{P}^{a,b}\left(\alpha \in [x, x+dx] \,|\, X=\epsilon|_{1\leqslant i\leqslant n}\right) = \frac{\varphi^{a,b}(x)x^p(1-x)^q}{\mathbb{P}^{a,b}\left(X_i=\epsilon_i, \ 1\leqslant i\leqslant n\right)} \, dx$$
$$= \frac{\varphi^{a,b}(x)x^p(1-x)^q C(a,b)}{C(a+p,b+q)} dx.$$

It follows that

$$\varphi^{a+p,b+q}(x) = \frac{x^{p}(1-x)^{q}C(a,b)}{C(a+p,b+q)}\varphi^{a,b}(x)$$
$$= \left(\frac{x^{a+p}(1-x)^{b+q}}{C(a+p,b+q)}\right)\left(\frac{x^{a}(1-x)^{b}}{C(a,b)}\right)^{-1}\varphi^{a,b}(x).$$

Pólya urn: how to find $\mathcal{L}(a, b)$? (II)

Let

$$n = p + q, \ \beta(n) = \frac{a + p}{a + b + n}.$$

Then, using Stirling's approximation

$$\Gamma(z) \sim_{z \to \infty} \sqrt{2\pi} z^{z-1/2} e^{-z},$$

$$C(a+p,b+q) \sim_{p,q o \infty} \sqrt{2\pi} rac{(a+p)^{a+p-1/2}(b+q)^{b+q-1/2}}{(a+b+n)^{a+b+n-1/2}} \ \sim_{p,q o \infty} \sqrt{2\pi} (n\beta(n)(1-\beta(n)))^{-1/2} \eta_{\beta(n)}(\beta(n))^n,$$

where

$$\eta_{\beta}(x) = x^{\beta}(1-x)^{1-\beta}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Pólya urn: how to find $\mathcal{L}(a, b)$? (III)

Therefore

$$\varphi^{a+p,b+q}(x) \\ \underset{p,q\to\infty}{\sim} \frac{\varphi^{a,b}(x)\mathcal{C}(a,b)}{x^a(1-x)^b} \frac{1}{\sqrt{2\pi}} \left(n\beta(n)(1-\beta(n))\right)^{1/2} \left(\frac{\eta_{\beta(n)}(x)}{\eta_{\beta(n)}(\beta(n))}\right)^n.$$

Now, for all $\beta \in (0,1)$,

$$\log\left(\frac{\eta_{\beta}(x)}{\eta_{\beta}(\beta)}\right) = \beta \log\left(\frac{x}{\beta}\right) + (1-\beta) \log\left(\frac{x}{1-\beta}\right)$$
$$= -\frac{(x-\beta)^2}{2\beta(1-\beta)} + o\left((x-\beta)^3\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pólya urn: how to find $\mathcal{L}(a, b)$? (IV)

We conclude that

$$\lim_{n \to \infty, \,\beta(n) \to x} \int_0^1 \varphi^{a+p,b+q}(y) \, dy = 1 = \frac{\varphi^{a,b}(x)C(a,b)}{x^{a-1}(1-x)^{b-1}},$$

using that

$$\frac{1}{\sqrt{2\pi}}\sqrt{\frac{n}{\beta(n)(1-\beta(n))}}\int_{-\infty}^{\infty}\exp\left(-\frac{nz^2}{2\beta(n)(1-\beta(n))}\right)\,dz=1$$

Therefore

$$\varphi^{a,b}(x) = \frac{x^{a-1}(1-x)^{b-1}}{C(a,b)}.$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Edge-Reinforced Random Walk (Coppersmith and Diaconis, 1986)

• G = (V, E) non-oriented locally finite graph

▶ $a_e > 0$, $e \in E$, initial weights

• Edge-Reinforced Random Walk (ERRW) (X_n) on $V : X_0 = i_0$ and, if $X_n = i$, then

$$\mathbb{P}(X_{n+1} = j \mid X_k, \ k \leq n) = \mathbb{1}_{\{j \sim i\}} \frac{Z_{\{i,j\}}(n)}{\sum_{k \sim X_n} Z_{\{ik\}}(n)}$$

where

$$Z_{\{i,j\}}(n) = a_{i,j} + \sum_{k=1}^{n} \mathbb{1}_{\{X_{k-1}, X_k\} = \{i,j\}}.$$

- a_e small: strong reinforcement
- a_e large: small reinforcement

The ERRW

A simulation due to Andrew Swan.

(ロ)、(型)、(E)、(E)、 E) の(()

The Mixing Measure of ERRW

A simulation due to Andrew Swan.

(ロ)、(型)、(E)、(E)、 E) の(()

The notion of partial exchangeability (Diaconis and Freedman, 1980) (I)

Definition

Let $(Y_n)_{n\geq 0}$ a random process on a graph G = (V, E). It is called partially exchangeable (resp. reversibly partially exchangeable) if, for any nearest-neighbor path $\gamma = (\gamma_0, \dots, \gamma_n)$ on V,

$$\mathbb{P}[(Y_0,\ldots,Y_n)=(\gamma_0,\ldots,\gamma_n)]$$

only depends on its starting point and on the number of crossings of directed (resp. undirected) edges by γ .

The notion of partial exchangeability (Diaconis and Freedman, 1980) (II)

Theorem (Diaconis and Freedman, 1980)

If $(Y_n)_{n\geq 0}$ is a.s. recurrent (i.e. $Y_n = Y_0$ infinitely often) and partially exchangeable (resp. reversibly partially exchangeable, and each edge is traversed is traversed in both directions with probability 1) then it is a mixture of Markov chains (resp. reversible Markov chains), i.e.

$$\mathcal{L}(Y) = \int P^{\omega}(.) \, d\mu(\omega),$$

Here P^{ω} denotes the Markov Chain with transition probability $\omega(i,j)$ from *i* to *j*. If P^{ω} is reversible, then there exists $x = (x_e) \in (0,\infty)^E$ such that

$$\omega(i,j) = \omega^{\mathsf{x}}(i,j) = \frac{\mathsf{x}_{ij}}{\mathsf{x}_i}, \ \mathsf{x}_i = \sum_{j \sim i} \mathsf{x}_{ij}.$$
 Let $\mathsf{P}^{\mathsf{x}} = \mathsf{P}^{\omega^{\mathsf{x}}}.$

Edge-Reinforced random walk (ERRW): partial exchangeability

Let \mathbb{P}^{a,i_0} be the law of ERRW with initial weights $a = (a_e)_{e \in E}$ and starting from i_0 , also denoted by $ERRW(i_0, a)$.

