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Pólya urn: definition
▶ Introduced by Eggenberger and Pólya in 1923: “Über die

Statistik verketteter Vorgänge”, i.e. “On statistics of linked
behaviors”.

▶ Urn with balls of two colors: green and red.
▶ Initially a, resp. b > 0 balls of green, red color.
▶ Gn, Rn numbers of balls of green, red color added until n-th

draw, G0 = R0 = 0.
▶ Reinforcement rule: pick one ball at random and put it back

together with another ball of same color:

P(Gn+1 = Gn + 1 |Gk ,Rk k ⩽ n) =
a+ Gn

a+ Gn + b + Rn
=: αn.

n 0 n 1 n 2 n 3

Let us now endow the set of all urn paths with a particular dynamics thus defining
a stochastic process. Fix wi i 0

0 the reinforcement weight sequence and
define the quantity π r, g wr

wr wg
which we shall understand as the probability of drawing

a red ball among r red and g green balls. Note that π r, g π g, r 1. For n 1, define
the increment of red (resp. green) balls at time n by ∆rn rn rn 1 (resp. ∆gn gn gn 1).
Then the dynamics is defined as follows: X Rn,Gn n is a Markov chain with X0

0,0 and the transition law

∆Rn 1 a Xn r, g Xn r,g
d
a π r, g aπ g, r d a

Xn r,g , a,0 a d;
∆Gn 1 d ∆Rn 1.

It is clear that X is an urn path with parameter d a.s. In words, ∆Rn 1 (and ∆Gn 1)
follows a binomial distribution B d,π r, g conditionally on Xn r, g : each of the d
balls added at time n is independently red with probability π Rn,Gn and green with
probability π Gn,Rn .

For n , denote by n the σ-field generated by the n first steps:

n σ X0,X1, . . . ,Xn .

This model can be linked with multiple Reinforced Random Walks. Consider the
following star shaped graph:

Suppose that there are d particles on the central vertex and at each step they jump over
one of the vertices with probability proportional to wi, where i is the number of time the
vertex has been visited by one of the particles since the begining, and then jump back
to the central vertex. This dynamic is equivalent to an urn process in which d balls are
added in the urn at each step and the balls could be of E different colours where E is the
number of edges (or the number of vertices different from the central one). In this paper
we will limit ourselves to two different colours, that is E 2:

Remark 1. This model is equivalent to the Interacting Urn Model [2] with d urns in the
case when the memory sharing is maximal, that is the correlation probability p 1. In
that setting all the d urns always draw their balls in the d urns combined. Therefore,
Theorem 2.3 answers an open question of [2].
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The notion of exchangeability (de Finetti)

Definition
Let (Xi )i⩾1 random process taking values in {0, 1}. Then X is
called exchangeable if, for all n ∈ N and σ ∈ Sn,

L
(
(Xσ(i))1⩽i⩽n

)
= L ((Xi )1⩽i⩽n) .

Theorem (de Finetti)

If (Xi )i⩾1 is exchangeable, then there exists a random variable
α ∈ [0, 1] such that

1

n

n∑
i=1

Xi −→n→∞ α.

Conditionally on α, (Xi )i⩾1 is an i.i.d. sequence of Bernoulli
random variables with success probability α, which we call Pα.



Exchangeability of Pólya urn
Let Pa,b be the law of the Pólya urn starting from a, resp. b > 0
balls of green, red color.
If a ∈ R, n ∈ N, define

(a, n) = a . . . (a+ n − 1) =
n−1∏
i=0

(a+ i) =
Γ(a+ n)

Γ(a)
,

where Γ is the Gamma function, and

C (a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Lemma
Let (Gn)n⩾0 be a Pólya urn, and set Xn := Gn − Gn−1. Then
(Xn)n⩾1 is exchangeable and, if p =

∑n
i=1 ϵi , q = n − p, then

Pa,b (Xi = ϵi , 1 ⩽ i ⩽ n) =
C (a+ p, b + q)

C (a, b)
.



Pólya urn: statistical view

▶ Given sequence of i.i.d. Bernoulli random variables with
unknown random success probability α, how can we estimate
α?

▶ Bayesian approach: choose prior distribution on random
variable α.

▶ Let L(a, b) be the law of the random variable α under Pa,b.

▶ If prior on α is L(a, b), then by definition

Lα∼L(a,b)(Pα ((1Isuccess at time n)n⩾1)) = Pa,b((Gn−Gn−1)n⩾1)),

where (Gn)n∈N defined from Pólya urn above.



Statistical view of Pólya urn: consequences

▶ Hence, if the prior on α is L(a, b), then the posterior
distribution conditioned on p successes and q failures is
L(a+ p, b + q), as the distribution of α for the Pólya urn
starting from a+ p green balls and b + q red balls.

▶ The prior and posterior are in the same family of probability
distributions, and are thus called conjuguate priors.

▶ (Gn,Rn) is a sufficient statistic for α at time n:
▶ Informally: no other statistic that can be calculated from the

sequence (Gk)k⩽n provides any additional information as to
the value of the parameter α.

▶ Formally: given statistical model {Pα : α ∈ (0, 1)}, where Pα

is the law of i.i.d. sequences with success probability α,
Pα((Gk)k⩽n|Gn) does not depend on α (Exercise).

▶ It is a minimal sufficient statistics: there is no sufficient
statistics that needs less information.



Pólya urn: how to find L(a, b)? (I)
▶ Assume that the law of α under Pa,b has a smooth integrable

density measure φa,b w.r.t. Lebesgue measure on [0, 1].

