Critical percolation

Gady Kozma

Online Open Probability School, 2020
Percolation - definitions

Examine the graph \mathbb{Z}^d, $d \geq 2$.
Percolation - definitions

Examine the graph \mathbb{Z}^d, $d \geq 2$. For a $p \in [0, 1]$ keep every edge with probability p and delete it with probability $1 - p$, independently for each edge.
Percolation - definitions

Examine the graph \mathbb{Z}^d, $d \geq 2$. For a $p \in [0, 1]$ keep every edge with probability p and delete it with probability $1 - p$, independently for each edge. There exists some $p_c \in (0, 1)$ (“the critical p”) such that for $p < p_c$ all components (“clusters”) of the resulting graph are finite, while for $p > p_c$ there is a unique infinite cluster.
Percolation - definitions

Examine the graph \mathbb{Z}^d, $d \geq 2$. For a $p \in [0, 1]$ keep every edge with probability p and delete it with probability $1 - p$, independently for each edge. There exists some $p_c \in (0, 1)$ (“the critical p”) such that for $p < p_c$ all components (“clusters”) of the resulting graph are finite, while for $p > p_c$ there is a unique infinite cluster. The behaviour at and near p_c is not well understood, except if $d = 2$ or $d > 6$.
Percolation - definitions

Examine the graph \mathbb{Z}^d, $d \geq 2$. For a $p \in [0, 1]$ keep every edge with probability p and delete it with probability $1 - p$, independently for each edge. There exists some $p_c \in (0, 1)$ ("the critical p") such that for $p < p_c$ all components ("clusters") of the resulting graph are finite, while for $p > p_c$ there is a unique infinite cluster. The behaviour at and near p_c is not well understood, except if $d = 2$ or $d > 6$.

This minicourse will focus on recent advances around this problem, with particular emphasis on the growing understanding of the importance of the Aizenman-Kesten-Newman argument. (but we will only get to it in the second hour)
Theorem

\[E_{pc}(|C(0)|) = \infty. \]
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

Fix \(p \) and denote \(\chi = \mathbb{E}_p(|\mathcal{C}(0)|) \). Let

\[\varepsilon < \frac{1}{4d\chi}. \]
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

Fix \(p \) and denote \(\chi = \mathbb{E}_p(|\mathcal{C}(0)|) \). Let

\[\varepsilon < \frac{1}{4d\chi}. \]

We will show that at \(p + \varepsilon \) there is no infinite cluster.
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

Fix \(p \) and denote \(\chi = \mathbb{E}_p(|\mathcal{C}(0)|) \). Let

\[\varepsilon < \frac{1}{4d\chi}. \]

We will show that at \(p + \varepsilon \) there is no infinite cluster. Consider \(p + \varepsilon \) percolation as if we take \(p \)-percolation and then “sprinkle” each edge with probability \(\varepsilon \).
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

Fix \(p \) and denote \(\chi = \mathbb{E}_p(|\mathcal{C}(0)|) \). Let

\[\varepsilon < \frac{1}{4d\chi}. \]

We will show that at \(p + \varepsilon \) there is no infinite cluster. Consider \(p + \varepsilon \) percolation as if we take \(p \)-percolation and then “sprinkle” each edge with probability \(\varepsilon \). For a vertex \(x \) and a sequence of directed edges \(e_1, \ldots, e_n \), denote by \(E_{x,e_1,\ldots,e_n} \) the event that 0 is connected to \(x \) by a path \(\gamma_1 \) in \(p \)-percolation from 0 to \(e_1^- \).
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

Fix \(p \) and denote \(\chi = \mathbb{E}_{p}(|\mathcal{C}(0)|) \). Let

\[\varepsilon < \frac{1}{4d\chi}. \]

We will show that at \(p + \varepsilon \) there is no infinite cluster. Consider \(p + \varepsilon \) percolation as if we take \(p \)-percolation and then “sprinkle” each edge with probability \(\varepsilon \). For a vertex \(x \) and a sequence of directed edges \(e_1, \ldots, e_n \), denote by \(E_{x,e_1,\ldots,e_n} \) the event that 0 is connected to \(x \) by a path \(\gamma_1 \) in \(p \)-percolation from 0 to \(e_1^- \) then \(e_1 \) is sprinkled, then there is a path \(\gamma_2 \) from \(e_1^+ \) to \(e_2^- \) then \(e_2 \) is sprinkled and so on.
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

Fix \(p \) and denote \(\chi = \mathbb{E}_p(|\mathcal{C}(0)|) \). Let

\[\varepsilon < \frac{1}{4d\chi}. \]

We will show that at \(p + \varepsilon \) there is no infinite cluster. Consider \(p + \varepsilon \) percolation as if we take \(p \)-percolation and then “sprinkle” each edge with probability \(\varepsilon \). For a vertex \(x \) and a sequence of directed edges \(e_1, \ldots, e_n \), denote by \(E_{x,e_1,\ldots,e_n} \) the event that 0 is connected to \(x \) by a path \(\gamma_1 \) in \(p \)-percolation from 0 to \(e_1^- \) then \(e_1 \) is sprinkled, then there is a path \(\gamma_2 \) from \(e_1^+ \) to \(e_2^- \) then \(e_2 \) is sprinkled and so on. We end with a path \(\gamma_{n+1} \) from \(e_n \) to \(x \). We require all the \(\gamma_i \) to be disjoint.
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

Fix \(p \) and denote \(\chi = \mathbb{E}_p(|\mathcal{C}(0)|) \). Let

\[\varepsilon < \frac{1}{4d\chi}. \]

We will show that at \(p + \varepsilon \) there is no infinite cluster. Consider \(p + \varepsilon \) percolation as if we take \(p \)-percolation and then “sprinkle” each edge with probability \(\varepsilon \). For a vertex \(x \) and a sequence of directed edges \(e_1, \ldots, e_n \), denote by \(E_{x,e_1,\ldots,e_n} \) the event that 0 is connected to \(x \) by a path \(\gamma_1 \) in \(p \)-percolation from 0 to \(e_1^- \) then \(e_1 \) is sprinkled, then there is a path \(\gamma_2 \) from \(e_1^+ \) to \(e_2^- \) then \(e_2 \) is sprinkled and so on. We end with a path \(\gamma_{n+1} \) from \(e_n \) to \(x \). We require all the \(\gamma_i \) to be disjoint. Clearly \(0 \leftrightarrow x \) is \(p + \varepsilon \) percolation if and only if there exist some \(e_1, \ldots, e_n \) (possibly empty) such that \(E_{x,e_1,\ldots,e_n} \) hold.
Theorem

$\mathbb{E}_{p_c}(|C(0)|) = \infty.$
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

\[\chi = \mathbb{E}_p(|\mathcal{C}(0)|), \quad \varepsilon < 1/4d\chi, \quad E_{x,e_1,\ldots,e_n} \text{ is the event that } \exists \gamma_i \text{ from } e^+_i \text{ to } e^-_i, \text{ disjoint, and all } e_i \text{ are sprinkled.} \]

\[\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \leq \sum_{n=0}^{\infty} \sum_{e_1,\ldots,e_n} \mathbb{P}(E_{x,e_1,\ldots,e_n}). \]
Theorem

$\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty$.

Proof.

$\chi = \mathbb{E}_p(|\mathcal{C}(0)|)$, $\varepsilon < 1/4d\chi$, E_{x,e_1,\ldots,e_n} is the event that $\exists \gamma_i$ from e_{i-1}^+ to e_i^-, disjoint, and all e_i are sprinkled.

$$\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \leq \sum_{n=0}^{\infty} \sum_{e_1,\ldots,e_n} \mathbb{P}(E_{x,e_1,\ldots,e_n}).$$

By the BK inequality

$$\leq \sum_{n=0}^{\infty} \sum_{e_1,\ldots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-)\mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}(e_n^+ \leftrightarrow x)\varepsilon^n$$
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

\[\chi = \mathbb{E}_p(|\mathcal{C}(0)|), \quad \varepsilon < 1/4d\chi, \quad E_{x,e_1,...,e_n} \text{ is the event that } \exists \gamma_i \text{ from } e^+_i \text{ to } e^-_i, \text{ disjoint, and all } e_i \text{ are sprinkled.} \]

\[\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \leq \sum_{n=0}^{\infty} \sum_{e_1,...,e_n} \mathbb{P}(E_{x,e_1,...,e_n}). \]

By the BK inequality

\[\leq \sum_{n=0}^{\infty} \sum_{e_1,...,e_n} \mathbb{P}_p(0 \leftrightarrow e^-_1)\mathbb{P}_p(e^+_1 \leftrightarrow e^-_2) \cdots \mathbb{P}_p(e^+_n \leftrightarrow x)\varepsilon^n \]

Summing over all \(x \) gives

\[\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,...,e_n} \mathbb{P}_p(0 \leftrightarrow e^-_1)\mathbb{P}_p(e^+_1 \leftrightarrow e^-_2) \cdots \mathbb{P}_p(e^+_n \leftrightarrow x). \]
Theorem

$\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty$.

Proof.

$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\ldots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-) \mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x)$.
Theorem
\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.
\[\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,...,e_n} P_p(0 \leftrightarrow e_1^-)P_p(e_1^+ \leftrightarrow e_2^-) \cdots P_p(e_n^+ \leftrightarrow x). \]

Summing over \(x \) gives one \(\chi(p) \) term which we can take out of the sum
\[= \sum_{n=0}^{\infty} \varepsilon^n \chi(p) \sum_{e_1,...,e_n} P_p(0 \leftrightarrow e_1^-)P_p(e_1^+ \leftrightarrow e_2^-) \cdots P_p(e_{n-1}^+ \leftrightarrow e_n^-). \]
Theorem

$E_{p_c}(|\mathcal{C}(0)|) = \infty$.

Proof.

$\chi(p + \varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x, e_1, \ldots, e_n} P_p(0 \leftrightarrow e_1^-) P_p(e_1^+ \leftrightarrow e_2^-) \cdots P_p(e_n^+ \leftrightarrow x)$.

Summing over x gives one $\chi(p)$ term which we can take out of the sum

$= \sum_{n=0}^{\infty} \varepsilon^n \chi(p) \sum_{e_1, \ldots, e_n} P_p(0 \leftrightarrow e_1^-) P_p(e_1^+ \leftrightarrow e_2^-) \cdots P_p(e_{n-1}^+ \leftrightarrow e_n^-)$.

e_n^+ has $2d$ possibilities. Summing over e_n^- gives another χ term. Taking both out of the sum gives

$= \sum_{n=0}^{\infty} \varepsilon^n \cdot 2d \chi(p)^2 \sum_{e_1, \ldots, e_{n-1}} P_p(0 \leftrightarrow e_1^-) \cdots P_p(e_{n-2}^+ \leftrightarrow e_{n-1}^-)$.
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

\[\chi(p) = \mathbb{E}_p(|\mathcal{C}(0)|), \varepsilon < 1/4d\chi(p), \]

\[\chi(p + \varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\ldots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^{-})\mathbb{P}_p(e_1^{+} \leftrightarrow e_2^{-}) \cdots \mathbb{P}_p(e_n^{+} \leftrightarrow x) \]

\[= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} \]
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

\[\chi(p) = \mathbb{E}_p(|\mathcal{C}(0)|), \quad \varepsilon < 1/4d\chi(p), \]

\[\chi(p + \varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,...,e_n} \mathbb{P}_p(0 \leftrightarrow e^-_1)\mathbb{P}_p(e^+_1 \leftrightarrow e^-_2) \cdots \mathbb{P}_p(e^+_n \leftrightarrow x) \]

\[= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty. \]
Theorem

\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.

\[\chi(p) = \mathbb{E}_p(|\mathcal{C}(0)|), \quad \varepsilon < 1/4d\chi(p), \]

\[\chi(p + \varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\ldots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-)\mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x) \]

\[= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty. \]

This shows that \(p + \varepsilon \leq p_c. \)
Theorem
\[\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \]

Proof.
\[\chi(p) = \mathbb{E}_p(|\mathcal{C}(0)|), \quad \varepsilon < 1/4d\chi(p), \]

\[\chi(p + \varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\ldots,e_n} \mathbb{P}_p(0 \leftrightarrow e_1^-)\mathbb{P}_p(e_1^+ \leftrightarrow e_2^-) \cdots \mathbb{P}_p(e_n^+ \leftrightarrow x) \]

\[= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty. \]

This shows that \(p + \varepsilon \leq p_c \). The theorem is then proved by contradiction.
Theorem

\(\mathbb{E}_{p_c}(|\mathcal{C}(0)|) = \infty. \)

Proof.