Lemma

The ERRW is reversibly partially exchangeable: more precisely,

$$\mathbb{P}^{i_{0},a}(X_{0} = i_{0}, \dots, X_{n} = i_{n} = j_{0}) \\= \frac{\prod_{e \in E}(a_{e}, n_{e})}{\prod_{i \in V} 2^{v_{i} - \delta_{j_{0}}(i)} \left(\frac{a_{i} + 1 - \delta_{i_{0}}(i)}{2}, v_{i} - \delta_{j_{0}}(i)\right)} = \frac{\gamma(i_{0}, a)}{\gamma(j_{0}, \alpha)},$$

where n_e (resp. v_i) is the number of crossings (resp. visits) of edge e (resp. site i) by the path (i_0, \ldots, i_n) , $\alpha = (a_e + n_e)_{e \in E}$, and

$$\gamma(i_0, \mathbf{a}) = \frac{\prod_{i \in V} \Gamma\left(\frac{1}{2}(\mathbf{a}_i + 1 - \delta_{i_0}(i))\right) 2^{\frac{1}{2}(\mathbf{a}_i - \delta_{i_0}(i))}}{\prod_{e \in E} \Gamma(\mathbf{a}_e)}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Edge-Reinforced random walk (ERRW): partial exchangeability

In the last equality we use that

$$n_i := \sum_{j \sim i} n_{ij} = 2v_i - \delta_{i_0}(i) - \delta_{j_0}(i)$$

so that

$$v_i - \delta_{j_0}(i) = \frac{(a_i + n_i) - \delta_{j_0}(i)}{2} - \frac{a_i - \delta_{i_0}(i)}{2}$$

By the Theorem of Diaconis and Freedman (1980), since $ERRW(i_0, a)$ is reversibly partially exchangeable it is a mixture of reversible Markov chains P^x .

Let $\mathcal{L}(i_0, a)$ be the mixing measure of x under $\mathbb{P}^{i_0, a}$.

Edge-Reinforced random walk (ERRW): statistical view

- Given reversible Markov Chain P_x with transition probability x_{ij}/x_i from i to j, with unknown random vector x, how can we estimate x?
- ▶ Bayesian approach: assume prior on x is µ^{i₀,a} and run Markov Chain P^x, then law is the one of ERRW ℙ^{i₀,a} by theorem above.
- Hence, the posterior distribution after *n* first steps is given by $\mu^{Z(n),X_n}$.
- Thus prior and posterior are conjuguate priors.
- (Diaconis and Rolles, 2006) Z(n) is a minimal sufficient statistic for the model, also provide method of simulation of the posterior.

Edge Reinforced Random Walks (ERRW): how to find the limit measure? (I)

Let us do Bayesian statistics again: assume that $\mu^{i_0,a}$ has an integrable smooth density $\varphi^{i_0,a}$ w.r.t $dx = \prod_{e \in E \setminus \{e_0\}} dx_e$ (for arbitrary $e_0 \in E$) on the simplex $\mathcal{L}_1 = \{\sum x_e = 1, x_e > 0\}$, then

$$\mathbb{P}^{i_0,a}(X \in [x, x + dx] | X_0 = i_0, \dots, X_n = i_n = j_0) \\= \frac{\varphi^{i_0,a}(x) \, dx}{\mathbb{P}^{i_0,a}(X_0 = i_0, \dots, X_n = i_n = j_0)} \frac{\prod_{e \in E} x_e^{n_e}}{\prod_{i \in V} x_i^{v_i - \delta_{j_0}(i)}}.$$

Therefore

$$\varphi^{j_0,\alpha}(x) = \varphi^{i_0,a}(x) \frac{\prod_{e \in E} x_e^{n_e}}{\prod_{i \in V} x_i^{\nu_i - \delta_{j_0}(i)}} \frac{\gamma(j_0,\alpha)}{\gamma(i_0,a)}$$
$$= \frac{\varphi^{i_0,a}(x)}{\gamma(i_0,a)} \left(\frac{\prod_{e \in E} x_e^{a_e}}{\prod_{i \in V} x_i^{\frac{a_i - \delta_{j_0}(i)}{2}}} \right)^{-1} \left(\frac{\prod_{e \in E} x_e^{a_e + n_e}}{\prod_{i \in V} x_i^{\frac{a_i - \delta_{j_0}(i)}{2}}} \right) \gamma(j_0,\alpha)$$

Edge Reinforced Random Walks (ERRW): how to find the limit measure? (II)

Again we can show, using Stirling's approximation, that, letting $n = \sum_{e \in E} \alpha_e$, $\beta = \alpha/n$, we have

$$\gamma(j_0,\alpha) \underset{\forall e \in E, \alpha_e \to \infty}{\sim} \sqrt{n^{|E|-1}} \sqrt{2\pi^{|V|-|E|}} \frac{\prod_{e \in E} \sqrt{\beta_e}}{\sqrt{\beta_{j_0}}} \frac{1}{(\eta_\beta(\beta))^n},$$

where

$$\eta_{\beta}(\mathbf{y}) = \frac{\prod_{e \in E} y_e^{\beta_e}}{\prod_{i \in V} y_i^{\beta_i/2}}.$$

Therefore, if $n o \infty$, eta o x, $arphi^{j_0,lpha}(y)$ is of the order of

$$\frac{\varphi^{i_0,a}(y)}{\gamma(i_0,a)} \frac{\prod_{i \in V} y_i^{\frac{a_i - \delta_{i_0}(i)}{2}}}{\prod_{e \in E} y_e^{a_e} x_e^{-1/2}} \sqrt{\frac{y_{j_0}}{x_{j_0}}} \sqrt{n^{|E| - 1} \sqrt{2\pi^{|V| - |E|}}} \left(\frac{\eta_\beta(y)}{\eta_\beta(\beta)}\right)^n.$$

$$(2.1)$$

Edge Reinforced Random Walks (ERRW): how to find the limit measure? (III)

Now

$$\log\left(rac{\eta_eta(y)}{\eta_eta(eta)}
ight) = -rac{1}{4}Q_eta(y-eta) + O(\|y-eta\|_\infty^3),$$

where

$$Q_{\beta}(\mathbf{y}) = \sum_{i,j:j\sim i} \beta_{ij} \left(\frac{y_{ij}}{\beta_{ij}} - \frac{y_i}{\beta_i}\right)^2 = 2 \sum_{\{i,j\}\in E} \frac{y_{ij}^2}{\beta_{ij}} - \sum_{i\in V} \frac{y_i^2}{\beta_i}.$$

Show that, if $\mathcal{L}_0 = \{\sum x_e = 0\}$, $dy = \prod_{e \in E \setminus \{e_0\}} dy_e$,

$$\int_{\mathcal{L}_0} \exp\left(-\frac{1}{4}Q_\beta(y)\right) dy = \left(\prod_{e \in E} \sqrt{\beta_e}\right) \left(\prod_{i \in V} \sqrt{\beta_i}\right) \frac{2^{\frac{|E|+|V|-3}{2}}\sqrt{\pi}^{|E|-1}}{\sqrt{D(\beta)}},$$

where $D(y) = \sum_{T \in \mathcal{T}} \prod_{e \in T} y_e$, \mathcal{T} set of (non-oriented) spanning trees of G.