▶ Under Pa,b, the posterior distribution conditioned on p
successes and q failures is L(a+ p, b + q).

▶ But, if p =
∑n

i=1 ϵi , q = n − p, then

Pa,b (α ∈ [x , x + dx ] |X = ϵ|1⩽i⩽n) =
φa,b(x)xp(1− x)q

Pa,b (Xi = ϵi , 1 ⩽ i ⩽ n)
dx

=
φa,b(x)xp(1− x)qC (a, b)

C (a+ p, b + q)
dx .

▶ It follows that

φa+p,b+q(x) =
xp(1− x)qC (a, b)

C (a+ p, b + q)
φa,b(x)

=

(
xa+p(1− x)b+q

C (a+ p, b + q)

)(
xa(1− x)b

C (a, b)

)−1

φa,b(x).



Pólya urn: how to find L(a, b)? (II)

Let

n = p + q, β(n) =
a+ p

a+ b + n
.

Then, using Stirling’s approximation

Γ(z) ∼z→∞
√
2πzz−1/2e−z ,

C (a+ p, b + q) ∼p,q→∞
√
2π

(a+ p)a+p−1/2(b + q)b+q−1/2

(a+ b + n)a+b+n−1/2

∼p,q→∞
√
2π (nβ(n)(1− β(n)))−1/2 ηβ(n)(β(n))

n,

where
ηβ(x) = xβ(1− x)1−β.



Pólya urn: how to find L(a, b)? (III)

Therefore

φa+p,b+q(x)

∼
p,q→∞

φa,b(x)C (a, b)

xa(1− x)b
1√
2π

(nβ(n)(1− β(n)))1/2
(

ηβ(n)(x)

ηβ(n)(β(n))

)n

.

Now, for all β ∈ (0, 1),

log

(
ηβ(x)

ηβ(β)

)
= β log

(
x

β

)
+ (1− β) log

(
x

1− β

)
= − (x − β)2

2β(1− β)
+ o

(
(x − β)3

)



Pólya urn: how to find L(a, b)? (IV)

We conclude that

lim
n→∞, β(n)→x

∫ 1

0
φa+p,b+q(y) dy = 1 =

φa,b(x)C (a, b)

xa−1(1− x)b−1
,

using that

1√
2π

√
n

β(n)(1− β(n))

∫ ∞

−∞
exp

(
− nz2

2β(n)(1− β(n))

)
dz = 1

Therefore

φa,b(x) =
xa−1(1− x)b−1

C (a, b)
.



Edge-Reinforced Random Walk (Coppersmith and
Diaconis, 1986)

▶ G = (V ,E ) non-oriented locally finite graph

▶ ae > 0, e ∈ E , initial weights

• Edge-Reinforced Random Walk (ERRW) (Xn) on V : X0 = i0
and, if Xn = i , then

P(Xn+1 = j |Xk , k ⩽ n) = 1{j∼i}
Z{i ,j}(n)∑

k∼Xn
Z{ik}(n)

where

Z{i ,j}(n) = ai ,j +
n∑

k=1

1{Xk−1,Xk}={i ,j}.

▶ ae small: strong reinforcement

▶ ae large: small reinforcement



The ERRW

A simulation due to Andrew Swan.



The Mixing Measure of ERRW

A simulation due to Andrew Swan.



The notion of partial exchangeability (Diaconis and
Freedman, 1980) (I)

Definition
Let (Yn)n⩾0 a random process on a graph G = (V ,E ). It is called
partially exchangeable (resp. reversibly partially exchangeable) if,
for any nearest-neighbor path γ = (γ0, . . . , γn) on V ,

P[(Y0, . . . ,Yn) = (γ0, . . . , γn)]

only depends on its starting point and on the number of crossings
of directed (resp. undirected) edges by γ.



The notion of partial exchangeability (Diaconis and
Freedman, 1980) (II)

Theorem (Diaconis and Freedman, 1980)

If (Yn)n⩾0 is a.s. recurrent (i.e. Yn = Y0 infinitely often) and
partially exchangeable (resp. reversibly partially exchangeable, and
each edge is traversed is traversed in both directions with
probability 1) then it is a mixture of Markov chains (resp.
reversible Markov chains), i.e.

L(Y ) =

∫
Pω(.) dµ(ω),

Here Pω denotes the Markov Chain with transition probability
ω(i , j) from i to j . If Pω is reversible, then there exists
x = (xe) ∈ (0,∞)E such that

ω(i , j) = ωx(i , j) =
xij
xi
, xi =

∑
j∼i

xij . Let Px = Pωx
.



Edge-Reinforced random walk (ERRW): partial
exchangeability

Let Pa,i0 be the law of ERRW with initial weights a = (ae)e∈E and
starting from i0, also denoted by ERRW (i0, a).

Lemma
The ERRW is reversibly partially exchangeable: more precisely,

Pi0,a(X0 = i0, . . . ,Xn = in = j0)

=

∏
e∈E (ae , ne)∏

i∈V 2vi−δj0 (i)
(
ai+1−δi0 (i)

2 , vi − δj0(i)
) =

γ(i0, a)

γ(j0, α)
,

where ne (resp. vi ) is the number of crossings (resp. visits) of edge
e (resp. site i) by the path (i0, . . . , in), α = (ae + ne)e∈E , and

γ(i0, a) =

∏
i∈V Γ

(
1
2(ai + 1− δi0(i))

)
2

1
2
(ai−δi0 (i))∏

e∈E Γ(ae)
.