\(\chi(p) = \mathbb{E}_p(|\mathcal{C}(0)|), \varepsilon < 1/4d\chi(p), \)

\[
\chi(p + \varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\ldots,e_n} \mathbb{P}_p(0 \leftrightarrow e^-_1)\mathbb{P}_p(e^-_1 \leftrightarrow e^-_2) \cdots \mathbb{P}_p(e^-_n \leftrightarrow x) \\
= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty.
\]

This shows that \(p + \varepsilon \leq p_c. \) The theorem is then proved by contradiction.

The argument also gives

\[
\chi(p) \geq \frac{1}{4d(p_c - p)} \quad \forall p < p_c.
\]
Theorem
\[\mathbb{E}_{p_c}(\vert \mathcal{C}(0) \vert) = \infty. \]

Proof.
\[\chi(p) = \mathbb{E}_p(\vert \mathcal{C}(0) \vert), \ \varepsilon < 1/4d\chi(p), \]
\[\chi(p + \varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^n \sum_{x,e_1,\ldots,e_n} \mathbb{P}_p(0 \leftrightarrow e^-_1)\mathbb{P}_p(e^+_1 \leftrightarrow e^-_2) \cdots \mathbb{P}_p(e^+_n \leftrightarrow x) \]
\[= \sum_{n=0}^{\infty} \varepsilon^n \cdot (2d)^n \chi(p)^{n+1} < \infty. \]

This shows that \(p + \varepsilon \leq p_c. \) The theorem is then proved by contradiction.

The argument also gives
\[\chi(p) \geq \frac{1}{4d(p_c - p)} \quad \forall p < p_c. \]

This is sharp on a tree but not in general.
For a set $S \subset \mathbb{Z}^d$ denote by ∂S the set of $x \in S$ with a neighbour $y \not\in S$.

Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow^S x) \geq 1.$$
For a set $S \subset \mathbb{Z}^d$ denote by ∂S the set of $x \in S$ with a neighbour $y \not\in S$.

Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow^S x) \geq 1.$$

Proof sketch.

Let $x \in \mathbb{Z}^d$. If $0 \leftrightarrow x$ then there exists $0 = y_1, \ldots, y_n = x$ such and open paths γ_i such that

- γ_i is from y_i to y_{i+1} and is contained in $y_i + S$.
For a set $S \subset \mathbb{Z}^d$ denote by ∂S the set of $x \in S$ with a neighbour $y \not\in S$.

Theorem

*Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c} (0 \leftrightarrow_S x) \geq 1.$$*

Proof sketch.

Let $x \in \mathbb{Z}^d$. If $0 \leftrightarrow x$ then there exists $0 = y_1, \ldots, y_n = x$ such and open paths γ_i such that

1. γ_i is from y_i to y_{i+1} and is contained in $y_i + S$.
2. The γ_i are disjoint.
For a set $S \subset \mathbb{Z}^d$ denote by ∂S the set of $x \in S$ with a neighbour $y \notin S$.

Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow^S x) \geq 1.$$
For a set $S \subset \mathbb{Z}^d$ denote by ∂S the set of $x \in S$ with a neighbour $y \not\in S$.

Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then

$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow^S x) \geq 1.$$

Proof sketch.

Let $x \in \mathbb{Z}^d$. If $0 \leftrightarrow x$ then there exists $0 = y_1, \ldots, y_n = x$ such and open paths γ_i such that

1. γ_i is from y_i to y_{i+1} and is contained in $y_i + S$.
2. The γ_i are disjoint.

And we have $n \geq r|x|$ for some number $r > 0$ that depends on S.
For a set $S \subset \mathbb{Z}^d$ denote by ∂S the set of $x \in S$ with a neighbour $y \not\in S$.

Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then

$$
\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow x) \geq 1.
$$

Proof sketch.

Let $x \in \mathbb{Z}^d$. If $0 \leftrightarrow x$ then there exists $0 = y_1, \ldots, y_n = x$ such and open paths γ_i such that

1. γ_i is from y_i to y_{i+1} and is contained in $y_i + S$.
2. The γ_i are disjoint.

And we have $n \geq r|x|$ for some number $r > 0$ that depends on S. A calculation similar to the previous proof shows that

$$
\mathbb{P}(0 \leftrightarrow x) \leq \sum_{n \geq r|x|} \left(\sum_{y \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow y) \right)^n.
$$
Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then
\[
\sum_{x \in \partial S} \mathbb{P}_{p_c} (0 \leftrightarrow^S x) \geq 1.
\]

Proof sketch.

Let $x \in \mathbb{Z}^d$. If $0 \leftrightarrow x$ then there exists $0 = y_1, \ldots, y_n = x$ such and open paths γ_i such that

1. γ_i is from y_i to y_i+1 and is contained in $y_i + S$.
2. The γ_i are disjoint.

And we have $n \geq r|x|S$. A calculation similar to the previous proof shows that

\[
\mathbb{P}(0 \leftrightarrow x) \leq \sum_{n \geq r|x|} \left(\sum_{y \in \partial S} \mathbb{P}_{p_c} (0 \leftrightarrow^S y) \right)^n.
\]
Theorem

Let \(S \subset \mathbb{Z}^d \) be some finite set containing 0. Then
\[
\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow_S x) \geq 1.
\]

Proof sketch.

Let \(x \in \mathbb{Z}^d \). If \(0 \leftrightarrow x \) then there exists \(0 = y_1, \ldots, y_n = x \) such and open paths \(\gamma_i \) such that

1. \(\gamma_i \) is from \(y_i \) to \(y_{i+1} \) and is contained in \(y_i + S \).
2. The \(\gamma_i \) are disjoint.

And we have \(n \geq r|x|S \). A calculation similar to the previous proof shows that
\[
\mathbb{P}(0 \leftrightarrow x) \leq \sum_{n \geq r|x|} \left(\sum_{y \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow_S y) \right)^n.
\]

If the value in the parenthesis is smaller than 1 then \(\mathbb{P}(0 \leftrightarrow x) \) decays exponentially in \(|x| \), contradicting the previous theorem.
Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then
$$\sum_{x \in \partial S} \mathbb{P}_{p_c} (0 \leftrightarrow x \mid S) \geq 1.$$

A full proof can be found in H. Duminil-Copin and V. Tassion, *A new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb{Z}^d*, L’Enseignement Mathématique, 62(1/2) (2016), 199-206.
Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then
$$\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow_S x) \geq 1.$$

A full proof can be found in H. Duminil-Copin and V. Tassion, *A new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb{Z}^d*, L’Enseignement Mathématique, 62(1/2) (2016), 199-206. It is the basis for a new, significantly simpler proof of the following

Theorem (Menshikov||Aizenman-Barsky)

For any $p < p_c$, $\chi(p) < \infty$.
Theorem

Let \(S \subset \mathbb{Z}^d \) be some finite set containing 0. Then
\[
\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow x) \geq 1.
\]

A full proof can be found in H. Duminil-Copin and V. Tassion, *A new proof of the sharpness of the phase transition for Bernoulli percolation on \(\mathbb{Z}^d \)*, L’Enseignement Mathématique, 62(1/2) (2016), 199-206. It is the basis for a new, significantly simpler proof of the following

Theorem (Menshikov∥Aizenman-Barsky)

For any \(p < p_c \) \(\chi(p) < \infty \).

(recall that \(\chi(p) = \mathbb{E}_p(|\mathcal{C}(0)|) \) and that what we proved before is \(\chi(p_c) = \infty \)).
Theorem

Let $S \subset \mathbb{Z}^d$ be some finite set containing 0. Then
\[\sum_{x \in \partial S} \mathbb{P}_{p_c}(0 \leftrightarrow x) \geq 1. \]

Two applications:

Lemma (K-Nachmias, 2011)

For any $x \in \partial \Lambda_n$, $\Lambda_n := [-n, n]^d$,
\[\mathbb{P}_{p_c}(0 \leftrightarrow \Lambda_n x) \geq c \exp(-C \log^2 n). \]

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$,
\[\mathbb{P}_{p_c}(x \leftrightarrow \Lambda_{2n} y) \geq cn^{-C}. \]

All constants c and C might depend on the dimension.
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xrightarrow{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$.
Lemma (Cerf, 2015)

For any \(x, y \in \Lambda_n \), \(\mathbb{P}_{pc}(x \xleftarrow{\Lambda_{2n}} y) \geq cn^{-C} \).

Proof.

Assume first that \(x - y = (2k, 0, \ldots, 0) \), \(k \leq n \). By the theorem there exists a \(z \in \partial \Lambda_k \) such that

\[
\mathbb{P}(0 \xleftarrow{\Lambda_k} z) \geq \frac{1}{2d|\partial \Lambda_k|}
\]
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xleftarrow{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. By the theorem there exists a $z \in \partial \Lambda_k$ such that

$$\mathbb{P}(0 \xleftarrow{\Lambda_k} z) \geq \frac{1}{2d|\partial \Lambda_k|} \geq \frac{c}{k^d-1}.$$
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xrightarrow{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. By the theorem there exists a $z \in \partial \Lambda_k$ such that

$$\mathbb{P}(0 \xrightarrow{\Lambda_k} z) \geq \frac{1}{2d|\partial \Lambda_k|} \geq \frac{c}{k^d - 1}.$$

By rotation and reflection symmetry we may assume z is in some face of Λ_k, for example $z_1 = k$.
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xleftarrow{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. By the theorem there exists a $z \in \partial \Lambda_k$ such that

$$\mathbb{P}(0 \xleftarrow{\Lambda_k} z) \geq \frac{1}{2d|\partial \Lambda_k|} \geq \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of Λ_k, for example $z_1 = k$. Let \overline{z} be the reflection of z in the first coordinate i.e. $\overline{z} = (-z_1, z_2, \ldots, z_d)$.
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \overset{\Lambda_{2n}}{\leftrightarrow} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. By the theorem there exists a $z \in \partial \Lambda_k$ such that

$$\mathbb{P}(0 \overset{\Lambda_k}{\leftrightarrow} z) \geq \frac{1}{2d|\partial \Lambda_k|} \geq \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of Λ_k, for example $z_1 = k$. Let \bar{z} be the reflection of z in the first coordinate i.e. $\bar{z} = (-z_1, z_2, \ldots, z_d)$. By reflection symmetry we also have $\mathbb{P}(0 \overset{\Lambda_k}{\leftrightarrow} \bar{z}) \geq ck^{1-d}$.
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xrightarrow{\Lambda_2 n} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. By the theorem there exists a $z \in \partial \Lambda_k$ such that

$$\mathbb{P}(0 \xrightarrow{\Lambda_k} z) \geq \frac{1}{2d|\partial \Lambda_k|} \geq \frac{c}{k^{d-1}}.$$

By rotation and reflection symmetry we may assume z is in some face of Λ_k, for example $z_1 = k$. Let \bar{z} be the reflection of z in the first coordinate i.e. $\bar{z} = (-z_1, z_2, \ldots, z_d)$. By reflection symmetry we also have $\mathbb{P}(0 \xrightarrow{\Lambda_k} \bar{z}) \geq ck^{1-d}$. Translating z to x and \bar{z} to y gives

$$\mathbb{P}(x \xrightarrow{x+\Lambda_k} x + z), \mathbb{P}(y \xrightarrow{y+\Lambda_k} y + \bar{z}) \geq \frac{c}{k^{d-1}}.$$
Lemma (Cerf, 2015)

For any \(x, y \in \Lambda_n \), \(\mathbb{P}_{pc}(x \xleftrightarrow{\Lambda_{2n}} y) \geq cn^{-C} \).