Edge Reinforced Random Walks (ERRW): how to find the limit measure? (IV)

This implies by (2.1) that

$$1 = \lim_{n \to \infty, \beta \to x \in \mathcal{L}_1} \int_{\mathcal{L}_1} \varphi^{j_0, \alpha}(y) \, dy$$

= $\frac{\varphi^{i_0, a}(x)}{\gamma(i_0, a)} \frac{2^{|V| - 3/2} \sqrt{\pi}^{|V| - 1}}{\sqrt{x_{i_0} D(x)}} \frac{\prod_{i \in V} x_i^{\frac{a_i + 1}{2}}}{\prod_{e \in E} x_e^{a_e - 1}}$

which yields

$$\varphi^{i_0,a}(x) = C\gamma(i_0,a)\sqrt{x_{i_0}} \frac{\prod_{e \in E} x_e^{a_e-1}}{\prod_{i \in V} x_i^{\frac{a_i+1}{2}}},$$

with

$$C = \frac{2^{3/2 - |V|}}{\sqrt{\pi^{|V| - 1}}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Edge Reinforced Random Walks (ERRW): Limit measure (Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem

- ► $(Z_e(n)_{n \in \mathbb{N}} \text{ converges a.s. to a random vector } X = (X_e)_{e \in E}$
- ► Conditionally on x, ERRW is a reversible Markov chain P^x with jump probability x_{ij}/x_i from i to j, $x_i = \sum_{k\sim i} x_{ik}$.
- X has the following density w.r.t to measure ∏_{e∈E\{e_0}} dx_e on the simplex {∀e ∈ E, x_e > 0 ∑_{e∈E} x_e = 1}

$$C\gamma(i_0, a)\sqrt{x_{i_0}}\frac{\prod_{e\in E} x_e^{a_e-1}}{\prod_{i\in V} x_i^{\frac{1}{2}a_i}}\sqrt{D(x)}.$$

Recall that

$$\gamma(i_0, \mathbf{a}) = \frac{\prod_{i \in V} \Gamma\left(\frac{1}{2}(\mathbf{a}_i + 1 - \delta_{i_0}(i))\right) 2^{\frac{1}{2}(\mathbf{a}_i - \delta_{i_0}(i))}}{\prod_{e \in E} \Gamma(\mathbf{a}_e)},$$

Edge Reinforced Random Walks (ERRW): Limit measure (Diaconis and Coppersmith, 1986, Keane and Rolles, 2000) and

$$C = rac{2^{3/2 - |V|}}{\sqrt{\pi^{|V| - 1}}}, \ D(y) = \sum_{T \in \mathcal{T}} \prod_{e \in T} y_e,$$

where \mathcal{T} is the set of (non-oriented) spanning trees of G.

- Obtained by Keane and Rolles (2000) by different means: probability of a path P^{a,i0}(X₀ = i₀,...,X_n = i_n = j₀) only depends on the local time, compute the probability of reaching a given vertex j₀ and local time (n_e)_{e∈E}, by summing over all possible paths
- By-product of that approach: obtain an interpretation of the spanning trees which appear in the formula, as last/first exit trees of the walk. Interesting connection with work of Angel, Crawford and Kozma (2014) on recurrence of ERRW.
- As far as I know, the approach in this lecture for finding the limit measure is new.

How to show the limit measure is correct? (Sabot-T. 2021, for *-ERRW) (I)

Let φ be a smooth function on \mathcal{L}_1 whose support is compact and has empty intersection with $\bigcup_{e \in E} \{x : x_e = 0\}$. Let, for all $i \in V$, $\alpha \in (0, \infty)^E$,

$$\Psi(i, \alpha)(\varphi) = \int_{\mathcal{L}_1} \varphi(y) \mu^{i, \alpha}(dy)$$

and prove that

$$\mathbb{E}_{i_0}^{(\alpha)}(\varphi(Y)) = \Psi(i_0, \alpha)(\varphi).$$

The process $(X_n, Z(n))$ is a Markov process on $V \times (0, \infty)^E$ with generator

$$Lg(i, \alpha) = \sum_{j \sim i} \frac{\alpha_{i,j}}{\alpha_i} \left(f(j, \alpha + \mathbb{1}_{\{i,j\}}) - f(i, \alpha) \right).$$

We have

$$L\Psi = 0.$$
 (Exercise)

How to show the limit measure is correct? (Sabot-T. 2021, for *-ERRW) (II)

This implies that $\Psi(X_n, Z(n))(\varphi)$ is a martingale, and therefore that

$$\Psi(i_0,\alpha)(\varphi) = \mathbb{E}_{i_0}^{(\alpha)}(\Psi(X_n,Z(n))(\varphi))$$

The next aim is to prove that

$$\lim_{n\to\infty}\Psi(X_n,Z(n))(\varphi)=\varphi(Y) \text{ a.s. },$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $Y = \lim_{n\to\infty} Z(n)/n$, which will imply the result by dominated convergence, which can be shown by an asymptotic technique as before.

How to show the limit measure is correct, if we know it is a probability measure?

- Sample x according to $\mu^{i_0,a}$ as in the formula.
- Conditionally on x, probability of a path (i_0, \ldots, i_{n+1}) is

$$\frac{\prod_{e\in E} x_e^{n_e + \delta_{\{i_n, i_{n+1}\}}(e)}}{\prod_{i\in V} x_i^{v_i}}$$

where n_e (resp. v_i) is the number of crossings (resp. visits) of edge e (resp. site i) of (i_0, \ldots, i_n) .

Hence the annealed probability of a path is

$$C\gamma(i_{0},a)\int \frac{\prod_{e\in E} x_{e}^{n_{e}+\delta_{i_{n}i_{n+1}}(e)}}{\prod_{i\in V} x_{i}^{v_{i}}} d\mu^{i_{0},a}(x) = \frac{\gamma(i_{0},a)}{\gamma(i_{n+1},\alpha+\delta_{i_{n}i_{n+1}})},$$

where $\alpha = (a_{e} + n_{e})_{e\in E}.$
Thus conditional probability (i_{0},\ldots,i_{n+1}) knowing (i_{0},\ldots,i_{n})
$$\frac{\gamma(i_{n},\alpha+\delta_{\{i_{n},i_{n+1}\}})}{\gamma(i_{n+1},\alpha)} = \frac{\alpha_{\{i_{n},i_{n+1}\}}}{\alpha_{i_{n}}}.$$

Early results on Edge-Reinforced random walk ('86-'09)