Edge-Reinforced random walk (ERRW): partial
exchangeability

In the last equality we use that

ni :=
∑
j∼i

nij = 2vi − δi0(i)− δj0(i)

so that

vi − δj0(i) =
(ai + ni )− δj0(i)

2
− ai − δi0(i)

2
.

By the Theorem of Diaconis and Freedman (1980), since
ERRW (i0, a) is reversibly partially exchangeable it is a mixture of
reversible Markov chains Px .
Let L(i0, a) be the mixing measure of x under Pi0,a.



Edge-Reinforced random walk (ERRW): statistical view

▶ Given reversible Markov Chain Px with transition probability
xij/xi from i to j , with unknown random vector x , how can we
estimate x?

▶ Bayesian approach: assume prior on x is µi0,a and run Markov
Chain Px , then law is the one of ERRW Pi0,a by theorem
above.

▶ Hence, the posterior distribution after n first steps is given by
µZ(n),Xn .

▶ Thus prior and posterior are conjuguate priors.

▶ (Diaconis and Rolles, 2006) Z (n) is a minimal sufficient
statistic for the model, also provide method of simulation of
the posterior.



Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (I)

Let us do Bayesian statistics again: assume that µi0,a has an
integrable smooth density φi0,a w.r.t dx =

∏
e∈E\{e0} dxe (for

arbitrary e0 ∈ E ) on the simplex L1 = {
∑

xe = 1, xe > 0}, then

Pi0,a(X ∈ [x , x + dx ]|X0 = i0, . . . ,Xn = in = j0)

=
φi0,a(x) dx

Pi0,a(X0 = i0, . . . ,Xn = in = j0)

∏
e∈E xnee∏

i∈V x
vi−δj0 (i)

i

.

Therefore

φj0,α(x) = φi0,a(x)

∏
e∈E xnee∏

i∈V x
vi−δj0 (i)

i

γ(j0, α)

γ(i0, a)

=
φi0,a(x)

γ(i0, a)

 ∏
e∈E xaee∏

i∈V x
ai−δi0

(i)

2
i


−1 ∏

e∈E xae+ne
e∏

i∈V x
ai+ni−δj0

(i)

2
i

 γ(j0, α)



Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (II)

Again we can show, using Stirling’s approximation, that, letting
n =

∑
e∈E αe , β = α/n, we have

γ(j0, α) ∼
∀e∈E , αe→∞

√
n
|E |−1√

2π
|V |−|E |

∏
e∈E
√
βe√

βj0

1

(ηβ(β))n
,

where

ηβ(y) =

∏
e∈E yβe

e∏
i∈V y

βi/2
i

.

Therefore, if n→∞, β → x , φj0,α(y) is of the order of

φi0,a(y)

γ(i0, a)

∏
i∈V y

ai−δi0
(i)

2
i∏

e∈E yaee x
−1/2
e

√
yj0
xj0

√
n
|E |−1√

2π
|V |−|E |

(
ηβ(y)

ηβ(β)

)n

.

(2.1)



Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (III)

Now

log

(
ηβ(y)

ηβ(β)

)
= −1

4
Qβ(y − β) + O(∥y − β∥3∞),

where

Qβ(y) =
∑
i ,j :j∼i

βij

(
yij
βij
− yi
βi

)2

= 2
∑

{i ,j}∈E

y2ij
βij
−
∑
i∈V

y2i
βi
.

Show that, if L0 = {
∑

xe = 0}, dy =
∏

e∈E\{e0} dye ,∫
L0

exp

(
−1

4
Qβ(y)

)
dy =

(∏
e∈E

√
βe

)(∏
i∈V

√
βi

)
2

|E |+|V |−3
2
√
π
|E |−1√

D(β)
,

where D(y) =
∑

T∈T
∏

e∈T ye , T set of (non-oriented) spanning
trees of G .



Edge Reinforced Random Walks (ERRW): how to find the
limit measure? (IV)

This implies by (2.1) that

1 = lim
n→∞, β→x∈L1

∫
L1

φj0,α(y) dy

=
φi0,a(x)

γ(i0, a)

2|V |−3/2√π|V |−1√
xi0D(x)

∏
i∈V x

ai+1

2
i∏

e∈E xae−1
e

which yields

φi0,a(x) = Cγ(i0, a)
√
xi0

∏
e∈E xae−1

e∏
i∈V x

ai+1

2
i

,

with

C =
23/2−|V |
√
π|V |−1

.



Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem
▶ (Ze(n)n∈N converges a.s. to a random vector X = (Xe)e∈E
▶ Conditionally on x , ERRW is a reversible Markov chain Px

with jump probability xij/xi from i to j , xi =
∑

k∼i xik .

▶ X has the following density w.r.t to measure
∏

e∈E\{e0} dxe on
the simplex {∀e ∈ E , xe > 0

∑
e∈E xe = 1}

Cγ(i0, a)
√
xi0

∏
e∈E xae−1

e∏
i∈V x

1
2
ai

i

√
D(x).

Recall that

γ(i0, a) =

∏
i∈V Γ

(
1
2(ai + 1− δi0(i))

)
2

1
2
(ai−δi0 (i))∏

e∈E Γ(ae)
,



Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

and

C =
23/2−|V |
√
π|V |−1

, D(y) =
∑
T∈T

∏
e∈T

ye ,

where T is the set of (non-oriented) spanning trees of G .

▶ Obtained by Keane and Rolles (2000) by different means:
probability of a path Pa,i0(X0 = i0, . . . ,Xn = in = j0) only
depends on the local time, compute the probability of
reaching a given vertex j0 and local time (ne)e∈E , by summing
over all possible paths

▶ By-product of that approach: obtain an interpretation of the
spanning trees which appear in the formula, as last/first exit
trees of the walk. Interesting connection with work of Angel,
Crawford and Kozma (2014) on recurrence of ERRW.