Proof.

Assume first that \(x - y = (2k, 0, \ldots, 0) \), \(k \leq n \). By the theorem there exists a \(z \in \partial\Lambda_k \) such that

\[
\mathbb{P}(0 \xleftrightarrow{\Lambda_k} z) \geq \frac{1}{2d|\partial\Lambda_k|} \geq \frac{c}{k^{d-1}}.
\]

By rotation and reflection symmetry we may assume \(z \) is in some face of \(\Lambda_k \), for example \(z_1 = k \). Let \(\bar{z} \) be the reflection of \(z \) in the first coordinate i.e. \(\bar{z} = (-z_1, z_2, \ldots, z_d) \). By reflection symmetry we also have \(\mathbb{P}(0 \xleftrightarrow{\Lambda_k} \bar{z}) \geq ck^{1-d} \). Translating \(z \) to \(x \) and \(\bar{z} \) to \(y \) gives

\[
\mathbb{P}(x \xleftrightarrow{\Lambda_k} x + z), \mathbb{P}(y \xleftrightarrow{\Lambda_k} y + \bar{z}) \geq \frac{c}{k^{d-1}}.
\]

But \(x + z = y + \bar{z} \)!
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xrightarrow{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. Then there exists a z such that

$$\mathbb{P}(x \xrightarrow{x+\Lambda_{k}} x + z), \mathbb{P}(y \xrightarrow{y+\Lambda_{k}} x + z) \geq \frac{c}{k^{d-1}}.$$
Lemma (Cerf, 2015)

For any \(x, y \in \Lambda_n \), \(\mathbb{P}_{pc}(x \xleftarrow{\Lambda_{2n}} y) \geq cn^{-C} \).

Proof.

Assume first that \(x - y = (2k, 0, \ldots, 0), \ k \leq n \). Then there exists a \(z \) such that

\[
\mathbb{P}(x \xleftarrow{x+\Lambda_k} x + z), \mathbb{P}(y \xleftarrow{y+\Lambda_k} x + z) \geq \frac{c}{k^{d-1}}.
\]

Since \(x + \Lambda_k \subset \Lambda_{2n} \) and ditto for \(y + \Lambda_k \) we can write

\[
\mathbb{P}(x \xleftarrow{\Lambda_{2n}} x + z), \mathbb{P}(y \xleftarrow{\Lambda_{2n}} x + z) \geq \frac{c}{k^{d-1}}.
\]
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \leftrightarrow_{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. Then there exists a z such that

$$\mathbb{P}(x \leftrightarrow_{x+\Lambda_k} x + z), \mathbb{P}(y \leftrightarrow_{y+\Lambda_k} x + z) \geq \frac{c}{k^{d-1}}.$$

Since $x + \Lambda_k \subset \Lambda_{2n}$ and ditto for $y + \Lambda_k$ we can write

$$\mathbb{P}(x \leftrightarrow_{\Lambda_{2n}} x + z), \mathbb{P}(y \leftrightarrow_{\Lambda_{2n}} x + z) \geq \frac{c}{k^{d-1}}.$$

By FKG

$$\mathbb{P}(x \leftrightarrow_{\Lambda_{2n}} y) \geq \mathbb{P}(x \leftrightarrow_{\Lambda_{2n}} x + z, y \leftrightarrow_{\Lambda_{2n}} y + z) \geq \frac{c}{k^{2d-2}}.$$

Proving the lemma in this case.
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{p_c}(x \xrightarrow{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. Then

$\mathbb{P}(x \xrightarrow{\Lambda_{2n}} y) \geq ck^{2-2d} \geq cn^{2-2d}$.
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xleftarrow{\Lambda_{2n}} y) \geq cn^{-C}$.

Proof.

Assume first that $x - y = (2k, 0, \ldots, 0)$, $k \leq n$. Then
$\mathbb{P}(x \xleftarrow{\Lambda_{2n}} y) \geq ck^{2-2d} \geq cn^{2-2d}$. With a slightly smaller c, we can remove the requirement that the distance between x and y is even.
Lemma (Cerf, 2015)

For any \(x, y \in \Lambda_n\), \(\mathbb{P}_{pc}(x \xleftarrow{\Lambda_{2^n}} y) \geq cn^{-C}\).

Proof.

Assume first that \(x - y = (2k, 0, \ldots, 0), \ k \leq n\). Then
\[\mathbb{P}(x \xleftarrow{\Lambda_{2^n}} y) \geq ck^{2-2d} \geq cn^{2-2d}.\]
With a slightly smaller \(c\), we can remove the requirement that the distance between \(x\) and \(y\) is even. If they are not on a line, we define
\[x = x_0, \ldots, x_d = y\]
such that each couple \(x_i, x_{i+1}\) differ by only one coordinate.
Lemma (Cerf, 2015)

For any \(x, y \in \Lambda_n \), \(\mathbb{P}_{pc}(x \xleftarrow{\Lambda_{2n}} y) \geq cn^{-C} \).

Proof.

Assume first that \(x - y = (2k, 0, \ldots, 0) \), \(k \leq n \). Then
\[
\mathbb{P}(x \xleftarrow{\Lambda_{2n}} y) \geq ck^{2-2d} \geq cn^{2-2d}.
\]
With a slightly smaller \(c \), we can remove the requirement that the distance between \(x \) and \(y \) is even. If they are not on a line, we define
\[
 x = x_0, \ldots, x_d = y
\]
such that each couple \(x_i, x_{i+1} \) differ by only one coordinate. Hence \(\mathbb{P}(x_i \xleftarrow{\Lambda_{2n}} x_{i+1}) \geq cn^{2-2d} \).
Lemma (Cerf, 2015)

For any \(x, y \in \Lambda_n \), \(\mathbb{P}_{pc}(x \leftrightarrow^\Lambda_{2n} y) \geq cn^{-C} \).

Proof.

Assume first that \(x - y = (2k, 0, \ldots, 0), \ k \leq n \). Then
\[
\mathbb{P}(x \leftrightarrow^\Lambda_{2n} y) \geq ck^{2-2d} \geq cn^{2-2d}.
\]
With a slightly smaller \(c \), we can remove the requirement that the distance between \(x \) and \(y \) is even. If they are not on a line, we define
\[
x = x_0, \ldots, x_d = y
\]
such that each couple \(x_i, x_{i+1} \) differ by only one coordinate. Hence \(\mathbb{P}(x_i \leftrightarrow^\Lambda_{2n} x_{i+1}) \geq cn^{2-2d} \). Using FKG again gives
\[
\mathbb{P}(x \leftrightarrow^\Lambda_{2n} y) \geq \mathbb{P}(x_0 \leftrightarrow^\Lambda_{2n} x_1, x_1 \leftrightarrow^\Lambda_{2n} x_2, \ldots, x_{d-1} \leftrightarrow^\Lambda_{2n} x_d) \geq \prod_{i=1}^{d} \mathbb{P}(x_{i-1} \leftrightarrow^\Lambda_{2n} x_i) \geq \frac{c}{n^{2d^2-2d}}.
\]
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \leftrightarrow_{\Lambda^{2n}} y) \geq c n^{2d-2d^2}$.
Lemma (Cerf, 2015)

For any $x, y \in \Lambda_n$, $\mathbb{P}_{pc}(x \xrightleftharpoons{\Lambda_{2n}} y) \geq cn^{2d-2d^2}$.

This was recently improved to cn^{-d^2} by van den Berg and Don.
Lemma (Cerf, 2015)

\[
\text{For any } x, y \in \Lambda_n, \quad \mathbb{P}_{p_c}(x \xleftrightarrow{\Lambda_{2^n}} y) \geq cn^{2d-2d^2}.
\]

This was recently improved to \(cn^{-d^2} \) by van den Berg and Don. Their proof has an interesting topological component.
Crossing probabilities

Let Λ be a box in \mathbb{Z}^d, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Easy way

Hard way
Crossing probabilities

Let Λ be a box in \mathbb{Z}^d, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$$
Crossing probabilities

Let Λ be a box in \mathbb{Z}^d, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$$

Proof (Kesten? Bollobás-Riordan? Nolin?)
Crossing probabilities

Let Λ be a box in \mathbb{Z}^d, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$$

Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in $d = 2$ so let us do this.
Crossing probabilities

Let Λ be a box in \mathbb{Z}^d, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$$

Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in $d = 2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle.
Crossing probabilities

Let \(\Lambda \) be a box in \(\mathbb{Z}^d \), with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let \(\Lambda \) be an \(2n \times \cdots \times 2n \times n \) box in \(\mathbb{Z}^d \). Then

\[
\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c
\]

Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in \(d = 2 \) so let us do this. Let \(p(a, b) \) be the probability of an easy-way crossing of an \(a \times b \) rectangle. We first claim that \(p(4n, n) \leq 5p(2n, n) \).
Crossing probabilities

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$$

Proof.

It is easier to draw in $d = 2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4n, n) \leq 5p(2n, n)$.
Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then $P_{pc}(\Lambda \text{ has an easy-way crossing}) > c$

Proof.

It is easier to draw in $d = 2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4n, n) \leq 5p(2n, n)$. This is because if some path γ crosses from the top to the bottom of a $4n \times n$ rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones.
Crossing probabilities

Theorem

Let \(\Lambda \) be an \(2n \times \cdots \times 2n \times n \) box in \(\mathbb{Z}^d \). Then

\[
P_{pc}(\Lambda \text{ has an easy-way crossing}) > c
\]

Proof.

It is easier to draw in \(d = 2 \) so let us do this. Let \(p(a, b) \) be the probability of an easy-way crossing of an \(a \times b \) rectangle. We first claim that \(p(4n, n) \leq 5p(2n, n) \). This is because if some path \(\gamma \) crosses from the top to the bottom of a \(4n \times n \) rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that \(p(4n, 2n) \leq p(4n, n)^2 \).
Crossing probabilities

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

\[P_{p_c} (\Lambda \text{ has an easy-way crossing}) > c \]

Proof.

It is easier to draw in $d = 2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4n, n) \leq 5p(2n, n)$. This is because if some path γ crosses from the top to the bottom of a $4n \times n$ rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that $p(4n, 2n) \leq p(4n, n)^2$. But that means that $p(4n, 2n) \leq 25p(2n, n)^2$ and inductively that $p(2^{k+1}n, 2^kn) \leq 25^{2^{k}-1}p(2n, n)^{2^k}$.
Crossing probabilities

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) > c$$

Proof.

It is easier to draw in $d = 2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4n, n) \leq 5p(2n, n)$. This is because if some path γ crosses from the top to the bottom of a $4n \times n$ rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that $p(4n, 2n) \leq p(4n, n)^2$. But that means that $p(4n, 2n) \leq 25p(2n, n)^2$ and inductively that $p(2^{k+1}n, 2^kn) \leq 25^{2^k-1}p(2n, n)^{2^k}$. Thus, if for some n, $p(2n, n) < \frac{1}{25}$, then it decays exponentially, contradicting the result that $\chi(p_c) = \infty$. \qed
Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) > c$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$

for some $c > 0$? This is true when $d = 2$. It is false for $d > 6$, in fact

$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) \to 1$ as $n \to \infty$.

