Mixing and hitting times for Markov chains

Overview
1) Equivalence (up to constants) between mixing times and hitting times of large sets
2) Hitting times: comparison for different sizes of sets
3) Refined mixing and hitting equivalence

Let X be an irreducible Markov chain in a finite state space S.
Let P be the transition matrix of X.

\[P^t(i,j) = P_i(X^t=j) \quad \forall i,j \in S. \]

π: invariant distr., $\pi = \pi P$.

If X is also aperiodic, then $P^t(x,y) \to \pi(y)$ as $t \to \infty$, $\forall x,y$

Let μ and ν be 2 prob. distr. on S.

\[d_{tv}(\mu, \nu) = \max_A |\mu(A) - \nu(A)|. \]

\[d(t) = \max_x \| P^t(x, \cdot) - \pi \|_{tv}. \]

$\forall \varepsilon \in (0,1)$, twix($\varepsilon$) = min$\{t \geq 0 : d(t) \leq \varepsilon\}$

$\text{twix} = \text{twix}(\frac{\varepsilon}{2})$.

\[X \text{ is called reversible } \iff \forall x, y \quad \pi(x) P(x, y) = \pi(y) P(y, x). \]

$\tau_H(x) = \max_{A \ni x} \mathbb{E}_x[\tau_A]$, where $\tau_A = \min\{t \geq 0 : X_t \in A\}$.

Lazy version of X $P_L = P + \frac{I}{2}$.

Theorem 1 (Oliveira, Peres - S., 2012)

$\forall \alpha < \frac{1}{2}$, \exists positive constants C_{α} and C'_{α} s.t. for all reversible lazy Markov chains $C_{\alpha} \tau_H(x) \leq \text{twix} \leq C'_{\alpha} \tau_H(x)$.

\[\left[\text{twix} \leq C_{\alpha} \tau_H(x) \right] \]
Proof of lower bound

Let $t = \text{twix}(\frac{1}{16}) < 3 \text{twix}$

\[\forall x, A \quad P^t(x, A) \geq \pi(A) - \frac{1}{16}. \]

Take A with $\pi(A) \geq \frac{1}{8}$, then $P^t(x, A) \geq \frac{1}{16} \quad \forall x$.

So $\tau_A \leq t \cdot \text{Geo}(\frac{1}{16}) \Rightarrow \max_x E_x[\tau_A] \leq 16 \cdot t$. \(\square \)

Remark Reversibility is essential!

Exercise 1 Consider a biased RW on \mathbb{Z}_n (laziness)

Let τ_A be a geometric r.v. of parameter $\frac{1}{t}$, taking values in $\{1, \ldots\}$ and indep. of X.

Define $d_G(t) = \max_x \| P_x(X_{\tau + t} = \cdot) - \pi \|_{TV}$

and $t_G = \min \{ t > 0 : d_G(t) \leq \frac{1}{4} \}$: geometric mixing.
Remark If instead of geometric, we take U_t to be uniform on $[1,...,t^2]$ then this gives rise to the Cesaro mixing time.

Exercise 3 Show that $d_{C_{\alpha}}(t)$ is decreasing in t.

Theorem 2 For all reversible chains, $t_\alpha \geq t_{mix}$. \textit{Ideas Aldous Lovász and Winkler}

Theorem 3 For all chains, $t_\alpha \geq t_{mix} \ orall \alpha < \frac{1}{8}$.

Pf of Thm 1 Immediate from Thm's 2 and 3. \textbf{D}

Pf of Thm 3 $t_{Ca} \geq t_{mix}(\alpha)$: easy, up to constants

We prove $t_{Ca} \leq t_{mix}(\alpha)$, $\alpha = \frac{1}{8}$

Let $t < t_{Ca}$. We want to find a set B with $\pi(B) > \frac{1}{8}$ s.t.

$$\max_{x} \mathbb{E}_x[\tau_{\text{mix}}] > \Theta t$$

for some positive constant Θ.

$t < t_{Ca} \Rightarrow \exists \varepsilon, A$ s.t. $P_\varepsilon(X_{\tau_{\text{mix}}} \in A) < \pi(A) - \frac{1}{4}$

$\Rightarrow \pi(A) > \frac{1}{4}$

$B = \{ y : P_y(X_{\tau_{\text{mix}}} \in A) > \pi(A) - \frac{1}{8} \}$

Claim $\pi(B) > \frac{1}{8}$

$$\pi = \pi \mathcal{P} \Rightarrow \pi(A) = \sum_{y \in B} \pi(y) P_y(X_{\tau_{\text{mix}}} \in A) + \sum_{y \notin B} \pi(y) P_y(X_{\tau_{\text{mix}}} \in A)$$

$$\leq 1 \pi(B) + \pi(A) - \frac{1}{8} \to \pi(B) > \frac{1}{8}.$$ \textbf{D}

We will prove that assuming $\mathbb{E}_x[\tau_{\text{mix}}] < \Theta t$ for a suitable constant Θ leads to a contradiction.