▶ As far as I know, the approach in this lecture for finding the
limit measure is new.



How to show the limit measure is correct? (Sabot-T. 2021,
for *-ERRW) (I)

Let φ be a smooth function on L1 whose support is compact and
has empty intersection with ∪e∈E{x : xe = 0}. Let, for all i ∈ V ,
α ∈ (0,∞)E ,

Ψ(i , α)(φ) =

∫
L1

φ(y)µi ,α(dy)

and prove that

E(α)
i0

(φ(Y )) = Ψ(i0, α)(φ).

The process (Xn,Z (n)) is a Markov process on V × (0,∞)E with
generator

Lg(i , α) =
∑
j∼i

αi ,j

αi

(
f (j , α+ 1{i ,j))− f (i , α)

)
.

We have
LΨ = 0. (Exercise)



How to show the limit measure is correct? (Sabot-T. 2021,
for *-ERRW) (II)

This implies that Ψ(Xn,Z (n))(φ) is a martingale, and therefore
that

Ψ(i0, α)(φ) = E(α)
i0

(Ψ(Xn,Z (n))(φ))

The next aim is to prove that

lim
n→∞

Ψ(Xn,Z (n))(φ) = φ(Y ) a.s. ,

where Y = limn→∞ Z (n)/n, which will imply the result by
dominated convergence, which can be shown by an asymptotic
technique as before.



How to show the limit measure is correct, if we know it is
a probability measure?

▶ Sample x according to µi0,a as in the formula.
▶ Conditionally on x , probability of a path (i0, . . . , in+1) is∏

e∈E x
ne+δ{in,in+1}(e)
e∏
i∈V xvii

where ne (resp. vi ) is the number of crossings (resp. visits) of
edge e (resp. site i) of (i0, . . . , in).

▶ Hence the annealed probability of a path is

Cγ(i0, a)

∫ ∏
e∈E x

ne+δin in+1
(e)

e∏
i∈V xvii

dµi0,a(x) =
γ(i0, a)

γ(in+1, α+ δinin+1)
,

where α = (ae + ne)e∈E .
▶ Thus conditional probability (i0, . . . , in+1) knowing (i0, . . . , in)

γ(in, α+ δ{in,in+1})

γ(in+1, α)
=
α{in,in+1}

αin

.



Early results on Edge-Reinforced random walk (’86-’09)

▶ Using partial exchangeability (Diaconis and Freedman’80)
ERRW is a Random Walk in Random Environment (RWRE)

▶ Explicit computation of mixing measure:
Coppersmith-Diaconis ’86, Keane-Rolles ’00

▶ Pemantle ’88: recurrence/transience phase transition on trees:

▶ Root the tree at i0 for simplicity.
▶ Between two visits to each vertex, once an edge is crossed the

walk comes back through it.
▶ Hence, independently at each vertex, Pólya urn with initial

number of balls ((aij + δ{j father of i0})/2)j∼i .
▶ Hence the environment is independent Dirichlet at each vertex

i : Random Walk in (independent) Random Environment
(RWRE)

▶ Merkl Rolles ’09: recurrence on a 2d graph (but not Z2)



ERRW and statistical physics: ERRW ←→ VRJP (I)

Let (We)e∈E be conductances on edges, We > 0.
VRJP (Ys)s⩾0 is a continuous-time process defined by Y0 = i0 and,
if Ys = i , then, conditionally to the past,

Y jumps to j ∼ i at rate Wi ,jLj(s),

with

Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

Proposed by Werner and first studied on trees by Davis, Volkov
(’02,’04).



ERRW and statistical physics: ERRW ←→ VRJP (II)
Random conductances (We)e∈E

Theorem (T. ’11, Sabot, T. ’15)

ERRW (Xn)n∈N with weights (αe)e∈E

”law”

=
VRJP (Yt)t⩾0 with conductances We ∼ Γ(αe) indep.

(at jump times)

▶ Similar equivalence applies to any linearly reinforced RW on
its continuous time version (initially proved for VRRW, T’. 11)



Proof of ERRW ←→ VRJP (I)
Rubin construction : continuous equivalent of ERRW

Similar to continuous-time version of discrete-time Markov chain

Clocks at each edge:

▶ (ζei )e∈E ,i∈N collection of i.i.d variables, Exp(1) distributed.

▶ Alarms at each edge e ∈ E , at times

V e
k :=

k∑
i=0

ζei
αe + i

, k ∈ N ∪ {∞}.

Process (X̃t)t⩾0 starting from i0 ∈ V :

▶ Clock e only runs when (X̃t)t⩾0 adjacent to e.

▶ Alarm e rings =⇒ X̃t traverses it.

Then (X̃t)t∈R+ (at jump times) ”law”
= (Xn)n⩾0.



Proof of ERRW ←→ VRJP (II)
Yule process: a result of D. Kendall (’66)

For all e ∈ E , t ⩾ 0, let

Ne
t := nb. of alarms at time t for e.

Then ∃We ∼ Gamma(αe) s.t., conditionally to We ,

Ne
. increases between t and t + dt with prob. Wee

t dt.

Consequences on Rubin construction:

▶ Let Tx(t) time spent in x ∈ V at time t

▶ Then, conditionally to We , e ∈ E , and to the past ⩽ t,
if X̃t = x , X̃ jumps to y ∼ x between t and t + dt with prob.
Wxye

Tx (t)+Ty (t) d(Tx(t)) = WxyLy (t)d(Lx(t)), where

Lz(t) := eTz (t).