It is not known in intermediate dimensions. In dimensions 2 and high, there is no significant difference between easy-way and hard-way crossing. In intermediate dimensions this is not known.
Crossing probabilities

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) > c$$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$$

for some $c > 0$?
Crossing probabilities

Theorem

Let \(\Lambda \) be an \(2n \times \cdots \times 2n \times n \) box in \(\mathbb{Z}^d \). Then

\[
\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) > c
\]

It is natural to ask if there is a corresponding upper bound, namely is it true that

\[
\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c
\]

for some \(c > 0 \)? This is true when \(d = 2 \).
Crossing probabilities

Theorem

Let \(\Lambda \) be an \(2n \times \cdots \times 2n \times n \) box in \(\mathbb{Z}^d \). Then

\[
P_{pc}(\Lambda \text{ has an easy-way crossing}) > c
\]

It is natural to ask if there is a corresponding upper bound, namely is it true that

\[
P_{pc}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c
\]

for some \(c > 0 \)? This is true when \(d = 2 \). It is false for \(d > 6 \), in fact

\[
P_{pc}(\Lambda \text{ has an easy-way crossing}) \rightarrow 1 \text{ as } n \rightarrow \infty.
\]
Crossing probabilities

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) > c$$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$$

for some $c > 0$? This is true when $d = 2$. It is false for $d > 6$, in fact

$$\mathbb{P}_{p_c}(\Lambda \text{ has an easy-way crossing}) \to 1 \text{ as } n \to \infty.$$

It is not known in intermediate dimensions.
Crossing probabilities

Theorem

Let Λ be an $2n \times \cdots \times 2n \times n$ box in \mathbb{Z}^d. Then

$$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) > c$$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) \leq 1 - c$$

for some $c > 0$? This is true when $d = 2$. It is false for $d > 6$, in fact

$$\mathbb{P}_{pc}(\Lambda \text{ has an easy-way crossing}) \to 1 \text{ as } n \to \infty.$$

It is not known in intermediate dimensions. In dimensions 2 and high, there is no significant difference between easy-way and hard-way crossing.
Crossing probabilities

Theorem

\(\Lambda\) be an \(2n \times \cdots \times 2n \times n\) box in \(\mathbb{Z}^d\). Then
\[
P_{pc}(\Lambda\ \text{has an easy-way crossing}) > c
\]

It is natural to ask if there is a corresponding upper bound, namely is it true that
\[
P_{pc}(\Lambda\ \text{has an easy-way crossing}) \leq 1 - c
\]
for some \(c > 0\)? This is true when \(d = 2\). It is false for \(d > 6\), in fact
\[
P_{pc}(\Lambda\ \text{has an easy-way crossing}) \to 1\ \text{as } n \to \infty.
\]

It is not known in intermediate dimensions. In dimensions 2 and high, there is no significant difference between easy-way and hard-way crossing. In intermediate dimensions this is not known.
One arm exponent

Theorem

\[P(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}. \]
One arm exponent

Theorem

\[\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}. \]

Proof.

By the previous theorem we know that the box
\[[-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n] \] has an easy-way crossing with probability at least \(c \).
One arm exponent

Theorem
\[\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}. \]

Proof.
By the previous theorem we know that the box
\([-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]\) has an easy-way crossing with probability at least \(c\). “Easy-way” means from
\(\{n/2\} \times [-n, n]^{d-1}\) to \(\{-n/2\} \times [-n, n]^{d-1}\) so it must cross
\(0 \times [-n, n]^{d-1}\).
One arm exponent

Theorem
\[\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}. \]

Proof.
By the previous theorem we know that the box
\([-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]\) has an easy-way crossing with probability at least \(c\). “Easy-way” means from
\(\{n/2\} \times [-n, n]^{d-1}\) to \(\{-n/2\} \times [-n, n]^{d-1}\) so it must cross
\(0 \times [-n, n]^{d-1}\). Therefore there exists some \(x \in \{0\} \times [-n, n]^{d-1}\) such that the probability that the crossing pass through it is at least \(c/n^{d-1}\).
One arm exponent

Theorem

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > \frac{c}{n^{(d-1)/2}}.$$

Proof.

By the previous theorem we know that the box $$[-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]$$ has an easy-way crossing with probability at least $$c$$. “Easy-way” means from $$\{n/2\} \times [-n, n]^{d-1}$$ to $$\{-n/2\} \times [-n, n]^{d-1}$$ so it must cross $$0 \times [-n, n]^{d-1}$$. Therefore there exists some $$x \in \{0\} \times [-n, n]^{d-1}$$ such that the probability that the crossing pass through it is at least $$c/n^{d-1}$$. But if it does, then $$x$$ is connected to distance at least $$n/2$$ by *two disjoint* paths.

The BK inequality finishes the proof.

In $$d = 2$$ Kesten improved this to $$n^{-1/3}$$.
One arm exponent

Theorem

\[\mathbb{P}(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}. \]

Proof.

By the previous theorem we know that the box \([-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]\) has an easy-way crossing with probability at least \(c\). “Easy-way” means from \(\{n/2\} \times [-n, n]^{d-1}\) to \(\{-n/2\} \times [-n, n]^{d-1}\) so it must cross \(0 \times [-n, n]^{d-1}\). Therefore there exists some \(x \in \{0\} \times [-n, n]^{d-1}\) such that the probability that the crossing pass through it is at least \(c/n^{d-1}\). But if it does, then \(x\) is connected to distance at least \(n/2\) by *two disjoint* paths. The BK inequality finishes the proof.
One arm exponent

Theorem

\[\Pr(0 \leftrightarrow \partial \Lambda_n) > c/n^{(d-1)/2}. \]

Proof.

By the previous theorem we know that the box \([-n/2, n/2] \times [-n, n] \times \cdots \times [-n, n]\) has an easy-way crossing with probability at least \(c\). “Easy-way” means from \(\{n/2\} \times [-n, n]^{d-1}\) to \(\{-n/2\} \times [-n, n]^{d-1}\) so it must cross \(0 \times [-n, n]^{d-1}\). Therefore there exists some \(x \in \{0\} \times [-n, n]^{d-1}\) such that the probability that the crossing pass through it is at least \(c/n^{d-1}\). But if it does, then \(x\) is connected to distance at least \(n/2\) by *two disjoint* paths. The BK inequality finishes the proof.

In \(d = 2\) Kesten improved this to \(n^{-1/3}\).
\[\chi(p_c) = \infty \]

\[\sum_{x \in \partial \Lambda_n} \mathbb{P}_{p_c}(0 \xleftrightarrow{\Lambda_n} x) \geq 1 \]

\[\mathbb{P}_{p_c}(x \xleftrightarrow{\Lambda_{2n}} y) > cn^{-C} \]

\[\mathbb{P}_{p_c}(0 \leftrightarrow \partial \Lambda_n) > cn^{(1-d)/2} \]
The Aizenman-Kesten-Newman argument
Let E be the number of open edges in $\mathcal{C}(0)$ and let B be the number of closed edges in its boundary.
Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter.
Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$
Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$

Proof.

We define sets of edges $\emptyset = S_0 \subset S_1 \subset \cdots$ for $i \leq n$ as follows.
Exploration and martingales

Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$P_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$

Proof.

We define sets of edges $\emptyset = S_0 \subset S_1 \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \not\in S_i$ such that there is an open path in S_i from 0 to one of the vertices of e.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathcal{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq C e^{-c\lambda^2}.$$

Proof.

We define sets of edges $\emptyset = S_0 \subset S_1 \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \not\in S_i$ such that there is an open path in S_i from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1} := S_i \cup \{e\}$.

Exploration and martingales

Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$

Proof.

We define sets of edges $\emptyset = S_0 \subset S_1 \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \notin S_i$ such that there is an open path in S_i from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1} := S_i \cup \{e\}$. If no such e exists (and this happens when $|S_i| = B + E$), let $S_{i+1} = S_i$.

Exploration and martingales

Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$

Proof.

We define sets of edges $\emptyset = S_0 \subset S_1 \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \not\in S_i$ such that there is an open path in S_i from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1} := S_i \cup \{e\}$. If no such e exists (and this happens when $|S_i| = B + E$), let $S_{i+1} = S_i$. Let X_i be $1 - p$ times the number of open edges in S_i minus p times the number of closed edges in S_i.

The lemma follows from Azuma-Hoeffding.
Exploration and martingales

Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$

Proof.

We define sets of edges $\emptyset = S_0 \subset S_1 \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \not\in S_i$ such that there is an open path in S_i from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1} := S_i \cup \{e\}$. If no such e exists (and this happens when $|S_i| = B + E$), let $S_{i+1} = S_i$. Let X_i be $1 - p$ times the number of open edges in S_i minus p times the number of closed edges in S_i. Then X_i is a martingale.
Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$

Proof.

We define sets of edges $\emptyset = S_0 \subset S_1 \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \not\in S_i$ such that there is an open path in S_i from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1} := S_i \cup \{e\}$. If no such e exists (and this happens when $|S_i| = B + E$), let $S_{i+1} = S_i$. Let X_i be $1 - p$ times the number of open edges in S_i minus p times the number of closed edges in S_i. Then X_i is a martingale. The lemma follows from Azuma-Hoeffding. \qed
Exploration and martingales

Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$
\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.
$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions.
Exploration and martingales

Lemma

Let E be the number of open edges in $G(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$\mathbb{P}_p(B + E \leq n, |(1 - p)E - pB| > \lambda \sqrt{n}) \leq Ce^{-c\lambda^2}.$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions. For example,

Lemma

Let $S \subset \Lambda$ be the set of vertices connected to the boundary. Let E be the number of open edges between vertices of S and let B be the number of closed edges with at least one vertex in S and both vertices in Λ.

Lemma

Let E be the number of open edges in $C(0)$ and let B be the number of closed edges in its boundary. Let $\lambda > 0$ be some parameter. Then

$$
\mathbb{P}_p(B + E \leq n, \left|(1 - p)E - pB\right| > \lambda \sqrt{n}) \leq C e^{-c\lambda^2}.
$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions. For example,

Lemma

Let $S \subset \Lambda$ be the set of vertices connected to the boundary. Let E be the number of open edges between vertices of S and let B be the number of closed edges with at least one vertex in S and both vertices in Λ. Let $X = (1 - p)E - pB$. Then

$$
\mathbb{P}(|X| > \lambda n^{d/2}) \leq e^{-c\lambda^2}.
$$
Notation

Let A, B be subsets of $E \subseteq \mathbb{Z}^d$. We denote by

$$A \leftrightarrow_{E} B$$

the event that there are two disjoint clusters in E which intersect both A and B.
Let A, B be subsets of $E \subseteq \mathbb{Z}^d$. We denote by

$$A \leftrightarrow^E B$$

the event that there are two disjoint clusters in E which intersect both A and B. We will use very often $A \leftrightarrow^E \partial E$ and in this case we omit the superscript, i.e. write $A \leftrightarrow \partial E$.
Theorem

Let V be the number of edges (x, y) in Λ_n such that
\[
\{x, y\} \leftrightarrow \partial \Lambda_n \text{ i.e. both } x \text{ and } y \text{ are connected to } \partial \Lambda_n \text{ but } x \not\leftrightarrow y.
\]
Theorem

Let V be the number of edges (x, y) in Λ_n such that
$
\{x, y\} \leftrightarrow \partial \Lambda_n \text{ i.e. both } x \text{ and } y \text{ are connected to } \partial \Lambda_n \text{ but } x \not\leftrightarrow y.
$
Then $\mathbb{E}(V) < C n^{d-1/2} \sqrt{\log n}$.
Theorem

Let V be the number of edges (x, y) in Λ_n such that
$\{x, y\} \leftrightarrow \partial \Lambda_n$ i.e. both x and y are connected to $\partial \Lambda_n$ but $x \not\leftrightarrow y$.

Then $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_n$ define $X(S)$ to be $1 - p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_n.
Theorem

Let V be the number of edges (x, y) in Λ_n such that
\[\{x, y\} \leftrightarrow \partial \Lambda_n \text{ i.e. both } x \text{ and } y \text{ are connected to } \partial \Lambda_n \text{ but } x \not \leftrightarrow y. \]
Then $\mathbb{E}(V) < C n^{d-1/2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_n$ define $X(S)$ to be $1 - p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_n. Let $\mathcal{C}_1, \mathcal{C}_2, \ldots$ be all the clusters in Λ_n that touch the boundary.
Theorem

Let V be the number of edges (x, y) in Λ_n such that

$\{x, y\} \leftrightarrow \partial \Lambda_n$ i.e. both x and y are connected to $\partial \Lambda_n$ but $x \ncong y$.