- Using partial exchangeability (Diaconis and Freedman'80)
 ERRW is a Random Walk in Random Environment (RWRE)
- Explicit computation of mixing measure: Coppersmith-Diaconis '86, Keane-Rolles '00
- Pemantle '88: recurrence/transience phase transition on trees:
 - Root the tree at i_0 for simplicity.
 - Between two visits to each vertex, once an edge is crossed the walk comes back through it.
 - Hence, independently at each vertex, Pólya urn with initial number of balls ((a_{ij} + δ_{j father of i₀})/2)_{j~i}.
 - Hence the environment is independent Dirichlet at each vertex i: Random Walk in (independent) Random Environment (RWRE)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Merkl Rolles '09: recurrence on a 2*d* graph (but not \mathbb{Z}^2)

ERRW and statistical physics: ERRW \leftrightarrow VRJP (I)

Let $(W_e)_{e \in E}$ be conductances on edges, $W_e > 0$. VRJP $(Y_s)_{s \ge 0}$ is a continuous-time process defined by $Y_0 = i_0$ and, if $Y_s = i$, then, conditionally to the past,

Y jumps to $j \sim i$ at rate $W_{i,j}L_j(s)$,

with

$$L_j(s)=1+\int_0^s\mathbb{1}_{\{Y_u=j\}}du.$$

Proposed by Werner and first studied **on trees** by Davis, Volkov ('02,'04).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ERRW and statistical physics: ERRW $\leftrightarrow \forall$ VRJP (II) Random conductances $(W_e)_{e \in E}$

Theorem (T. '11, Sabot, T. '15)

 $ERRW (X_n)_{n \in \mathbb{N}} \text{ with weights } (\alpha_e)_{e \in E}$ "law" $= VRJP (Y_t)_{t \ge 0} \text{ with conductances } W_e \sim \Gamma(\alpha_e) \text{ indep.}$ (at jump times)

Similar equivalence applies to any linearly reinforced RW on its continuous time version (initially proved for VRRW, T'. 11)

Proof of ERRW $\leftrightarrow \rightarrow$ VRJP (I) Rubin construction : continuous equivalent of ERRW

Similar to continuous-time version of discrete-time Markov chain

Clocks at each edge:

- ► $(\zeta_i^e)_{e \in E, i \in \mathbb{N}}$ collection of i.i.d variables, Exp(1) distributed.
- Alarms at each edge $e \in E$, at times

$$V_k^e := \sum_{i=0}^k \frac{\zeta_i^e}{\alpha_e + i}, \ k \in \mathbb{N} \cup \{\infty\}.$$

Process $(\tilde{X}_t)_{t \ge 0}$ starting from $i_0 \in V$:

- Clock *e* only runs when $(\tilde{X}_t)_{t \ge 0}$ adjacent to *e*.
- Alarm *e* rings $\implies \tilde{X}_t$ traverses it.

Then $(\tilde{X}_t)_{t \in \mathbb{R}_+}$ (at jump times) $\overset{" \text{law}"}{=} (X_n)_{n \ge 0}$.

Proof of ERRW \leftrightarrow VRJP (II) Yule process: a result of D. Kendall ('66)

For all $e \in E$, $t \ge 0$, let

 $N_t^e := \text{nb. of alarms at time } t$ for e.

Then $\exists W_e \sim \text{Gamma}(\alpha_e)$ s.t., conditionally to W_e ,

 N^{e} increases between t and t + dt with prob. $W_{e}e^{t} dt$.

Consequences on Rubin construction:

• Let $T_x(t)$ time spent in $x \in V$ at time t

► Then, conditionally to W_e , $e \in E$, and to the past $\leq t$, if $\tilde{X}_t = x$, \tilde{X} jumps to $y \sim x$ between t and t + dt with prob. $W_{xy}e^{T_x(t)+T_y(t)} d(T_x(t)) = W_{xy}L_y(t)d(L_x(t))$, where

$$L_z(t) := e^{T_z(t)}$$

VRJP: three timescales (I)

Jump rates from i to j

▶ Initial timescale process *Y*, with local time *L* :

$$W_{ij}L_j(t)$$
, with $L_j(s) = 1 + \int_0^s \mathbb{1}_{\{Y_u=j\}} du$.

• Reversible timescale process Z, with local time T:

$$W_{ij}e^{T_i(t)+T_j(t)}, ext{with} \quad T_j(s) = \int_0^s \mathbb{1}_{\{Z_u=j\}} du.$$

Exchangeable timescale process X:

$$\frac{1}{2}W_{ij}\sqrt{\frac{1+\ell_j}{1+\ell_i}}, \text{with } \ell_j(s) = \int_0^s \mathbb{1}_{\{X_u=j\}}du$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

VRJP: three timescales (II)

Proof: Change "clocks" at all sites:

► Z: $T_j = \log L_j$, or $L_j = e^{T_j}$ (already appears in the proof of ERRW \longleftrightarrow VRJP)

• X:
$$\ell_j = L_j^2 - 1$$
, or $L_j = \sqrt{1 + \ell_j}$.

Then

$$W_{ij}L_j dL_i = \frac{1}{2}W_{ij}\sqrt{\frac{1+\ell_j}{1+\ell_i}}d\ell_i = e^{T_i+T_j}dT_j.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

VRJP X conditioned on past up to time t

Lemma

 $VRJP(i_0, W) X$, conditioned on a path up to time t with local time $s = (s_i)_{i \in V}$ and end position j_0 , is a $VRJP(j_0, W^s)$ after time t, with time change ℓ'_i , with

$$W_{ij}^{s} = W_{ij}\sqrt{1+s_{i}}\sqrt{1+s_{j}}, \ \ell_{i}' = rac{\ell_{i}-s_{i}}{1+s_{i}}$$

Proof.

After that conditioning and after time t, $VRJP(W, i_0) X$ jumps from i to j at a rate

$$\frac{1}{2}W_{ij}\sqrt{\frac{1+\ell_j}{1+\ell_i}}d\ell_i = \frac{1}{2}W_{ij}\sqrt{\frac{1+s_j}{1+s_i}}\sqrt{\frac{1+\frac{\ell_j-s_j}{1+s_j}}{1+\frac{\ell_i-s_i}{1+s_i}}}d\ell_i$$
$$= \frac{1}{2}W_{ij}\sqrt{1+s_i}\sqrt{1+s_j}d\ell'_i = \sqrt{\frac{1+\ell'_j}{1+\ell'_j}}d\ell'_i.$$

VRJP: Probability of a given path (Sabot-T.,2016)

Notation. $i_0 \xrightarrow{v_0} i_1 \dots \xrightarrow{v_{n-1}} i_n = j_0$, t denotes the event that, at time t, the walk spends time in $[v_0, v_0 + dv_0]$ at site i_0 , then jumps to v_1 ... until it jumps to $i_n = j_0$, at which it spends the rest of the time until time t, and let s_i be the total time spent at i at that time.