VRJP: three timescales (I)

Jump rates from i to j

▶ Initial timescale process Y , with local time L :

WijLj(t),with Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

▶ Reversible timescale process Z , with local time T :

Wije
Ti (t)+Tj (t),with Tj(s) =

∫ s

0
1{Zu=j}du.

▶ Exchangeable timescale process X :

1

2
Wij

√
1 + ℓj
1 + ℓi

,with ℓj(s) =

∫ s

0
1{Xu=j}du.



VRJP: three timescales (II)

Proof: Change ”clocks” at all sites:

▶ Z : Tj = log Lj , or Lj = eTj (already appears in the proof of
ERRW ←→ VRJP)

▶ X : ℓj = L2j − 1, or Lj =
√

1 + ℓj .

Then

WijLjdLi =
1

2
Wij

√
1 + ℓj
1 + ℓi

dℓi = eTi+TjdTi .



VRJP X conditioned on past up to time t

Lemma
VRJP(i0,W ) X , conditioned on a path up to time t with local
time s = (si )i∈V and end position j0, is a VRJP(j0,W

s) after time
t, with time change ℓ′i , with

W s
ij = Wij

√
1 + si

√
1 + sj , ℓ

′
i =

ℓi − si
1 + si

.

Proof.
After that conditioning and after time t, VRJP(W , i0) X jumps
from i to j at a rate

1

2
Wij

√
1 + ℓj
1 + ℓi

dℓi =
1

2
Wij

√
1 + sj
1 + si

√√√√1 +
ℓj−sj
1+sj

1 + ℓi−si
1+si

dℓi

=
1

2
Wij

√
1 + si

√
1 + sjdℓ

′
i =

√
1 + ℓ′j
1 + ℓ′i

dℓ′i .



VRJP: Probability of a given path (Sabot-T.,2016)

Notation. i0
v0→ i1 . . .

vn−1→ in = j0, t denotes the event that, at time
t, the walk spends time in [v0, v0 + dv0] at site i0, then jumps to v1
. . . until it jumps to in = j0, at which it spends the rest of the time
until time t, and let si be the total time spent at i at that time.

Lemma

Pi0,W
(
i0

v0→ i1 . . .
vn−1→ in = j0, t

)
=

exp
(
−
∑

{i ,j}∈E Wij

(√
1 + si

√
1 + sj − 1

))∏
i ̸=j0

√
1 + si

n−1∏
k=0

Wik ik+1

2
dvik .



VRJP: Probability of a given path:proof (I)

Let, for all ψ ∈ RV , i ∈ V , t ⩾ 0,

F (ψ) =
∑

{i ,j}∈E

Wijψiψj , Gi (t) =
∏
j ̸=i

(1 + ℓj(t))
−1/2.

First note that the probability, for the time-changed VRJP X , of
holding at a site v ∈ V on a time interval [t1, t2] is

exp

−∫ t2

t1

∑
j∼Xt

WXt ,j

2

√
1 + ℓj(t)√
1 + ℓXt (t)

dt


= exp

(
−
∫ t2

t1

d
(
F (
√

1 + ℓ(t))
))

.



VRJP: Probability of a given path:proof (II)

Second, conditionally on (Xu, u ⩽ t), the probability that X jumps
from Xt = i to j in the time interval [t, t + dt] is

Wij

√
1 + ℓj(t)

1 + ℓi (t)
dt = Wij

Gj(t)

Gi (t)
dt.

Therefore the product of jump probabilities is

n∏
i=1

Wxi−1xi

Gxi (ti )

Gxi−1(ti )
dti =

n∏
i=1

Wxi−1xi

2
dti ,

where we use that Gxi (ti ) = Gxi (ti+1), since X stays at site xi on
the time interval [ti , ti+1].



Consequence of exchangeability of VRJP

Theorem
VRJP(i0,W ) X is a mixture of Markov Jump Processes (MJP) Pu

with jump rate from i to j

1

2
Wije

uj−ui .

Proof.
The probability of a given path for X only depends on the local
time, initial and final position, which implies partial exchangeability
(Zeng, 2013).
Hence

Ui = lim
t→∞

1

2
log ℓi (t)−

1

|V |
∑
j∈V

lim
t→∞

1

2
log ℓj(t)

exists and conditionally on U, the jump rate from i to j is
Wije

Uj−Ui/2.



Bayesian approach to find limit measure of VRJP (I)

▶ Assume that the law µi0,W of U under Pi0,W has a smooth
integrable density measure φi0,Ww.r.t. Lebesgue measure du
on the simplex L0 = {u :

∑
e∈E ue = 0}.

▶ Note that the probability of i0
v0→ i1 . . .

vn−1→ in = j0, t under Pu

is

exp

−∑
i ,j∼i

1

2
Wije

uj−ui si

 euj0−ui0

n−1∏
k=0

Wik ik+1

2
dvik .

▶ Notation [(ui )i∈V ] =
(
ui − 1

|V |
∑

j∈V uj

)
i∈V

.

▶ After conditioning on path up to time t, we have new weights
and new potentials

W s
ij = Wij

√
1 + si

√
1 + sj ,U

′ = U −
[
1

2
log(1 + s)

]
.