Then $\mathbb{E}(V) < Cn^{d-1/2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_n$ define $X(S)$ to be $1 - p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_n. Let $\mathcal{C}_1, \mathcal{C}_2, \ldots$ be all the clusters in Λ_n that touch the boundary. Then

$$X \left(\bigcup_i \mathcal{C}_i \right) - \sum_i X(\mathcal{C}_i) = pV.$$
Theorem

Let \(V \) be the number of edges \((x, y)\) in \(\Lambda_n \) such that \(\{x, y\} \leftrightarrow \partial \Lambda_n \) i.e. both \(x \) and \(y \) are connected to \(\partial \Lambda_n \) but \(x \not\sim y \).

Then \(\mathbb{E}(V) < C n^{d-1/2} \sqrt{\log n} \).

Proof (Gandolfi-Grimmett-Russo).

For an \(S \subseteq \Lambda_n \) define \(X(S) \) to be \(1 - p \) times the number of open edges between two vertices of \(S \) minus \(p \) times the number of closed edges with at least one vertex in \(S \) and both vertices in \(\Lambda_n \). Let \(\mathcal{C}_1, \mathcal{C}_2, \ldots \) be all the clusters in \(\Lambda_n \) that touch the boundary. Then

\[
X \left(\bigcup_i \mathcal{C}_i \right) - \sum_i X(\mathcal{C}_i) = pV.
\]

The exploration argument shows that with high probability

\[
\left| X \left(\bigcup_i \mathcal{C}_i \right) \right| < C n^{d/2} \sqrt{\log n} \quad \left| X(\mathcal{C}_i) \right| < C \sqrt{|\mathcal{C}_i|} \sqrt{\log n} \quad \forall i.
\]
Let V be the number of edges (x, y) in Λ_n such that
$\{x, y\} \rightarrow \partial \Lambda_n$. Then $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_n$ define $X(S)$ to be $1 - p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_n. Let $\mathcal{C}_1, \mathcal{C}_2, \ldots$ be all the clusters in Λ_n that touch the boundary. Then $X(\bigcup_i \mathcal{C}_i) - \sum_i X(\mathcal{C}_i) = pV$. The exploration argument shows that with high probability

$|X(\bigcup_i \mathcal{C}_i)| < Cn^{d/2}\sqrt{\log n}, |X(\mathcal{C}_i)| < C\sqrt{|\mathcal{C}_i|}\sqrt{\log n}$ for all i.

with high probability can be made to mean with probability $> 1 - n^{-1/2}$ and we are done.
Theorem

Let V be the number of edges (x, y) in Λ_n such that \{x, y\} \Leftrightarrow $\partial \Lambda_n$. Then $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_n$ define $X(S)$ to be $1 - p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_n. Let $\mathcal{C}_1, \mathcal{C}_2, \ldots$ be all the clusters in Λ_n that touch the boundary. Then $X(\bigcup_i \mathcal{C}_i) - \sum_i X(\mathcal{C}_i) = pV$. The exploration argument shows that with high probability $|X(\bigcup_i \mathcal{C}_i)| < Cn^{d/2}\sqrt{\log n}$, $|X(\mathcal{C}_i)| < C\sqrt{|\mathcal{C}_i|}\sqrt{\log n}$ for all i. By Cauchy-Schwarz,

$$\sum_i \sqrt{|\mathcal{C}_i|} \leq \sqrt{\sum_i |\mathcal{C}_i|} \sqrt{\sum_i 1}$$
Theorem

Let V be the number of edges (x, y) in Λ_n such that \{x, y\} \leftrightarrow $\partial \Lambda_n$. Then $\mathbb{E}(V) < Cn^{d-1/2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_n$ define $X(S)$ to be $1 - p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_n. Let C_1, C_2, \ldots be all the clusters in Λ_n that touch the boundary. Then $X(\bigcup_i C_i) - \sum_i X(C_i) = pV$. The exploration argument shows that with high probability $|X(\bigcup_i C_i)| < Cn^{d/2} \sqrt{\log n}$, $|X(C_i)| < C \sqrt{|C_i|} \sqrt{\log n}$ for all i. By Cauchy-Schwarz,

$$\sum_i \sqrt{|C_i|} \leq \sqrt{\sum_i |C_i|} \sqrt{\sum_i 1} \leq \sqrt{n^d}$$
Theorem

Let V be the number of edges (x, y) in Λ_n such that \(\{x, y\} \leftrightarrow \partial \Lambda_n\). Then $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_n$ define $X(S)$ to be $1 - p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_n. Let C_1, C_2, \ldots be all the clusters in Λ_n that touch the boundary. Then $X(\bigcup_i C_i) - \sum_i X(C_i) = pV$. The exploration argument shows that with high probability $|X(\bigcup_i C_i)| < Cn^{d/2}\sqrt{\log n}$, $|X(C_i)| < C\sqrt{|C_i|}\sqrt{\log n}$ for all i. By Cauchy-Schwarz,

$$\sum_i \sqrt{|C_i|} \leq \sqrt{\sum_i |C_i| \sum_i 1} \leq \sqrt{n^d\sqrt{n^{d-1}}} = n^{d-1/2}.$$
Theorem

Let \(V \) be the number of edges \((x, y)\) in \(\Lambda_n \) such that \(\{x, y\} \mapsto \partial \Lambda_n \). Then \(\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n} \).

Proof (Gandolfi-Grimmett-Russo).

For an \(S \subseteq \Lambda_n \) define \(X(S) \) to be \(1 - p \) times the number of open edges between two vertices of \(S \) minus \(p \) times the number of closed edges with at least one vertex in \(S \) and both vertices in \(\Lambda_n \). Let \(\mathcal{C}_1, \mathcal{C}_2, \ldots \) be all the clusters in \(\Lambda_n \) that touch the boundary. Then \(X(\bigcup_i \mathcal{C}_i) - \sum_i X(\mathcal{C}_i) = pV \). The exploration argument shows that with high probability

\[
|X(\bigcup_i \mathcal{C}_i)| < Cn^{d/2}\sqrt{\log n}, \quad |X(\mathcal{C}_i)| < C\sqrt{|\mathcal{C}_i|}\sqrt{\log n}
\]

for all \(i \). By Cauchy-Schwarz,

\[
\sum_i \sqrt{|\mathcal{C}_i|} \leq \sqrt{\sum_i |\mathcal{C}_i| \sum_i 1} \leq \sqrt{n^d \sqrt{n^{d-1}}} = n^{d-1/2}.
\]

“with high probability” can be made to mean “with probability \(> 1 - n^{-1/2} \)” and we are done.
Theorem

Let V be the number of edges (x,y) in Λ_n such that \{x, y\} \leftrightarrow $\partial \Lambda_n$. Then $\mathbb{E}(V) < C n^{d-1/2} \sqrt{\log n}$.

Corollary

For x a neighbour of 0,

$$\mathbb{P} (\{0, x\} \leftrightarrow \partial \Lambda_n) < C \sqrt{\frac{\log n}{n}}.$$
Theorem

Let V be the number of edges (x, y) in Λ_n such that \{x, y\} \leftrightarrow $\partial\Lambda_n$. Then $\mathbb{E}(V) < Cn^{d-1/2} \sqrt{\log n}$.

Corollary

For x a neighbour of 0,

$$\mathbb{P}(\{0, x\} \leftrightarrow \partial\Lambda_n) < C\sqrt{\frac{\log n}{n}}.$$

A flexible argument: by changing from where you explore you can get all kinds of results.
Theorem

Let V be the number of edges (x, y) in Λ_n such that $\{x, y\} \leftrightarrow \partial \Lambda_n$. Then $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$.

Corollary

For x a neighbour of 0,

$$\mathbb{P}(\{0, x\} \leftrightarrow \partial \Lambda_n) < C\sqrt{\frac{\log n}{n}}.$$

A flexible argument: by changing from where you explore you can get all kinds of results. For example, if L is the union of all clusters reaching the left side of Λ_n and R is the union of all clusters reaching the right side of Λ_n then

$$X(L \cup R) - X(L) - X(R)$$

teaches something about edges connected to both the left and the right.
Theorem

Let V be the number of edges (x, y) in Λ_n such that \{x, y\} \leftrightarrow $\partial \Lambda_n$. Then $\mathbb{E}(V) < Cn^{d-1/2}\sqrt{\log n}$.

Corollary

For x a neighbour of 0,

$$\mathbb{P}(\{0, x\} \leftrightarrow \partial \Lambda_n) < C\sqrt{\frac{\log n}{n}}.$$

A flexible argument: by changing from where you explore you can get all kinds of results. For example, if L is the union of all clusters reaching the left side of Λ_n and R is the union of all clusters reaching the right side of Λ_n then

$$X(L \cup R) - X(L) - X(R)$$

teaches something about edges connected to both the left and the right. Hutchcroft has a version where one explores from random points.
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]
Theorem (Cerf, 2015)

\[P_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Recall from the previous slide

Corollary

For \(x \) a neighbour of 0, \(P(\{0, x\} \leftrightarrow \partial \Lambda_n) < C\sqrt{\log n}/n \).
Theorem (Cerf, 2015)

$\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq C n^{-c}$ for $c > 0$ small enough.

Let $k < \frac{1}{2} n$ be some number (it will be n^c eventually, but for now let us keep it a parameter).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Let \(k < \frac{1}{2}n \) be some number (it will be \(n^c \) eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any \(x, y \in \Lambda_k \), \(\mathbb{P}_{p_c}(x \leftrightarrow \Lambda_{2k} y) > ck^{2d-2d^2} \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \iff \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Let \(k < \frac{1}{2} n \) be some number (it will be \(n^c \) eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any \(x, y \in \Lambda_k \), \(\mathbb{P}_{p_c}(x \xrightarrow{\Lambda_{2k}} y) > ck^{2d-2d^2} \). It gives
Theorem (Cerf, 2015)

\(\mathbb{P}_{p_c}(\Lambda_n^c \Leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \) for \(c > 0 \) small enough.

Let \(k < \frac{1}{2}n \) be some number (it will be \(n^c \) eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any \(x, y \in \Lambda_k \), \(\mathbb{P}_{p_c}(x \xrightarrow{\Lambda_{2k}} y) > ck^{2d-2d^2} \). It gives

Lemma

Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \).
Theorem (Cerf, 2015)

\[P_{p_c}(\Lambda_{n^c} \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Let \(k < \frac{1}{2}n \) be some number (it will be \(n^c \) eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any \(x, y \in \Lambda_k \), \(P_{p_c}(x \leftrightarrow y) > c k^{2d-2d^2} \). It gives

Lemma

Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[P_{p_c}(A \leftrightarrow_{\Lambda_{2k}\setminus A\cup B} B) > c k^{2d-2d^2}. \]
Lemma

Let $A, B \subset \Lambda_{2k}$, both intersecting Λ_k. Then

$$\mathbb{P}_{pc}(A \xleftarrow{\Lambda_{2k}\setminus A \cup B} \xrightarrow{} B) > ck^{2d-2d^2}.$$
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Let \(k < \frac{1}{2} n \) be some number (it will be \(n^c \) eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any \(x, y \in \Lambda_k \), \(\mathbb{P}_{p_c}(x \xrightarrow{\Lambda_{2k}} y) > ck^{2d-2d^2} \). It gives

Lemma

Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xleftarrow{\Lambda_{2k}\setminus A \cup B} B) > ck^{2d-2d^2}. \]

Proof.

Let \(x \in A \cap \Lambda_k \) and \(y \in B \cap \Lambda_k \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Let \(k < \frac{1}{2}n \) be some number (it will be \(n^c \) eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any \(x, y \in \Lambda_k \), \(\mathbb{P}_{p_c}(x \xrightarrow{\Lambda_{2k}} y) > ck^{2d-2d^2} \). It gives

Lemma

Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xrightarrow{\Lambda_{2k} \setminus A \cup B} B) > ck^{2d-2d^2}. \]

Proof.