By Markov's ineq. $P_\varepsilon(\tau_{\text{mix}} > 2\Theta Mt) < \frac{1}{2M}$ \textbf{M} $\in \mathbb{N}$

$$P_{\varepsilon}(X_{\tau_{\text{mix}}} \in A) \geq P_{\varepsilon}(X_{\tau_{\text{mix}}} \in A|Z_t \geq \tau_{\text{mix}}, \tau_{\text{mix}} < 2\Theta Mt) P_{\varepsilon}(Z_t \geq \tau_{\text{mix}}, \tau_{\text{mix}} < 2\Theta Mt)$$

$\geq \min_{y \in B} P_y(X_{\tau_{\text{mix}}} \in A)$ memoryless property of Z_t and strong Markov at τ_{mix}
\[
\begin{align*}
\mathbb{P}(\exists t \geq \frac{\pi(A)}{8} \cdot \mathbb{P}(\mathcal{Z}_t \geq 2\theta M, \mathcal{Z}_B < 2\theta M)) &= \mathbb{P}(\mathcal{Z}_t \geq 2\theta M) \cdot \mathbb{P}(\mathcal{Z}_B < 2\theta M) \\
* &\geq \left(\pi(A) - \frac{1}{8}\right) \left(1 - \frac{1}{2M}\right) \\
\theta M > 1 &\geq \left(\pi(A) - \frac{1}{8}\right) \left(1 - 2\theta M\right) \left(1 - \frac{1}{2M}\right) \\
\text{Choosing } &\theta = \frac{1}{4M^2} \Rightarrow \mathbb{P}(\mathcal{Z}_t \in A) \geq \left(\pi(A) - \frac{1}{8}\right) \left(1 - \frac{1}{2M}\right)^2
\end{align*}
\]

Taking \(M\) large enough shows \(\mathbb{P}(\mathcal{Z}_t \in A) > \pi(A) - \frac{1}{4}\)

which is a contradiction. \(\square\)

Idea of geometric mixing : due to Oded Schramm

\(t_{\text{stop}} = \max \min \{ \mathbb{E}_x [\Lambda_x] : \Lambda_x \text{ is a randomised stopping time s.t. } \mathbb{P}_x(\mathcal{Z}_{\Lambda_x} = \cdot) = \pi(\cdot) \}\)

Filling rule Baxter and Chacon 76 Aldous, Lovász-Winkler.

Thus \(2\) reversible \(t_{\text{stop}} \leq \text{twix}\)

\(t_{\text{stop}} \leq 8\text{twix} \; \text{easy.}\)

The hard direction is to show \(t_{\text{stop}} \geq \text{twix}.\)

Exercise 4 Prove that for reversible chains \(t_{\text{stop}} \leq 8\text{twix}.\)

Hint: Use separation distance to define an appropriate stopping time.

4. Let \(X\) be a reversible Markov chain with transition matrix \(P\) and invariant distribution \(\pi\).

(i) Prove that for all \(x, y\)

\[
P^{2t}(x, y) \geq \frac{1}{\pi(y)} \left(1 - \max_{z,w} \|P^t(z, \cdot) - P^t(w, \cdot)\|_{\text{TV}}\right)^2.
\]

Deduce that

\[
P^{2t_{\text{mix}}}(x, y) \geq \frac{1}{4} \pi(y)
\]

and that there exists a transition matrix \(\hat{P}\) such that

\[
P^{2t_{\text{mix}}}(x, y) = \frac{1}{4} \pi(y) + \frac{3}{4} \hat{P}(x, y)
\]

(ii) Let \(t_{\text{stop}} = \max_x \min\{\mathbb{E}_x[\Lambda_x] : \Lambda_x \text{ is a stopping time s.t. } \mathbb{P}_x(X_{\Lambda_x} \in \cdot) = \pi(\cdot)\}.\) By defining an appropriate stationary time, prove that

\[
t_{\text{stop}} \leq t_{\text{mix}}.
\]