Simplicity and Complexity of Belief-Propagation

Elchanan Mossel\textsuperscript{1

1MIT

July 2020
A *Double* phase transition for large q

Theorem (Count Reconstruction, Robust Reconstruction (Mossel-Peres, Janson-Peres))

For all q and d-ary tree, $d\theta^2 = 1$ is the threshold for: census and robust reconstruction.

Theorem (Reconstruction for large q (Mossel 00))

If $d \theta > 1$ then for $q > q_\theta$ can distinguish the root better than random:

$$\lim_{h \to \infty} \text{Var}[\mathbb{E}[X_0|X_{L_h}]] > 0$$

\implies Non-linear estimators are superior.

Pf: Shows fractal nature of information.
Proof sketch

- For $q = \infty$, clearly threshold is $d\theta = 1$.
- For finite $q, d = 2$, fix θ such that $d\theta > 1$.
- Inference: Infer root color to be c if there is an ℓ-diluted binary subtree $T' \subset T$ with root at 0 and where all leaves have color c.
- **Exercise 1**: There exists an $\ell, \varepsilon > 0$ such that if the root is c, the probability that such a tree exists is at least ε.
- **Exercise 2**: For all $\varepsilon > 0$, if q is sufficiently large, and if the root is not c, the probability that there is an ℓ-diluted $2^\ell - 1$ tree with all the leaves of color $\neq c$ is at least $1 - \varepsilon/10$.
- **Exercise 3**: Prove that if $d\lambda \leq 1$, then the root and leaves are asymptotically independent.
Sly 11: Defined magnetization $m_n = E[M_n]$ such that if m_n is small then:

$$m_{n+1} = d\theta^2 m_n + (1 + o(1))\frac{d(d-1)}{2} \frac{q(q-4)}{q-1} \theta^4 m_n^2.$$

\implies if $q \geq 5$, the KS bound is not tight.

Also proved that if $q = 3$ and $d \geq d_{\text{min}}$ is large then KS bound is tight.

M-01: For general Markov chains, can have $\lambda_2(M) = 0$, yet root and leaves are not independent.

Exercise: Prove this for following chain on F_2^2.
$M(x, y) = (r, r \oplus x)$ or $(r, r \oplus y)$ with probability $1/2$ each.

More sophisticated examples in Mossel-Peres.
Two conjectures about inference

- Consider a model where different edges have different θ's.
- Let q so that for $\theta \in (\theta_R, \theta_{KS})$, $\text{Var}[\mathbb{E}[X_0|X_h]] \to \alpha > 0$.
- Conj 1: There is no estimator f such that $f(X_h)$ and X_0 have no negligible correlation for all models with $\theta(e) \in (\theta_R, \theta_{KS})$ for all edges.
- Conj 2: It is “impossible” to recover phylogenetic trees using $O(h)$ samples under the conditions above.
- Strong version of impossible would mean information theoretically. Weak version would mean computationally.
Part 3: Complexity of BP
What is the complexity of BP?

Low: Runs in linear time.
But: Uses real numbers - is this necessary?
But: Uses depth - is this necessary?
Fractal picture suggests maybe depth is needed.
Understanding the Omnipresence

What is everywhere and understand everything?
“Omnipresence”.
A: The deep-net on your smartphone that understands you.
Mathematically, it is natural to ask if there are data generative process satisfying 3 natural criteria:

1. **Realism**: Reasonable data models.

2. **Reconstruction**: Provable efficient algorithms to reverse engineer the generative process.

3. **Depth**: Proof that depth is needed.

4. Also: why does BP use real numbers, when the generating process is discrete?
Q: What are the memory requirements for BP?

Conjecture (EKPS-00): For $q = 2$, any recursive algorithm on the tree which uses at most B bits of memory per node can only distinguish the root value better than random if

\[\theta < \theta(B) \text{ where } d\theta(B)^2 > 1. \]

Thm: (Jain-Koehler-Liu-M-19): Conjecture is true:

\[\theta(B) - \theta = B^{-O(1)}. \]
Problem Setup

Generation tree (broadcast model)

Reconstruction (message passing)
Problem Setup (cont.)

- Broadcast process on d-regular tree of height h.
- Each reconstruction $Y_i = f_i(Y_{2i}, Y_{2i+1})$ is an arbitrary log L-bit string (memory constraint).
\(\text{AC}^0 \) := class of bounded depth circuits with AND/OR (unbounded fan) and NOT gates.

Thm: Moitra-M-Sandon-20:
\(\text{AC}^0(X_h) \) cannot classify \(X_0 \) better than random.

Is this trivial?

Maybe not: **Thm** MMS-20: \(\text{AC}^0 \) generates leaf distributions.
\(\textbf{TC}^0 \)

- \(\textbf{TC}^0 := \text{like AC}^0 \) but with Majority gates.
- “Bounded depth deep nets”.
- Thm (MMS-20): When \(q = 2 \) and \(0.9999 < \theta < 1 \), there exists an algorithm \(A \) in \(\textbf{TC}^0 \) such that
 \[
 \lim_h P[A(X_h) = X_0] = \lim_h P[BP(X_h) = X_0].
 \]
- Conj: This is true for all \(\theta \) when \(q = 2 \).
- So maybe we can classify optimally in \(\textbf{TC}^0 \)?
- Maybe bounded depth nets suffice?
\[\text{NC}^1 \]

- \(\text{NC}^1 \) := class of \(O(\log n) \) depth circuits with AND/OR (fan 2) and NOT gates.
- Known that \(\text{TC}^0 \subset \text{NC}^1 \). Open if they are the same.
- Thm (MMS-20): One can classify as well as BP in \(\text{NC}^1 \).
- Thm (MMS-20): There is a broadcast process for which classifying better than random is \(\text{NC}^1 \)-complete.
- So, unless \(\text{TC}^0 = \text{NC}^1 \), \(\log n \) depth is needed.
The KS bound and Circuit Complexity

- The threshold $2\theta^2 = 1$ is called the Kesten-Stigum threshold.
- Above this threshold it is known that one neuron can classify the root better than random (Kesten-Stigum-66).
- Below this threshold, one neuron cannot (M-Peres-04).
- Below this threshold, with enough i.i.d. noise on the leaves, BP becomes trivial (Janson-M-05).
- Related to “Replica Symmetry Breaking” in statistical physics models (Mezard-Montanari-06).
- Conjecture (MMS-20): For any broadcast process, below the KS bound and where BP classifies better than random, classification is NC^1-complete.
Conclusion

BP is simple:
- Runs in linear time.
- Above KS bound behaves like a Linear Algorithm.

BP is complex:
- Below KS bound, tend to be fractal.
- Statistical/computation gaps.
- Requires depth / precision.