Let \(x \in A \cap \Lambda_k \) and \(y \in B \cap \Lambda_k \). With probability at least \(ck^{2d-2d^2} \) there is an open path \(\gamma \) from \(x \) to \(y \).
Theorem (Cerf, 2015)

$$\mathbb{P}_{p_c}(\Lambda_n^c \Leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.}$$

Let $k < \frac{1}{2}n$ be some number (it will be n^c eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_k$, $\mathbb{P}_{p_c}(x \xrightarrow{\Lambda_{2k}} y) > ck^{2d-2d^2}$. It gives

Lemma

Let $A, B \subset \Lambda_{2k}$, both intersecting Λ_k. Then

$$\mathbb{P}_{p_c}(A \xleftarrow{\Lambda_{2k} \setminus A \cup B} \rightarrow B) > ck^{2d-2d^2}.$$

Proof.

Let $x \in A \cap \Lambda_k$ and $y \in B \cap \Lambda_k$. With probability at least ck^{2d-2d^2} there is an open path γ from x to y. The portion of γ from its last vertex in A until the first vertex in B after it demonstrates the lemma.
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_{n^c} \leftrightarrow \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xrightarrow{\Lambda_{2k} \setminus A \cup B} B) > ck^{2d-2d^2}. \]
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_{n^c} \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \overset{\Lambda_{2k} \setminus A \cup B}{\leftrightarrow} B) > ck^{2d-2d^2}. \]

Denote \(P := \mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_n) \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xrightarrow{\Lambda_{2k} \setminus A \cup B} B) > ck^{2d-2d^2}. \]

Denote \(P := \mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_n) \).

Lemma

\textit{Let } \(E \text{ be the event that there exist edges } e, f \in \Lambda_{2k} \text{ such that } \partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \text{ but } e^- \leftrightarrow e^+, f^- \leftrightarrow f^+ \text{ and } e^- \leftrightarrow f^+ \).
Lemma

Let E be the event that there exist edges $e, f \in \Lambda_{2k}$ such that $\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$ but $e^- \leftrightarrow e^+$, $f^- \leftrightarrow f^+$ and $e^- \leftrightarrow f^+$. Then $P(E) \geq c k^{-2} d^2 P$.
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \leftarrow_{\Lambda_{2k}} A \cup B \rightarrow B) > ck^{2d-2d^2}. \]
Denote \(P := \mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_n) \).

Lemma

Let \(E \) be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that
\(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \leftrightarrow e^+ \), \(f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq ck^{-2d^2} P. \)
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n c \leftrightarrow \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xleftarrow{\Lambda_{2k} \setminus A \cup B} B) > c k^{2d-2d^2}. \]

Denote \(P := \mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_n) \).

Lemma

Let \(E \) be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that

\(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \leftrightarrow e^+ \), \(f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq c k^{-2d^2} P \).

Proof.

There exist some \(x, y \in \Lambda_k \) such that with probability \(k^{-2d} P \),
\(x \leftrightarrow \partial \Lambda_n \), \(y \leftrightarrow \partial \Lambda_n \) and \(x \leftrightarrow y \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_{n^c} \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xrightarrow{\Lambda_{2k} \setminus A \cup B} B) > ck^{2d-2d^2}. \]

Denote \(P := \mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_n) \).

Lemma

Let \(E \) be the event that there exist edges \(e,f \in \Lambda_{2k} \) such that \(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \leftrightarrow e^+ \), \(f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P \).

Proof.

There exist some \(x,y \in \Lambda_k \) such that with probability \(k^{-2d}P \), \(x \leftrightarrow \partial \Lambda_n \), \(y \leftrightarrow \partial \Lambda_n \) and \(x \leftrightarrow y \). Condition on \(\mathcal{C}(x) \) and \(\mathcal{C}(y) \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xleftarrow{\Lambda_{2k} \setminus A \cup B} \, B) > ck^{2d-2d^2}. \]

Denote \(P := \mathbb{P}({\Lambda_k \leftrightarrow \partial \Lambda_n}) \).

Lemma

Let \(E \) be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that

\[\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \] but \(e^- \leftrightarrow e^+, f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq ck^{-2d^2} P \).

Proof.

There exist some \(x, y \in \Lambda_k \) such that with probability \(k^{-2d} P \), \(x \leftrightarrow \partial \Lambda_n, y \leftrightarrow \partial \Lambda_n \) and \(x \leftrightarrow y \). Condition on \(\mathcal{C}(x) \) and \(\mathcal{C}(y) \). Use the previous lemma with \(A = \overline{\mathcal{C}(x)} \) i.e. \(\mathcal{C}(x) \) with its immediate neighbourhood and \(B = \overline{\mathcal{C}(y)} \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma: Let \(A, B \subset \Lambda_{2k} \), both intersecting \(\Lambda_k \). Then

\[\mathbb{P}_{p_c}(A \xrightarrow{\Lambda_{2k} \setminus A \cup B} B) > ck^{2d-2d^2}. \]

Denote \(P := \mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_n) \).

Lemma

Let \(E \) be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that \(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \leftrightarrow e^+ \), \(f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq ck^{-2d^2}P \).

Proof.

There exist some \(x, y \in \Lambda_k \) such that with probability \(k^{-2d}P \), \(x \leftrightarrow \partial \Lambda_n, y \leftrightarrow \partial \Lambda_n \) and \(x \leftrightarrow y \). Condition on \(\mathcal{C}(x) \) and \(\mathcal{C}(y) \).

Use the previous lemma with \(A = \overline{\mathcal{C}(x)} \) i.e. \(\mathcal{C}(x) \) with its immediate neighbourhood and \(B = \overline{\mathcal{C}(y)} \). \(A \xrightarrow{\Lambda_{2k} \setminus A \cup B} B \) is independent of the conditioning.
Lemma

Let E be the event that there exist edges $e, f \in \Lambda_{2k}$ such that
$\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n$ but $e^- \leftrightarrow e^+$, $f^- \leftrightarrow f^+$ and $e^- \leftrightarrow f^+$. Then $\mathbb{P}_{pc}(E) \geq ck^{-2d^2} P$.

Proof.

There exist some $x, y \in \Lambda_k$ such that with probability $k^{-2d} P$, $x \leftrightarrow \partial \Lambda_n$, $y \leftrightarrow \partial \Lambda_n$ and $x \leftrightarrow y$. Condition on $C(x)$ and $C(y)$. Use the previous lemma with $A = \overline{C(x)}$ i.e. $C(x)$ with its immediate neighbourhood and $B = \overline{C(y)}$. $A \xleftarrow{\Lambda_{2k} \setminus A \cup B} B$ is independent of the conditioning.
Lemma

Let E be the event that there exist edges $e,f \in \Lambda_{2k}$ such that
\[
\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \text{ but } e^- \leftrightarrow e^+, \ f^- \leftrightarrow f^+ \text{ and } e^- \leftrightarrow f^+.
\]
Then $\mathbb{P}_{p_c}(E) \geq ck^{-2d^2} P$.

Proof.

There exist some $x, y \in \Lambda_k$ such that with probability $k^{-2d} P$, $x \leftrightarrow \partial \Lambda_n$, $y \leftrightarrow \partial \Lambda_n$ and $x \leftrightarrow y$. Condition on $C(x)$ and $C(y)$. Use the previous lemma with $A = \overline{C(x)}$ i.e. $C(x)$ with its immediate neighbourhood and $B = \overline{C(y)}$. $A \xrightarrow{A \cup B} B$ is independent of the conditioning.

This kind of argument is called a “patching argument”.

Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma

Let \(E \) be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that \(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \leftrightarrow e^+ \), \(f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq ck^{-2d^2} P \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma

Let \(E \) be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that \(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \leftrightarrow e^+, f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq ck^{-2d^2} P \).

Proof of the theorem.

For given edges \(e \) and \(f \) denote by \(E_{e,f} \) the event as in the lemma (so \(E = \bigcup E_{e,f} \)).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma

Let E be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that \(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \leftrightarrow e^+, f^- \leftrightarrow f^+ \) and \(e^- \leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq ck^{-2d^2} P. \)

Proof of the theorem.

For given edges \(e \) and \(f \) denote by \(E_{e,f} \) the event as in the lemma (so \(E = \bigcup E_{e,f} \)). Choose some \(e \) and \(f \) such that \(\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d} P. \)
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma

Let \(E \) be the event that there exist edges \(e, f \in \Lambda_{2k} \) such that \(\partial \Lambda_n \leftrightarrow e^-, e^+ \leftrightarrow f^-, f^+ \leftrightarrow \partial \Lambda_n \) but \(e^- \not\leftrightarrow e^+ \), \(f^- \not\leftrightarrow f^+ \) and \(e^- \not\leftrightarrow f^+ \). Then \(\mathbb{P}_{p_c}(E) \geq c k^{-2d^2} P \).

Proof of the theorem.

For given edges \(e \) and \(f \) denote by \(E_{e,f} \) the event as in the lemma (so \(E = \bigcup E_{e,f} \)). Choose some \(e \) and \(f \) such that \(\mathbb{P}(E_{e,f}) \geq c k^{-2d^2 - 2d} P \). The event \(E_{e,f}^* \) that “\(E_{e,f} \) would have been satisfied had \(e \) been closed, but it’s open” satisfies \(\mathbb{P}(E_{e,f}^*) \approx \mathbb{P}(E_{e,f}) \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^c \iff \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Lemma

Let E be the event that there exist edges e, f \(\in \Lambda_{2k} \) such that \(\partial \Lambda_n \iff e^-, e^+ \iff f^-, f^+ \iff \partial \Lambda_n \) but \(e^- \iff e^+ \), \(f^- \iff f^+ \) and \(e^- \iff f^+ \). Then \(\mathbb{P}_{p_c} (E) \geq ck^{-2d^2} P \).

Proof of the theorem.

For given edges e and f denote by \(E_{e,f} \) the event as in the lemma (so \(E = \bigcup E_{e,f} \)). Choose some e and f such that

\[\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d} P. \]

The event \(E^*_e,f \) that “\(E_{e,f} \) would have been satisfied had e been closed, but it’s open” satisfies

\[\mathbb{P}(E^*_e,f) \approx \mathbb{P}(E_{e,f}). \]

But \(E^*_e,f \) implies \(f \iff \partial \Lambda_n \), which has probability \(\leq C \sqrt{(\log n)/n} \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq C n^{-c} \text{ for } c > 0 \text{ small enough.} \]

Proof of the theorem.

For given edges \(e \) and \(f \) denote by \(E_{e,f} \) the event as in the lemma (so \(E = \bigcup E_{e,f} \)). Choose some \(e \) and \(f \) such that \(\mathbb{P}(E_{e,f}) \geq c k^{-2d^2 - 2d} P \). The event \(E^*_{e,f} \) that “\(E_{e,f} \) would have been satisfied had \(e \) been closed, but it’s open” satisfies \(\mathbb{P}(E^*_{e,f}) \approx \mathbb{P}(E_{e,f}) \). But \(E^*_{e,f} \) implies \(f \leftrightarrow \partial \Lambda_n \), which has probability \(\leq C \sqrt{\frac{(\log n)}{n}} \). All in all we get

\[C \sqrt{\frac{\log n}{n}} \geq \mathbb{P}(E^*_{e,f}) \geq c \mathbb{P}(E_{e,f}) \geq c k^{-2d^2 - 2d} P. \]
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq Cn^{-c} \text{ for } c > 0 \text{ small enough.} \]

Proof of the theorem.

For given edges \(e \) and \(f \) denote by \(E_{e,f} \) the event as in the lemma (so \(E = \bigcup E_{e,f} \)). Choose some \(e \) and \(f \) such that \(\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d}P \). The event \(E^*_e,f \) that “\(E_{e,f} \) would have been satisfied had \(e \) been closed, but it’s open” satisfies \(\mathbb{P}(E^*_e,f) \approx \mathbb{P}(E_{e,f}) \). But \(E^*_e,f \) implies \(f \leftrightarrow \partial \Lambda_n \), which has probability \(\leq C\sqrt{\log n}/n \). All in all we get

\[
C\sqrt{\frac{\log n}{n}} \geq \mathbb{P}(E^*_e,f) \geq c\mathbb{P}(E_{e,f}) \geq ck^{-2d^2-2d}P.
\]

Choosing \(k = n^{1/(8d^2+8d)} \) proves the theorem.
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c} \left(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \right) \iff \partial \Lambda_n \leq C n^{-1/4}. \]
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \leq Cn^{-1/4}. \]

- The theorem actually holds for all \(p \).
Theorem (Cerf, 2015)
\[\mathbb{P}_{p_{c}}(\Lambda_{n^{1/(8d^2+8d)-o(1)}} \leftrightarrow \partial \Lambda_n) \leq C n^{-1/4} \]

- The theorem actually holds for all \(p \).
- Cerf had the scheme for improving the exponents.