Lemma

$$\mathbb{P}^{i_0,W}\left(i_0 \stackrel{\mathsf{v}_0}{\to} i_1 \dots \stackrel{\mathsf{v}_{n-1}}{\to} i_n = j_0, t\right) \\ = \frac{\exp\left(-\sum_{\{i,j\}\in E} W_{ij}\left(\sqrt{1+s_i}\sqrt{1+s_j}-1\right)\right)}{\prod_{i\neq j_0}\sqrt{1+s_i}} \prod_{k=0}^{n-1} \frac{W_{i_k i_{k+1}}}{2} d\mathsf{v}_{i_k}.$$

VRJP: Probability of a given path:proof (I)

Let, for all $\psi \in \mathbb{R}^V$, $i \in V$, $t \ge 0$,

$${\cal F}(\psi) = \sum_{\{i,j\}\in E} W_{ij}\psi_i\psi_j, \;\; G_i(t) = \prod_{j
eq i} (1+\ell_j(t))^{-1/2}.$$

First note that the probability, for the time-changed VRJP X, of holding at a site $v \in V$ on a time interval $[t_1, t_2]$ is

$$\exp\left(-\int_{t_1}^{t_2}\sum_{j\sim X_t}\frac{W_{X_t,j}}{2}\frac{\sqrt{1+\ell_j(t)}}{\sqrt{1+\ell_{X_t}(t)}}dt\right)$$
$$=\exp\left(-\int_{t_1}^{t_2}d\left(F(\sqrt{1+\ell(t)})\right)\right).$$

VRJP: Probability of a given path:proof (II)

Second, conditionally on $(X_u, u \leq t)$, the probability that X jumps from $X_t = i$ to j in the time interval [t, t + dt] is

$$W_{ij}\sqrt{rac{1+\ell_j(t)}{1+\ell_i(t)}}\,dt=W_{ij}rac{G_j(t)}{G_i(t)}\,dt.$$

Therefore the product of jump probabilities is

$$\prod_{i=1}^{n} W_{x_{i-1}x_{i}} \frac{G_{x_{i}}(t_{i})}{G_{x_{i-1}}(t_{i})} dt_{i} = \prod_{i=1}^{n} \frac{W_{x_{i-1}x_{i}}}{2} dt_{i},$$

where we use that $G_{x_i}(t_i) = G_{x_i}(t_{i+1})$, since X stays at site x_i on the time interval $[t_i, t_{i+1}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consequence of exchangeability of VRJP

Theorem

 $VRJP(i_0, W) X$ is a mixture of Markov Jump Processes (MJP) P^u with jump rate from i to j

$$\frac{1}{2}W_{ij}e^{u_j-u_i}$$

Proof.

The probability of a given path for X only depends on the local time, initial and final position, which implies partial exchangeability (Zeng, 2013).

Hence

$$U_i = \lim_{t o \infty} rac{1}{2} \log \ell_i(t) - rac{1}{|V|} \sum_{j \in V} \lim_{t o \infty} rac{1}{2} \log \ell_j(t)$$

exists and conditionally on U, the jump rate from i to j is $W_{ij}e^{U_j-U_i}/2.$

Bayesian approach to find limit measure of VRJP (I)

- Assume that the law µ^{i₀,W} of U under ℙ^{i₀,W} has a smooth integrable density measure φ^{i₀,W}w.r.t. Lebesgue measure du on the simplex L₀ = {u : ∑_{e∈E} u_e = 0}.
- ▶ Note that the probability of $i_0 \xrightarrow{v_0} i_1 \dots \xrightarrow{v_{n-1}} i_n = j_0, t$ under P^u is

$$\exp\left(-\sum_{i,j\sim i}\frac{1}{2}W_{ij}e^{u_j-u_i}s_i\right)e^{u_{j_0}-u_{i_0}}\prod_{k=0}^{n-1}\frac{W_{i_ki_{k+1}}}{2}dv_{i_k}.$$

- ▶ Notation $[(u_i)_{i \in V}] = \left(u_i \frac{1}{|V|} \sum_{j \in V} u_j\right)_{i \in V}$.
- After conditioning on path up to time t, we have new weights and new potentials

$$W^s_{ij}=W_{ij}\sqrt{1+s_i}\sqrt{1+s_j}, U'=U-\left[rac{1}{2}\log(1+s)
ight].$$

Bayesian approach to find limit measure of VRJP (II) Hence

$$\begin{split} \mathbb{P}^{i_0,W}(U \in [u, u + du] | i_0 \xrightarrow{v_0} i_1 \dots \xrightarrow{v_{n-1}} i_n = j_0, t) \\ &= \frac{\varphi^{i_0,W}(u) \exp\left(-\sum_{i,j \sim i} \frac{1}{2} W_{ij} e^{u_j - u_i} s_i\right) e^{u_{j_0} - u_{i_0}}}{\exp\left(-\sum_{\{i,j\} \in E} W_{ij} \left(\sqrt{1 + s_i} \sqrt{1 + s_j} - 1\right)\right)} \prod_{i \neq j_0} \sqrt{1 + s_i} \, du \\ &= \varphi^{j_0,W^s} \left(u - \left[\frac{\log(1 + s)}{2}\right]\right) \, du \end{split}$$

Therefore

$$\varphi^{j_{0},W^{s}}\left(u - \left[\frac{\log(1+s)}{2}\right]\right)$$
(3.1)
= $\frac{\varphi^{i_{0},W}(u)\exp\left(-\sum_{i,j\sim i}\frac{1}{2}W_{ij}e^{u_{j}-u_{i}}s_{i}\right)e^{u_{j_{0}}-u_{i_{0}}}}{\exp\left(-\sum_{\{i,j\}\in E}W_{ij}\left(\sqrt{1+s_{i}}\sqrt{1+s_{j}}-1\right)\right)}\prod_{i\neq j_{0}}\sqrt{1+s_{i}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Bayesian approach to find limit measure of VRJP (III)

Applying the result for s s.t. $1 + s_i = e^{2u_i}$, $i \in V$, yields

$$\varphi^{j_0,W^s}(0) = \varphi^{i_0,W}(u) \exp\left(\frac{1}{2} \sum_{i,j\sim i} W_{ij}(e^{u_j-u_i}-1)\right) e^{-u_{i_0}}.$$
 (3.2)

On the other hand, let

$$\eta_{W,h}(u) = \exp\left(-\sum_{i,j\sim i}\frac{1}{2}W_{ij}e^{u_j-u_i}(h-1)\right).$$