Bayesian approach to find limit measure of VRJP (II)

Hence

Pi0,W (U ∈ [u, u + du]|i0
v0→ i1 . . .

vn−1→ in = j0, t)

=
φi0,W (u) exp

(
−
∑

i ,j∼i
1
2Wije

uj−ui si

)
euj0−ui0

exp
(
−
∑

{i ,j}∈E Wij

(√
1 + si

√
1 + sj − 1

)) ∏
i ̸=j0

√
1 + si du

= φj0,W s

(
u −

[
log(1 + s)

2

])
du

Therefore

φj0,W s

(
u −

[
log(1 + s)

2

])
(3.1)

=
φi0,W (u) exp

(
−
∑

i ,j∼i
1
2Wije

uj−ui si

)
euj0−ui0

exp
(
−
∑

{i ,j}∈E Wij

(√
1 + si

√
1 + sj − 1

)) ∏
i ̸=j0

√
1 + si .



Bayesian approach to find limit measure of VRJP (III)

Applying the result for s s.t. 1 + si = e2ui , i ∈ V , yields

φj0,W s
(0) = φi0,W (u) exp

1

2

∑
i ,j∼i

Wij(e
uj−ui − 1)

 e−ui0 . (3.2)

On the other hand, let

ηW ,h(u) = exp

−∑
i ,j∼i

1

2
Wije

uj−ui (h − 1)

 .

Then, if si = h − 1 and j0 = i0, we deduce again from (3.1) that

φi0,Wh (u) = φi0,W (u)

(
ηW ,h(u)

ηW ,h(0)

)
h

|V |−1
2 .



Bayesian approach to find limit measure of VRJP (IV)
Now

log

(
ηW ,h(u)

ηW ,h(0)

)
= −(h − 1)(Q(u) + O(∥u∥3)),

where

Q(u) =
1

4

∑
i ,j∼i

(uj − ui )
2.

Using that ∫
L0

exp (−sQ(u)) du =
(2πs−1)(|V |−1)/2

|V |
√
D(W , 0)

,

where
D(W , u) =

∑
T∈T

∏
{i ,j}∈T

W{i ,j}e
ui+uj ,

we can compute φi0,W (0) since

1 =

∫
L0

φi0,Wh(u) du = φi0,W (0)
(2π)(|V |−1)/2

|V |
√

D(W , 0)
.



VRJP ←→ SuSy hyperbolic sigma model in QFT (I)
Fixed conductances (We)e∈E , G finite (Sabot-T.’15)

The measure µi0,W (du) has density on L0 = {(ui ),
∑

ui = 0}

N

(2π)(N−1)/2
eui0 e−H(W ,u)

√
D(W , u),

where
H(W , u) = 2

∑
{i ,j}∈E

Wi ,j sinh
2 ((ui − uj)/2).

and
D(W , u) =

∑
T∈T

∏
{i ,j}∈T

W{i ,j}e
ui+uj .



VRJP ←→ SuSy hyperbolic sigma model in QFT (II)
Fixed conductances (We)e∈E , G finite (Merkl-Rolles-T.’19)

• Qi0,W (du) marginal of Gibbs “measure” on supermanifold
extension H2|2 of hyperbolic plane with action
AW (v , v) =

∑
i ,j Wij(vi − vj , vi − vj), taken in horospherical

coordinates after integration over fermionic variables.

• Merkl-Rolles-T.’19: Other variables in extension of SuSy model
arise on two different time scales as limits of

▶ local times on logarithmic scale

▶ rescaled fluctuations of local times

▶ rescaled crossing numbers

▶ last exit trees of the walk (tree version of fermionic variables)

• Bauerschmidt-Helmuth-Swan ’19 (AP and AIHP): very nice
interpretation of in terms of Brydges-Fröhlich-Spencer-Dynkin
isomorphism for the supersymmetric field.



VRJP ←→ random Schrödinger (Sabot-T.-Zeng ’15) (I)

Let, for all i ∈ V ,

βi =
1

2

∑
j∼i

Wije
uj−ui + δi0(i)γ,

γ ∼ Γ(1/2) indep. of u.

▶ ∀i ̸= i0, βi = jump rate from i

▶ β field 1-dependent: β|V1
and β|V2

are independent if
distG(V1,V2) ⩾ 2.

▶ On Zd with Wij = W constant, (βi )i∈V translation-invariant

▶ The marginals βi are such that (2βi )
−1 have inverse Gaussian

law.



VRJP ←→ random Schrödinger: Range and law of β (II)

▶ V finite

▶ ∆ = (∆i ,j)i ,j∈V discrete Laplacian, letting Wi :=
∑

j∼i Wi ,j ,

∆i ,j :=

{
Wi ,j , if i ∼ j , i ̸= j

−Wi , if i = j

▶ Hβ := −∆+ 2β, W diagonal with coefficients (Wi )i∈V .

▶ Hβ > 0 (positive definite): =⇒ (Hβ)
−1 has positive entries.

▶ β = (βi )i∈V has distribution

νW (dβ) =

√
2

π

|V |

1{Hβ>0}
e
∑

i∈V (Wi/2−βi )√
|Hβ|

∏
i∈V

dβi .



VRJP ←→ random Schrödinger: Retrieve u from β (III)

▶ Set G = (Hβ)
−1.

▶ Then

βi =
1

2

∑
j∼i

Wije
uj−ui , i ̸= i0

⇐⇒ Hβ(e
u.)(i) = (−∆+ 2β)(eu.)(i) = 0, i ̸= i0

⇐⇒ eui =
G (i0, i)

G (i0, i0)
, i ∈ V

where (ui )i∈V defined above and follows the law QW
i0
(du).