Get a better estimate for \(\mathbb{P}(\Lambda_{n^c} \leftrightarrow \partial \Lambda_n) \)

Get a better estimate for the number of clusters from \(\partial \Lambda_{2n} \) to \(\partial \Lambda_n \)

\[\sum \sqrt{|C|} \]

Get a better estimate for \(\mathbb{P}([0, x] \leftrightarrow \partial \Lambda) \)
The theorem actually holds for all p.

Cerf had the scheme for improving the exponents. Unfortunately, the end result was

$$\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) \leq n^{-\frac{2d^2+3d-3}{4d^2+5d-5}+o(1)}$$

which is not a big improvement over $\frac{1}{2}$, say in $d = 3$ it gives $\frac{12}{23}$.

$$\mathbb{P}_{pc}(\Lambda_{n^{1/(8d^2+8d)}-o(1)} \iff \partial \Lambda_n) \leq Cn^{-1/4}.$$
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_{\frac{1}{(8d^2+8d)-o(1)}} \iff \partial \Lambda_n) \leq C n^{-1/4}. \]

- The theorem actually holds for all \(p \).
- Cerf had the a scheme for improving the exponents. Unfortunately, the end result was

\[\mathbb{P}(\{0, x\} \iff \partial \Lambda_n) \leq n^{-\frac{2d^2+3d-3}{4d^2+5d-5}+o(1)} \]

which is not a big improvement over \(\frac{1}{2} \), say in \(d = 3 \) it gives \(\frac{12}{23} \).

Definition

Let \(\eta \) be some positive number smaller than \(\frac{1}{8d^2+8d} \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d) - o(1)}} \Leftrightarrow \partial \Lambda_n) \leq C n^{-1/4}. \]

Lemma

Call a cluster \(C \) in \(\Lambda_n \) “large” if it intersects \(\frac{7}{8} \) of the cubes of side-length \(n^\eta \) in \(\Lambda_n \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^{1/(8d^2+8d)-o(1)} \iff \partial \Lambda_n) \leq Cn^{-1/4}. \]

Lemma

Call a cluster \(\mathcal{C} \) in \(\Lambda_n \) “large” if it intersects \(\frac{7}{8} \) of the cubes of side-length \(n^\eta \) in \(\Lambda_n \). Then

\[\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c. \]
Theorem (Cerf, 2015)

\[
\mathbb{P}_{p_c} \left(\Lambda_n^{1/(8d^2+8d)-o(1)} \Leftrightarrow \partial \Lambda_n \right) \leq Cn^{-1/4}.
\]

Lemma

Call a cluster \(\mathcal{C} \) in \(\Lambda_n \) “large” if it intersects \(\frac{7}{8} \) of the cubes of side-length \(n^\eta \) in \(\Lambda_n \). Then

\[
\mathbb{P}_{p_c} (\exists \text{ large cluster}) \leq 1 - c.
\]

Proof.

Denote the event by \(E \). Assume both \(E \) and its translation by \((n/2, 0, \ldots, 0)\) occurred (call the translates \(\Lambda', \mathcal{C}' \) and \(E' \)).
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_n^{1/(8d^2+8d)-o(1)} \leftrightarrow \partial \Lambda_n) \leq Cn^{-1/4}. \]

Lemma

Call a cluster \(\mathcal{C} \) in \(\Lambda_n \) “large” if it intersects \(\frac{7}{8} \) of the cubes of side-length \(n^\eta \) in \(\Lambda_n \). Then

\[\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c. \]

Proof.

Denote the event by \(E \). Assume both \(E \) and its translation by \((n/2, 0, \ldots, 0)\) occurred (call the translates \(\Lambda', \mathcal{C}' \) and \(E' \)). Then there at least \(\frac{1}{4} \) of the \(n^\eta \) cubes in \(\Lambda \cap \Lambda' \) intersect both \(\mathcal{C} \) and \(\mathcal{C}' \).
Theorem (Cerf, 2015)

\[\mathbb{P}_{pc}(\Lambda_n^{1/(8d^2+8d) - o(1)} \Leftrightarrow \partial \Lambda_n) \leq Cn^{-1/4}. \]

Lemma

Call a cluster \(\mathcal{C} \) in \(\Lambda_n \) “large” if it intersects \(\frac{7}{8} \) of the cubes of side-length \(n^n \) in \(\Lambda_n \). Then

\[\mathbb{P}_{pc}(\exists \text{ large cluster}) \leq 1 - c. \]

Proof.

Denote the event by \(E \). Assume both \(E \) and its translation by \((n/2, 0, \ldots, 0) \) occurred (call the translates \(\Lambda', \mathcal{C}' \) and \(E' \)). Then there at least \(\frac{1}{4} \) of the \(n^n \) cubes in \(\Lambda \cap \Lambda' \) intersect both \(\mathcal{C} \) and \(\mathcal{C}' \). If \(\mathcal{C} \neq \mathcal{C}' \) then each of these cubes satisfies the two disjoint clusters event.
Theorem (Cerf, 2015)

\[\mathbb{P}_{p_c}(\Lambda_{n^{1/(8d^2+8d)-o(1)}^{\partial}}) \leq Cn^{-1/4}. \]

Lemma

Call a cluster \(C \) in \(\Lambda_n \) “large” if it intersects \(\frac{7}{8} \) of the cubes of side-length \(n^\eta \) in \(\Lambda_n \). Then

\[\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c. \]

Proof.

Denote the event by \(E \). Assume both \(E \) and its translation by \((n/2, 0, \ldots, 0)\) occurred (call the translates \(\Lambda', C' \) and \(E' \)). Then there at least \(\frac{1}{4} \) of the \(n^\eta \) cubes in \(\Lambda \cap \Lambda' \) intersect both \(C \) and \(C' \). If \(C \neq C' \) then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf’s theorem and Markov’s inequality

\[\mathbb{P}_{p_c}(E \cap E' \cap \{C \neq C'\}) \leq Cn^{-1/4}. \]
Lemma

Call a cluster \mathcal{C} in Λ_n “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^n in Λ_n. Then $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c_1$.

Proof.

Denote the event by E. Assume both E and its translation by $(n/2, 0, \ldots, 0)$ occurred (call the translates Λ', \mathcal{C}' and E'). Then there at least $\frac{1}{4}$ of the n^n cubes in $\Lambda \cap \Lambda'$ intersect both \mathcal{C} and \mathcal{C}'. If $\mathcal{C} \neq \mathcal{C}'$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf’s theorem and Markov’s inequality $\mathbb{P}_{p_c}(E \cap E' \cap \{\mathcal{C} \neq \mathcal{C}'\}) \leq Cn^{-1/4}$.

By continuity, the same inequality will hold for a slightly smaller p.
Lemma

Call a cluster \(C \) in \(\Lambda_n \) “large” if it intersects \(\frac{7}{8} \) of the cubes of side-length \(n^\eta \) in \(\Lambda_n \). Then \(\mathbb{P}_{p_c} (\exists \text{ large cluster}) \leq 1 - c_1 \).

Proof.

Denote the event by \(E \). Assume both \(E \) and its translation by \((n/2, 0, \ldots, 0)\) occurred (call the translates \(\Lambda', C' \) and \(E' \)). Then there at least \(\frac{1}{4} \) of the \(n^\eta \) cubes in \(\Lambda \cap \Lambda' \) intersect both \(C \) and \(C' \). If \(C \neq C' \) then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf’s theorem and Markov’s inequality \(\mathbb{P}_{p_c} (E \cap E' \cap \{C \neq C'\}) \leq Cn^{-1/4} \). Hence

\[
\mathbb{P}_{p_c} (C = C') \geq 1 - 2c_1 - Cn^{-1/4}.
\]
Lemma

Call a cluster \mathcal{C} in Λ_n “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^n in Λ_n. Then $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c_1$.

Proof.

Denote the event by E. Assume both E and its translation by $(n/2, 0, \ldots, 0)$ occurred (call the translates Λ', \mathcal{C}' and E'). Then there at least $\frac{1}{4}$ of the n^n cubes in $\Lambda \cap \Lambda'$ intersect both \mathcal{C} and \mathcal{C}'. If $\mathcal{C} \neq \mathcal{C}'$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf’s theorem and Markov’s inequality $\mathbb{P}_{p_c}(E \cap E' \cap \{\mathcal{C} \neq \mathcal{C}'\}) \leq Cn^{-1/4}$. Hence

$$\mathbb{P}_{p_c}(\mathcal{C} = \mathcal{C}') \geq 1 - 2c_1 - Cn^{-1/4}.$$

By continuity, the same inequality will hold for a slightly smaller p.

Lemma

Call a cluster \mathcal{C} in Λ_n "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c_1$.

Proof.

Denote the event by E. Assume both E and its translation by $(n/2, 0, \ldots, 0)$ occurred (call the translates Λ', \mathcal{C}' and E'). Then there at least $\frac{1}{4}$ of the n^η cubes in $\Lambda \cap \Lambda'$ intersect both \mathcal{C} and \mathcal{C}'. If $\mathcal{C} \neq \mathcal{C}'$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf’s theorem and Markov’s inequality $\mathbb{P}_{p_c}(E \cap E' \cap \{\mathcal{C} \neq \mathcal{C}'\}) \leq Cn^{-1/4}$. Hence

$$\mathbb{P}_{p_c}(\mathcal{C} = \mathcal{C}') \geq 1 - 2c_1 - Cn^{-1/4}.$$

By continuity, the same inequality will hold for a slightly smaller p. By a theorem of Liggett, Schonmann and Stacey (1997), if c_1 is sufficiently small and n sufficiently large, then an infinite cluster exists, contradicting $p < p_c$. \qed
Lemma

Call a cluster C in Λ_n “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^n in Λ_n. Then $P_{pc}(\exists \text{ large cluster}) \leq 1 - c$.

The same argument works for clusters Λ_{2n} (or any constant), i.e. we define the cluster by connections in Λ_{2n} but still ask only about intersections with subcubes of Λ_n.
Lemma

Call a cluster C in Λ_n “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists$ large cluster) $\leq 1 - c$.

The same argument works for clusters Λ_{2n} (or any constant), i.e. we define the cluster by connections in Λ_{2n} but still ask only about intersections with subcubes of Λ_n. The proof is the same, only the “distance of independence” in Liggett-Schonmann-Stacey needs to be increased.
Call a cluster C in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$.

The same argument works for clusters Λ_{2n} (or any constant), i.e. we define the cluster by connections in Λ_{2n} but still ask only about intersections with subcubes of Λ_n. The proof is the same, only the “distance of independence” in Liggett-Schonmann-Stacey needs to be increased.
Lemma

Call a cluster C in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists$ large cluster) $\leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.
Lemma

Call a cluster \mathcal{C} in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists$ large cluster) $\leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1 - Cn^{-d}$.
Lemma

Call a cluster C in Λ_{2n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{pc}(\exists$ large cluster) $\leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{pc}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1 - Cn^{-d}$. Then, with probability $> 1 - n^{-d\nu}$, each box $a + \Lambda_{n^\nu}$, $a \in \Lambda_n$ is connected to $a + \partial \Lambda_n$.
Lemma

Call a cluster 𝒞 in \(\Lambda_{2n} \) **“large” if it** intersects \(\frac{7}{8} \) **of the cubes of side-length** \(n^n \) **in** \(\Lambda_n \). **Then** \(\mathbb{P}_{p_c} (\exists \text{ large cluster}) \leq 1 - c \).