Then, if $s_i = h - 1$ and $j_0 = i_0$, we deduce again from (3.1) that

$$\varphi^{i_0,Wh}(u) = \varphi^{i_0,W}(u) \left(\frac{\eta_{W,h}(u)}{\eta_{W,h}(0)}\right) h^{\frac{|V|-1}{2}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bayesian approach to find limit measure of VRJP (IV) Now

$$\log\left(\frac{\eta_{W,h}(u)}{\eta_{W,h}(0)}\right) = -(h-1)(Q(u) + O(||u||^3)),$$

where

$$Q(u)=\frac{1}{4}\sum_{i,j\sim i}(u_j-u_i)^2.$$

Using that

$$\int_{\mathcal{L}_0} \exp(-sQ(u)) \ du = \frac{(2\pi s^{-1})^{(|V|-1)/2}}{|V|\sqrt{D(W,0)}},$$

where

$$D(W, u) = \sum_{T \in \mathcal{T}} \prod_{\{i,j\} \in T} W_{\{i,j\}} e^{u_i + u_j},$$

we can compute $\varphi^{i_0,W}(0)$ since

$$1 = \int_{\mathcal{L}_0} \varphi^{i_0, Wh}(u) \, du = \varphi^{i_0, W}(0) \frac{(2\pi)^{(|V|-1)/2}}{|V| \sqrt{D(W, 0)}}.$$

VRJP \leftrightarrow SuSy hyperbolic sigma model in QFT (I) Fixed conductances $(W_e)_{e \in E}$, G finite (Sabot-T.'15)

The measure $\mu^{i_0,W}(du)$ has density on $\mathcal{L}_0 = \{(u_i), \sum u_i = 0\}$

$$\frac{N}{(2\pi)^{(N-1)/2}}e^{u_{i_0}}e^{-H(W,u)}\sqrt{D(W,u)},$$

where

$$H(W, u) = 2 \sum_{\{i,j\}\in E} W_{i,j} \sinh^2((u_i - u_j)/2).$$

and

$$D(W, u) = \sum_{T \in \mathcal{T}} \prod_{\{i,j\} \in \mathcal{T}} W_{\{i,j\}} e^{u_i + u_j}.$$

▲□▶▲□▶▲□▶▲□▶ = のへの

VRJP \leftrightarrow SuSy hyperbolic sigma model in QFT (II) Fixed conductances $(W_e)_{e \in E}$, G finite (Merkl-Rolles-T.'19)

• $Q^{i_0,W}(du)$ marginal of Gibbs "measure" on supermanifold extension $\mathbb{H}^{2|2}$ of hyperbolic plane with action $A_W(v,v) = \sum_{i,j} W_{ij}(v_i - v_j, v_i - v_j)$, taken in horospherical coordinates after integration over fermionic variables.

• Merkl-Rolles-T.'19: Other variables in extension of SuSy model arise on two different time scales as limits of

- local times on logarithmic scale
- rescaled fluctuations of local times
- rescaled crossing numbers
- last exit trees of the walk (tree version of fermionic variables)

• Bauerschmidt-Helmuth-Swan '19 (AP and AIHP): very nice interpretation of in terms of Brydges-Fröhlich-Spencer-Dynkin isomorphism for the supersymmetric field.

 $VRJP \leftrightarrow random Schrödinger (Sabot-T.-Zeng '15) (I)$

Let, for all
$$i \in V$$
,

$$eta_i = rac{1}{2} \sum_{j \sim i} W_{ij} e^{u_j - u_i} + \delta_{i_0}(i) \gamma,$$

 $\gamma \sim \Gamma(1/2)$ indep. of u.

 $\blacktriangleright \quad \forall i \neq i_0, \ \beta_i = \text{jump rate from } i$

- β field 1-dependent: β_{|V1} and β_{|V2} are independent if dist_G(V1, V2) ≥ 2.
- ▶ On \mathbb{Z}^d with $W_{ij} = W$ constant, $(\beta_i)_{i \in V}$ translation-invariant
- The marginals β_i are such that $(2\beta_i)^{-1}$ have inverse Gaussian law.

VRJP \leftrightarrow random Schrödinger: Range and law of β (II)

► V finite

• $\Delta = (\Delta_{i,j})_{i,j \in V}$ discrete Laplacian, letting $W_i := \sum_{j \sim i} W_{i,j}$,

$$\Delta_{i,j} := egin{cases} W_{i,j}, & ext{if } i \sim j, \ i
eq j \ -W_i, & ext{if } i = j \end{cases}$$

H_β := -Δ + 2β, *W* diagonal with coefficients (*W_i*)_{*i*∈*V*}.
 H_β > 0 (positive definite): ⇒ (*H_β*)⁻¹ has positive entries.
 β = (β_i)_{*i*∈*V*} has distribution

$$\nu^{W}(d\beta) = \sqrt{\frac{2}{\pi}}^{|V|} \mathbb{1}_{\{H_{\beta} > 0\}} \frac{e^{\sum_{i \in V} (W_{i}/2 - \beta_{i})}}{\sqrt{|H_{\beta}|}} \prod_{i \in V} d\beta_{i}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

VRJP \leftrightarrow random Schrödinger: Retrieve *u* from β (III)

• Set
$$G = (H_\beta)^{-1}$$

• Then

$$\beta_{i} = \frac{1}{2} \sum_{j \sim i} W_{ij} e^{u_{j} - u_{i}}, \quad i \neq i_{0}$$

$$\iff H_{\beta}(e^{u})(i) = (-\Delta + 2\beta)(e^{u})(i) = 0, \quad i \neq i_{0}$$

$$\iff e^{u_{i}} = \frac{G(i_{0}, i)}{G(i_{0}, i_{0})}, \quad i \in V$$

where (u_i)_{i∈V} defined above and follows the law Q^W_{i₀}(du).
 Hence, time-changed VRJP starting from i₀ mixture of Markov jump processes with jump rate

$$\frac{1}{2}W_{i,j}e^{u_j-u_i} = \frac{1}{2}W_{i,j}\frac{G(i_0,j)}{G(i_0,i)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ERRW/VRJP and statistical physics: implications

- Using link with QFT and localisation/delocalisation results of Disertori, Spencer, Zirnbauer '10 :
- Theorem (ST'15, Angel-Crawford-Kozma'14, *G* bded degree) ERRW (resp.VRJP) is positive recurrent at strong reinforcement, i.e. for a_e (resp. W_e) uniformly small in $e \in E$.
- Theorem (ST'15, Disertori-ST'15, $G = \mathbb{Z}^d$, $d \ge 3$)
- ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for a_e (resp. W_e) uniformly large in $e \in E$.

Using link with Random Schrödinger operator:

Theorem (Sabot-Zeng '19, Sabot -19, Merkl-Rolles '09)

ERRW with constant weights $a_e = a$ (resp. $W_e = W$) is recurrent in dimension 2.

Theorem (Poudevigne'19)

Increasing initial weights of ERRW and VRJP makes them more transient (unique phase transition).

*-Edge-Reinforced Random Walk motivation : Reversible *k*-dependent Markov chains

- ► (Y_i) k-dependent Markov chain on S finite (i.e. law of Y_{n+1} depends only on (Y_{n-k+1},..., Y_n)).
- Equivalent to Markov chain (X_n) on the (directed) de Bruijn graph $G = (V = S^k, E)$ with

$$\omega = (i_1, \ldots, i_k) \rightarrow \tilde{\omega} = (i_2, \ldots, i_{k+1})$$

with transition rate $p(\omega, \tilde{\omega})$, and invariant measure $\pi(\omega)$.