▶ Hence, time-changed VRJP starting from i0 mixture of
Markov jump processes with jump rate

1

2
Wi ,je

uj−ui =
1

2
Wi ,j

G (i0, j)

G (i0, i)



ERRW/VRJP and statistical physics: implications
Using link with QFT and localisation/delocalisation results of
Disertori, Spencer, Zirnbauer ’10 :

Theorem (ST’15, Angel-Crawford-Kozma’14, G bded degree)

ERRW (resp.VRJP) is positive recurrent at strong reinforcement,
i.e. for ae (resp. We) uniformly small in e ∈ E .

Theorem (ST’15, Disertori-ST’15, G = Zd , d ⩾ 3)

ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for ae
(resp. We) uniformly large in e ∈ E .

Using link with Random Schrödinger operator:

Theorem (Sabot-Zeng ’19, Sabot -19, Merkl-Rolles ’09)

ERRW with constant weights ae = a (resp. We = W ) is recurrent
in dimension 2.

Theorem (Poudevigne’19)

Increasing initial weights of ERRW and VRJP makes them more
transient (unique phase transition).



*-Edge-Reinforced Random Walk motivation : Reversible
k-dependent Markov chains

▶ (Yi ) k-dependent Markov chain on S finite (i.e. law of Yn+1

depends only on (Yn−k+1, . . . ,Yn)).

▶ Equivalent to Markov chain (Xn) on the (directed) de Bruijn
graph G = (V = Sk ,E ) with

ω = (i1, . . . , ik)→ ω̃ = (i2, . . . , ik+1)

with transition rate p(ω, ω̃), and invariant measure π(ω).

The k-dependent Markov chain is called reversible if

(Y1, . . . ,Yn)
law
= (Yn, . . . ,Y1).

as soon as (Y1, . . . ,Yk) ∼ π invariant measure. This is equivalent
to the ”modified” balance condition

π(ω)p(ω, ω̃) = π(ω̃∗)p(ω̃∗, ω∗),

where ω∗ is the flipped k-string ω∗ = (ik , . . . , i1).



General framework
▶ G = (V ,E ) directed graph with involution ∗ on V s.t.

(i , j) ∈ E ⇒ (j∗, i∗) ∈ E

▶ Let V0 = {i ∈ V : i = i∗}, and V1 be s.t. V = V0 ∪ V1 ∪ V ∗
1

disjoint.

▶ αi ,j > 0, (i , j) ∈ E such that αi ,j = αj∗,i∗ .

We call ⋆-ERRW with initial weights (αe), the discrete time
process (Xn) defined by

P(Xn+1 = j |Xk , k ⩽ n) = 1{Xn→j}
Z(Xn,j)(n))∑

l ,Xn→l Z(Xn,l)(n))

where

Z(i ,j)(n) = αi ,j + Ni ,j(n) + Nj∗,i∗(n)

N(i ,j)(n) =
n∑

k=1

1{(Xk−1,Xk )=(i ,j)}.



*-ERRW: partial exchangeability
Let

div(z)(i) =
∑
j ,i→j

zi ,j −
∑
j ,j→i

zj ,i , div : RE 7→ RV ,

γ(i0, α)

=

(∏
i∈V0

Γ(12(αi + 1− 1i=i0)2
1
2
(αi−1i=i0

)
) (∏

i∈V1
Γ(inf(αi , αi∗))

)∏
(i ,j)∈Ẽ Γ(αi ,j)

.

Let Ẽ be the set of edges quotiented by the relation (i , j) ∼ (j∗, i∗).

Proposition (Bacallado ’11, Baccalado, Sabot and T. ’21)

Let i0 ∈ V . If div(α) = δi∗0 − δi0 , then the ⋆-ERRW starting from i0
is partially exchangeable. More precisely, if βe = αe + ne , n(i ,j)
number of crossings of oriented edges (i , j) and (j∗, i∗), then

Pa,i0(X0 = i0, . . . ,Xn = in = j0) =
γ(i0, α)

γ(j0, β)
.



*-Edge Reinforced Random Walks (*-ERRW): statistical
view

▶ Statistical analysis of molecular dynamics simulations with
microscopically reversible laws.

▶ Two other applications, beyond Bayesian analysis of
higher-order Markov chains (Bacallado, 2006):
▶ Variable-order Markov chains with context set
C ⊆ S ∪ S2 ∪ · · · ∪ Sk on de Bruijn graph: ∀(i1, . . . , iℓ) ∈ C,
transition probabilities out of x and y are the same whenever x
and y both end in (i1, . . . , iℓ).

▶ Reinforced random walk with amnesia: RW on G = (V ,E )
defined by V = S ∪ S2 ∪ . . . Sk with two types of edges:
“forgetting” ones (i1, . . . , im)→ (i2, . . . , im), if m > 1,
“appending” ones (i1, . . . , im)→ (i1, . . . , im, j), for each j ∈ V ,
if m < k. Can be seen as generalization of the above, by
disallowing appending when word ends with subword in the
context set.



*-Edge Reinforced Random Walks (*-ERRW): results

Theorem (Bacallado, Sabot and T., 2021)

▶ (Zn(e)/n)n∈N converges a.s. to random vector X in
L1 =

{
x ∈ (0,∞)E : xi ,j = xj∗,i∗ , div(x) = 0,

∑
e∈E xe = 1

}
.

▶ Conditionally on x , ERRW is a Markov chain Px with jump
probability xij/xi from i to j , xi =

∑
i→k xik .

▶ The random variable X has the following density on L1, w.r.t∏
e∈B dxe , B basis of L1:

Cγ(i0, α)
√
xi0

∏(i ,j)∈Ẽ x
αi,j−1
i ,j∏

i∈V x
1
2
αi

i

 1∏
i∈V0

√
xi

√
D(x) dxL1 ,



*-Edge Reinforced Random Walks (*-ERRW): results

Recall that

γ(i0, α)

=

(∏
i∈V0

Γ(12(αi + 1− 1i=i0)2
1
2
(αi−1i=i0

)
) (∏

i∈V1
Γ(inf(αi , αi∗))

)∏
(i ,j)∈Ẽ Γ(αi ,j)

,

and

C =
2

√
2π

|V0|−1√
2
|V0|+|V1|

, D(y) =
∑
T

∏
(i ,j)∈T

yi ,j .

The last sum runs on spanning trees directed towards a root
j0 ∈ V (value does not depend on the choice of the root j0).



Correspondence *-ERRW ←→ *-VRJP (I)

Let (We)e∈E be conductances on edges, Wij = Wj∗i∗ > 0.
The *-Vertex-Reinforced Jump Process (*-VRJP) (Ys)s⩾0 is a
continuous-time process defined by Y0 = i0 and, if Ys = i , then,
conditionally to the past,

Y jumps to j ∼ i at rate Wi ,jLj∗(s),

with

Lj(s) = 1 +

∫ s

0
1{Yu=j}du.



Correspondence *-ERRW ←→ *-VRJP (II)
Random conductances (We)e∈E

Theorem (Bacallado-Sabot-T. ’21)

*-ERRW (Xn)n∈N with weights (αe)e∈E , αij = αj∗i∗

”law”

=
∗ − VRJP (Yt)t⩾0 with conductances We ∼ Γ(αe), e ∈ Ẽ indep.

(at jump times)

Proof.
Similar to [T.’11, Sabot-T.’15], as for any linearly reinforced RW
on its continuous time version.



*-VRJP: again three timescales

Jump rates from i to j

▶ Initial timescale process Y , with local time L :

WijL
∗
j (t),with Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

▶ Reversible timescale process Z , with local time T :

Wije
Ti (t)+T∗

j (t),with Tj(s) =

∫ s

0
1{Zu=j}du.

▶ Exchangeable timescale process X :

1

2
Wij

√
1 + ℓ∗j
1 + ℓi

,with ℓj(s) =

∫ s

0
1{Xu=j}du.



The limiting manifold
Set LW0 = {(ui )i∈V , div(W u) = 0,

∑
i∈V ui = 0}.

Proposition

The following limit

Ui = lim
t→∞

Ti (t)− t/|V |

exists a.s. and U ∈ LW0 .

Proof of U ∈ LW
0 .

If X is at i , it jumps to j with probability Wijd(e
Ti (t)+Tj∗ (t)) on

infinitesimal time interval. Hence

Wije
Ti (t)+Tj∗ (t)/(Z(ij)(t) + Z(j∗i∗)(t))→t→∞ 1.

On the other hand, by Kirchoff’s law,

|
∑
j : i→j

(Z(ij)(t) + Z(j∗i∗)(t)−
∑

k: k→i

(Z(ki)(t) + Z(i∗k∗)(t)| ⩽ 1.



Randomization of the initial local time

▶ Also appears in the context of self-repelling motion: T., Tóth
and Valkó’12, Horváth, Tóth and Vetö’12.

▶ For i0 ∈ V , consider the probability measure νWi0 on

A = {(ai ) ∈ RV , ai∗ = −ai}

given by

νWi0 (da) =
1

F (W , i0)
e
ai∗
0 e−

1
2

∑
i→j Wi,je

aj∗−ai∗
da,

where da =
∏

i∈V1
dai and F (W , i0) normalizing constant.

Proposition

Let (αe) be positive weights with div(a) = δi∗0 − δi0 , and
We ∼ Gamma(αe) indep. Then W A law

= W .



Let
PW
i0 (·) = E(PW A

i0 (·))

be the law of the ⋆-VRJP after expectation with respect to
A ∼ νWi0 .

Proposition

Let
C (t) =

∑
i∈V

(eTi (t)+Ti∗ (t) − 1)

and Zs = XC−1(s). Then Z is partially exchangeable, and in

particular there exists a random variable U ∈ LW0 such that,
conditionally on U, Z is a Markov process with jump rates

1

2
eUj∗−Ui∗ from i to j .



Limit measure of *-VRJP

Theorem
Under PW

i0 , the random variable U ∈ LW0 has density on LW0 given
by

1
√
2π

|V0|−1
F (W , i0)

e
ui∗
0
−
∑

i∈V0
ui e−

1
2

∑
i→j Wi,je

uj∗−ui∗
√
D(W u)

det(PAM(W u)PA)
,

with PA orthogonal projection onto A, and

D(W u) =
∑
T

∏
{i ,j}∈T

W u
i ,j ,

where the sum runs on rooted spanning trees of the graph, and
M(W u) is the generator of the Markov jump process at rate W u

i ,j .



*-VRJP: Random Schrödinger version

Let Hβ = β −W , Gβ = H−1
β .

Theorem
For all θ ∈ (0,∞)V , η ∈ (0,∞)V , we have∏

i∈V0

θi

∫
S

1Hβ>0
√
2π

|S| exp

(
−1

2
⟨θ,Hβθ⟩ −

1

2
⟨η,Gβη⟩

)
dβ√
|Hβ|

=

∫
A

1
√
2π

|A| exp

(
−1

2
⟨eaθ,Weaθ⟩+ 1

2
⟨θ,W θ⟩ − ⟨η, eaθ⟩

)
da.

When X0 = i0, the measure on β is associated to a differentiation
with respect to ηi0 of a combination of the two measures above at
η = 0, θ = 1 on {i0, i∗0}c .
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