The k-dependent Markov chain is called reversible if

$$(Y_1,\ldots,Y_n)^{law} = (Y_n,\ldots,Y_1).$$

as soon as $(Y_1, \ldots, Y_k) \sim \pi$ invariant measure. This is equivalent to the "modified" balance condition

$$\pi(\omega) p(\omega, \tilde{\omega}) = \pi(\tilde{\omega}^*) p(\tilde{\omega}^*, \omega^*),$$

where ω^* is the flipped k-string $\omega^* = (i_k, \ldots, i_1)$.

General framework

• G = (V, E) directed graph with involution * on V s.t.

$$(i,j) \in E \Rightarrow (j^*,i^*) \in E$$

▶ Let $V_0 = \{i \in V : i = i^*\}$, and V_1 be s.t. $V = V_0 \cup V_1 \cup V_1^*$ disjoint.

• $\alpha_{i,j} > 0$, $(i,j) \in E$ such that $\alpha_{i,j} = \alpha_{j^*,i^*}$. We call \star -ERRW with initial weights (α_e) , the discrete time process (X_n) defined by

$$\mathbb{P}(X_{n+1} = j \mid X_k, \ k \leq n) = \mathbb{1}_{\{X_n \to j\}} \frac{Z_{(X_n, j)}(n)}{\sum_{l, X_n \to l} Z_{(X_n, l)}(n))}$$

where

$$Z_{(i,j)}(n) = \alpha_{i,j} + N_{i,j}(n) + N_{j^*,i^*}(n)$$
$$N_{(i,j)}(n) = \sum_{k=1}^n \mathbb{1}_{\{(X_{k-1}, X_k) = (i,j)\}}.$$

*-ERRW: partial exchangeability Let

$$div(z)(i) = \sum_{j,i\to j} z_{i,j} - \sum_{j,j\to i} z_{j,i}, \quad div : \mathbb{R}^E \mapsto \mathbb{R}^V,$$

$$\gamma(i_0, \alpha) = \frac{\left(\prod_{i\in V_0} \Gamma(\frac{1}{2}(\alpha_i + 1 - \mathbb{1}_{i=i_0})2^{\frac{1}{2}(\alpha_i - \mathbb{1}_{i=i_0})}\right) \left(\prod_{i\in V_1} \Gamma(\inf(\alpha_i, \alpha_{i^*}))\right)}{\prod_{(i,j)\in \tilde{E}} \Gamma(\alpha_{i,j})}.$$

Let \tilde{E} be the set of edges quotiented by the relation $(i, j) \sim (j^*, i^*)$. Proposition (Bacallado '11, Baccalado, Sabot and T. '21) Let $i_0 \in V$. If $div(\alpha) = \delta_{i_0^*} - \delta_{i_0}$, then the \star -ERRW starting from i_0 is partially exchangeable. More precisely, if $\beta_e = \alpha_e + n_e$, $n_{(i,j)}$ number of crossings of oriented edges (i, j) and (j^*, i^*) , then

$$\mathbb{P}^{a,i_0}(X_0=i_0,\ldots,X_n=i_n=j_0)=\frac{\gamma(i_0,\alpha)}{\gamma(j_0,\beta)}$$

A 日 ト 4 周 ト 4 目 ト 4 目 ト 9 Q Q

-Edge Reinforced Random Walks (-ERRW): statistical view

- Statistical analysis of molecular dynamics simulations with microscopically reversible laws.
- Two other applications, beyond Bayesian analysis of higher-order Markov chains (Bacallado, 2006):
 - ▶ Variable-order Markov chains with context set $C \subseteq S \cup S^2 \cup \cdots \cup S^k$ on de Bruijn graph: $\forall (i_1, \ldots, i_\ell) \in C$, transition probabilities out of x and y are the same whenever x and y both end in (i_1, \ldots, i_ℓ) .
 - ▶ Reinforced random walk with amnesia: RW on G = (V, E) defined by V = S ∪ S² ∪ ... S^k with two types of edges: "forgetting" ones (i₁,..., i_m) → (i₂,..., i_m), if m > 1, "appending" ones (i₁,..., i_m) → (i₁,..., i_m, j), for each j ∈ V, if m < k. Can be seen as generalization of the above, by disallowing appending when word ends with subword in the context set.</p>

-Edge Reinforced Random Walks (-ERRW): results

Theorem (Bacallado, Sabot and T., 2021)

- ► $(Z_n(e)/n)_{n \in \mathbb{N}}$ converges a.s. to random vector X in $\mathcal{L}_1 = \{x \in (0, \infty)^E : x_{i,j} = x_{j^*,j^*}, div(x) = 0, \sum_{e \in E} x_e = 1\}.$
- ► Conditionally on x, ERRW is a Markov chain P_x with jump probability x_{ij}/x_i from i to j, $x_i = \sum_{i \to k} x_{ik}$.
- The random variable X has the following density on L₁, w.r.t ∏_{e∈B} dx_e, B basis of L₁:

$$C\gamma(i_0,\alpha)\sqrt{x_{i_0}}\left(\frac{\prod_{(i,j)\in\tilde{E}}x_{i,j}^{\alpha_{i,j}-1}}{\prod_{i\in V}x_i^{\frac{1}{2}\alpha_i}}\right)\frac{1}{\prod_{i\in V_0}\sqrt{x_i}}\sqrt{D(x)}\,dx_{\mathcal{L}_1},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

-Edge Reinforced Random Walks (-ERRW): results

Recall that

$$=\frac{\gamma(i_{0},\alpha)}{\prod_{i\in V_{0}} \Gamma(\frac{1}{2}(\alpha_{i}+1-\mathbb{1}_{i=i_{0}})2^{\frac{1}{2}(\alpha_{i}-\mathbb{1}_{i=i_{0}})})\left(\prod_{i\in V_{1}} \Gamma(\inf(\alpha_{i},\alpha_{i^{*}}))\right)}{\prod_{(i,j)\in\tilde{E}} \Gamma(\alpha_{i,j})},$$

and

$$C = \frac{2}{\sqrt{2\pi}^{|V_0|-1}\sqrt{2}^{|V_0|+|V_1|}}, \ D(y) = \sum_{T} \prod_{(i,j)\in T} y_{i,j}.$$

The last sum runs on spanning trees directed towards a root $j_0 \in V$ (value does not depend on the choice of the root j_0).

Correspondence *-ERRW \leftrightarrow *-VRJP (I)

Let $(W_e)_{e \in E}$ be conductances on edges, $W_{ij} = W_{j^*i^*} > 0$. The *-Vertex-Reinforced Jump Process (*-VRJP) $(Y_s)_{s \ge 0}$ is a continuous-time process defined by $Y_0 = i_0$ and, if $Y_s = i$, then, conditionally to the past,

Y jumps to $j \sim i$ at rate $W_{i,j}L_{j^*}(s)$,

with

$$L_j(s)=1+\int_0^s\mathbb{1}_{\{Y_u=j\}}du.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Correspondence *-ERRW \leftrightarrow *-VRJP (II) Random conductances $(W_e)_{e \in E}$

Theorem (Bacallado-Sabot-T. '21)

*-ERRW $(X_n)_{n \in \mathbb{N}}$ with weights $(\alpha_e)_{e \in E}, \alpha_{ij} = \alpha_{j^*i^*}$ "law" $* - VRJP(Y_t)_{t \ge 0}$ with conductances $W_e \sim \Gamma(\alpha_e), e \in \tilde{E}$ indep. (at jump times)

Proof.

Similar to [T.'11, Sabot-T.'15], as for any linearly reinforced RW on its continuous time version.

*-VRJP: again three timescales

Jump rates from i to j

▶ Initial timescale process *Y*, with local time *L* :

$$W_{ij}L_{j}^{*}(t)$$
, with $L_{j}(s) = 1 + \int_{0}^{s} \mathbb{1}_{\{Y_{u}=j\}} du$.

Reversible timescale process Z, with local time T:

$$W_{ij}e^{T_i(t)+T_j^*(t)}, ext{with} \quad T_j(s)=\int_0^s\mathbbm{1}_{\{Z_u=j\}}du.$$

Exchangeable timescale process X:

$$\frac{1}{2}W_{ij}\sqrt{\frac{1+\ell_j^*}{1+\ell_i}}, \text{with } \ell_j(s) = \int_0^s \mathbb{1}_{\{X_u=j\}}du.$$

The limiting manifold Set $\mathcal{L}_0^W = \{(u_i)_{i \in V}, \operatorname{div}(W^u) = 0, \sum_{i \in V} u_i = 0\}.$ Proposition The following limit

 $U_i = \lim_{t o \infty} T_i(t) - t/|V|$

exists a.s. and $U \in \mathcal{L}_0^W$.

Proof of $U \in \mathcal{L}_0^W$.

If X is at *i*, it jumps to *j* with probability $W_{ij}d(e^{T_i(t)+T_{j^*}(t)})$ on infinitesimal time interval. Hence

$$W_{ij}e^{T_i(t)+T_{j^*}(t)}/(Z_{(ij)}(t)+Z_{(j^*i^*)}(t)) \to_{t\to\infty} 1.$$

On the other hand, by Kirchoff's law,

$$|\sum_{j:i \to j} (Z_{(ij)}(t) + Z_{(j^*i^*)}(t) - \sum_{k:k \to i} (Z_{(ki)}(t) + Z_{(i^*k^*)}(t)| \leq 1.$$

Randomization of the initial local time

Also appears in the context of self-repelling motion: T., Tóth and Valkó'12, Horváth, Tóth and Vetö'12.

▶ For $i_0 \in V$, consider the probability measure $\nu_{i_0}^W$ on

$$\mathcal{A} = \{(a_i) \in \mathbb{R}^V, a_{i^*} = -a_i\}$$

given by

$$\nu_{i_0}^{W}(da) = \frac{1}{F(W, i_0)} e^{a_{i_0}^*} e^{-\frac{1}{2}\sum_{i \to j} W_{i,j} e^{a_{j^*} - a_{j^*}}} da,$$

where $da = \prod_{i \in V_1} da_i$ and $F(W, i_0)$ normalizing constant.

Proposition

Let (α_e) be positive weights with div $(a) = \delta_{i_0^*} - \delta_{i_0}$, and $W_e \sim Gamma(\alpha_e)$ indep. Then $W^A \stackrel{law}{=} W$.

Let

$$\overline{\mathbb{P}}^W_{i_0}(\cdot) = \mathbb{E}(\mathbb{P}^{W^A}_{i_0}(\cdot))$$

be the law of the *-VRJP after expectation with respect to $A \sim \nu_{i_0}^W$.

Proposition

Let

$$C(t) = \sum_{i \in V} (e^{T_i(t) + T_{i^*}(t)} - 1)$$

and $Z_s = X_{C^{-1}(s)}$. Then Z is partially exchangeable, and in particular there exists a random variable $U \in \mathcal{L}_0^W$ such that, conditionally on U, Z is a Markov process with jump rates

$$\frac{1}{2}e^{U_{j*}-U_{i*}}$$
 from *i* to *j*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Limit measure of *-VRJP

Theorem Under $\overline{\mathbb{P}}_{i_0}^W$, the random variable $U \in \mathcal{L}_0^W$ has density on \mathcal{L}_0^W given by

$$\frac{1}{\sqrt{2\pi}^{|V_0|-1}F(W,i_0)}e^{u_{i_0}^*-\sum_{i\in V_0}u_i}e^{-\frac{1}{2}\sum_{i\to j}W_{i,j}e^{u_{j^*}-u_{i^*}}}\frac{\sqrt{D(W^u)}}{\det(\mathcal{P}_{\mathcal{A}}M(W^u)\mathcal{P}_{\mathcal{A}})},$$

with $\mathcal{P}_{\mathcal{A}}$ orthogonal projection onto \mathcal{A} , and

$$D(W^u) = \sum_{\mathcal{T}} \prod_{\{i,j\} \in \mathcal{T}} W^u_{i,j},$$

where the sum runs on **rooted** spanning trees of the graph, and $M(W^u)$ is the generator of the Markov jump process at rate $W_{i,i}^u$.

*-VRJP: Random Schrödinger version

Let
$$H_eta=eta-W$$
, $G_eta=H_eta^{-1}$

Theorem

For all $heta \in (0,\infty)^V$, $\eta \in (0,\infty)^V$, we have

$$\begin{split} &\prod_{i\in V_0} \theta_i \int_{\mathcal{S}} \frac{\mathbbm{1}_{H_{\beta}>0}}{\sqrt{2\pi}^{|\mathcal{S}|}} \exp\left(-\frac{1}{2} \left\langle \theta, H_{\beta}\theta \right\rangle - \frac{1}{2} \left\langle \eta, G_{\beta}\eta \right\rangle\right) \frac{d\beta}{\sqrt{|H_{\beta}|}} \\ &= \int_{\mathcal{A}} \frac{1}{\sqrt{2\pi}^{|\mathcal{A}|}} \exp\left(-\frac{1}{2} \left\langle e^{a}\theta, We^{a}\theta \right\rangle + \frac{1}{2} \left\langle \theta, W\theta \right\rangle - \left\langle \eta, e^{a}\theta \right\rangle\right) da. \end{split}$$

When $X_0 = i_0$, the measure on β is associated to a differentiation with respect to η_{i_0} of a combination of the two measures above at $\eta = 0$, $\theta = 1$ on $\{i_0, i_0^*\}^c$.