Theorem (Duminil-Copin-K-Tassion, unpublished)

For \(d \geq 3 \) **and some** \(\nu = \nu(d) > 0 \), \(\mathbb{P}_{p_c} (\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > C n^{-d} \).

Proof.

Examine one \(\nu \) (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than \(1 - C n^{-d} \). Then, with probability \(> 1 - n^{-d \nu} \), **each box** \(a + \Lambda_{n^\nu}, a \in \Lambda_n \) **is connected to** \(a + \partial \Lambda_n \). **Denote this event by** \(A \).
Lemma

Call a cluster C in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{pc}(\exists \text{ large cluster}) \leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{pc}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1 - Cn^{-d}$. Then, with probability $> 1 - n^{-d\nu}$, each box $a + \Lambda_{n^\nu}$, $a \in \Lambda_n$ is connected to $a + \partial \Lambda_n$. Denote this event by A. In particular, all boxes in $\Lambda_{n/4}$ are connected to $\partial \Lambda_{n/2}$.
Lemma

Call a cluster C in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{pc}(\exists \text{ large cluster}) \leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{pc}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1 - Cn^{-d}$. Then, with probability $> 1 - n^{-d\nu}$, each box $a + \Lambda_n^\nu$, $a \in \Lambda_n$ is connected to $a + \partial \Lambda_n$. Denote this event by A. In particular, all boxes in $\Lambda_{n/4}$ are connected to $\partial \Lambda_{n/2}$.

During this proof, whenever we say “cluster” we mean a cluster in Λ_n that intersects $\Lambda_{n/4}$ and $\partial \Lambda_{n/2}$.
Lemma

Call a cluster \mathcal{C} in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > C n^{-d}$.

Proof.

$A \implies \{\text{all } n^\nu \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2}\}$.

Lemma

Call a cluster C in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists$ large cluster $) \leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

$A \implies \{\text{all } n^\nu \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2}\}$. For every cluster C let $N(C)$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect C.
Lemma

Call a cluster \mathcal{C} in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^n in Λ_n. Then $\mathbb{P}_{p_c}(\exists$ large cluster) $\leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > C n^{-d}$.

Proof.

$A \implies \{\text{all } n^\nu \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2}\}$. For every cluster \mathcal{C} let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. Under A we have,

$$n^{(1-\nu)d} \lesssim \sum_{\mathcal{C}} N(\mathcal{C})$$
Lemma

Call a cluster C in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{p_c}(\exists \text{ large cluster}) \leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

$A \implies \{\text{all } n^\nu \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2}\}$. For every cluster C let $N(C)$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect C. Under A we have, by concavity

$$n^{(1-\nu)d} \lesssim \sum_C N(C) \leq \left(\sum_C N(C)^{(d-1)/d} \right)^{d/(d-1)}.$$
Lemma

Call a cluster \mathcal{C} in Λ_{2n} “large” if it intersects $\frac{7}{8}$ of the cubes of side-length n^η in Λ_n. Then $\mathbb{P}_{pc}(\exists \text{ large cluster}) \leq 1 - c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{pc}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

$A \implies \{\text{all } n^\nu \text{ boxes in } \Lambda_{n/4} \text{ are connected to } \partial \Lambda_{n/2}\}$. For every cluster \mathcal{C} let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. Under A we have, by concavity

$$n^{(1-\nu)d} \lesssim \sum_{\mathcal{C}} N(\mathcal{C}) \leq \left(\sum_{\mathcal{C}} N(\mathcal{C})^{(d-1)/d}\right)^{d/(d-1)}.$$

By the lemma,

$$\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For \(d \geq 3 \) and some \(\nu = \nu(d) > 0 \), \(\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d} \).

Proof.

Let \(N(\mathcal{C}) \) be the number of \(n^\nu \)-subboxes of \(\Lambda_n/2 \) that intersect \(\mathcal{C} \). \[\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)} \].
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda^n_{\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C}_{\text{small}}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$. Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2} + C(\log n)n^{-d} \mathbb{E} \sum_{\mathcal{C}} \sqrt{|\mathcal{C}|}.$$

where the sum is over clusters in $\Lambda_{n/2}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For \(d \geq 3 \) and some \(\nu = \nu(d) > 0 \), \(\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d} \).

Proof.

Let \(N(\mathcal{C}) \) be the number of \(n^\nu \)-subboxes of \(\Lambda_{n/2} \) that intersect \(\mathcal{C} \). \(\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)} \). Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

\[
\mathbb{P}(0 \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2} + C(\log n)n^{-d}\mathbb{E} \sum_{\mathcal{C}} \sqrt{|\mathcal{C}|}.
\]

where the sum is over clusters in \(\Lambda_{n/2} \). A variation on the argument, also due to Cerf, shows that one can take the sum only over \(\mathcal{C} \) in \(\Lambda_n \) that intersect \(\Lambda_{n/4} \) and \(\partial \Lambda_{n/2} \).
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n\leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E}\sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$. Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2} + C(\log n)n^{-d}\mathbb{E}\sum_{\mathcal{C}} \sqrt{|\mathcal{C}|}.$$

where the sum is over clusters in $\Lambda_{n/2}$. A variation on the argument, also due to Cerf, shows that one can take the sum only over \mathcal{C} in Λ_n that intersect $\Lambda_{n/4}$ and $\partial \Lambda_{n/2}$. And with Cerf’s lemma,

$$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{C\nu} \mathbb{P}(0 \leftrightarrow \partial \Lambda_{n/4})$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$. Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$\mathbb{P}(0 \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2} + C(\log n)n^{-d} \mathbb{E} \sum_{\mathcal{C}} \sqrt{|\mathcal{C}|}.$$

where the sum is over clusters in $\Lambda_{n/2}$. A variation on the argument, also due to Cerf, shows that one can take the sum only over \mathcal{C} in Λ_n that intersect $\Lambda_{n/4}$ and $\partial \Lambda_{n/2}$. And with Cerf’s lemma,

$$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{C\nu} \mathbb{P}(0 \leftrightarrow \partial \Lambda_{n/4})$$

$$\leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(C)$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect C. $\mathbb{E} \sum_{C \text{ small}} N(C)^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{C} \sqrt{N(C)}$.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{pc}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}$. The isoperimetric inequality in \mathbb{Z}^d shows that for every small \mathcal{C} we have at least $cN(\mathcal{C})^{(d-1)/d}$ subboxes of $\Lambda_{n/2}$ which intersect \mathcal{C} but have a neighbouring box that does not intersect \mathcal{C}.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For \(d \geq 3\) and some \(\nu = \nu(d) > 0\), \(\mathbb{P}_{p_c}(\Lambda_n^{\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}\).

Proof.

Let \(N(\mathcal{C})\) be the number of \(n^\nu\)-subboxes of \(\Lambda_{n/2}\) that intersect \(\mathcal{C}\). \(\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}\).
\(\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}\). The isoperimetric inequality in \(\mathbb{Z}^d\) shows that for every small \(\mathcal{C}\) we have at least \(cN(\mathcal{C})^{(d-1)/d}\) subboxes of \(\Lambda_{n/2}\) which intersect \(\mathcal{C}\) but have a neighbouring box that does not intersect \(\mathcal{C}\). Let \(Q\) be such a box and let \(Q'\) be its neighbour that does not intersect \(\mathcal{C}\).
For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cN^{(1-\nu)(d-1)}$. $\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}$. The isoperimetric inequality in \mathbb{Z}^d shows that for every small \mathcal{C} we have at least $cN(\mathcal{C})^{(d-1)/d}$ subboxes of $\Lambda_{n/2}$ which intersect \mathcal{C} but have a neighbouring box that does not intersect \mathcal{C}. Let Q be such a box and let Q' be its neighbour that does not intersect \mathcal{C}. Under the event A (which, recall, said that every n^ν subbox of $\Lambda_{n/2}$ is connected to distance n), this implies that $Q \cup Q'$ is connected to distance $n/4$ by two disjoint clusters.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}$. The isoperimetric inequality in \mathbb{Z}^d shows that for every small \mathcal{C} we have at least $cN(\mathcal{C})^{(d-1)/d}$ subboxes of $\Lambda_{n/2}$ which intersect \mathcal{C} but have a neighbouring box that does not intersect \mathcal{C}. Let Q be such a box and let Q' be its neighbour that does not intersect \mathcal{C}. Under the event A (which, recall, said that every n^ν subbox of $\Lambda_{n/2}$ is connected to distance n), this implies that $Q \cup Q'$ is connected to distance $n/4$ by two disjoint clusters. Thus, under A, there are $c \sum_{\mathcal{C}} N(\mathcal{C})^{(d-1)/d}$ boxes of size $2n^\nu$ in $\Lambda_{n/2}$ which are connected to distance $n/4$ by two disjoint clusters.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}$.

Thus, under A, there are $c \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}$ boxes of size $2n^\nu$ in $\Lambda_{n/2}$ which are connected to distance $n/4$ by two disjoint clusters.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}$.

Thus, under A, there are $c \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}$ boxes of size $2n^\nu$ in $\Lambda_{n/2}$ which are connected to distance $n/4$ by two disjoint clusters. There is some over-counting in this argument, every $2n^\nu$ box might be counted for every cluster that intersects it.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}.

$$\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}.$$

$$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C} \text{ small}} \sqrt{N(\mathcal{C})}.$$

Thus, under A, there are $c \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}$ boxes of size $2n^\nu$ in $\Lambda_{n/2}$ which are connected to distance $n/4$ by two disjoint clusters. There is some over-counting in this argument, every $2n^\nu$ box might be counted for every cluster that intersects it. We bound the over-counting crudely by the volume of the box, $Cn^{d\nu}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{pc}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(C)$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect C. $\mathbb{E} \sum_{C \text{ small}} N(C)^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^\nu} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{C} \sqrt{N(C)}$.

Thus, under A, there are $c \sum_{C \text{ small}} N(C)^{(d-1)/d}$ boxes of size $2n^\nu$ in $\Lambda_{n/2}$ which are connected to distance $n/4$ by two disjoint clusters. There is some over-counting in this argument, every $2n^\nu$ box might be counted for every cluster that intersects it. We bound the over-counting crudely by the volume of the box, $Cn^{d\nu}$. Overall we get, under A,

$$\# \{\text{such boxes}\} \geq cn^{-d\nu} \sum_{C \text{ small}} N(C)^{(d-1)/d}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^{\nu}} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}$.

Under A,

$$\# \{\text{such boxes}\} \geq cn^{-d\nu} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^{\nu}} \leftrightarrow \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{\mathcal{C}} \sqrt{N(\mathcal{C})}$.

Under A,

$$\#\{\text{such boxes}\} \geq cn^{-d\nu} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}.$$

Taking expectations gives

$$Cn^{(1-\nu)d} \mathbb{P}(\Lambda_{2n^{\nu}} \leftrightarrow \partial \Lambda_{n/4}) \geq cn^{-d\nu} \mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(C)$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect C. $\mathbb{E} \sum_{C \text{ small}} N(C)^{d-1}/d \geq cn^{(1-\nu)(d-1)}$.

$\mathbb{P}(\Lambda_{2n^\nu} \iff \partial \Lambda_{n/4}) \leq Cn^{-d/2+C\nu} + Cn^{-d+C\nu} \mathbb{E} \sum_{C \text{ small}} \sqrt{N(C)}$.

Under A,

$$\#\{\text{such boxes}\} \geq cn^{-d\nu} \sum_{C \text{ small}} N(C)^{d-1}/d.$$

Taking expectations gives

$$Cn^{(1-\nu)d} \mathbb{P}(\Lambda_{2n^\nu} \iff \partial \Lambda_{n/4}) \geq cn^{-d\nu} \mathbb{E} \sum_{C \text{ small}} N(C)^{d-1}/d.$$

Together these give

$$\mathbb{E} \sum_{C \text{ small}} N(C)^{d-1}/d \leq Cn^{d/2+C\nu} + Cn^{C\nu} \sum_{C} \mathbb{E} \sqrt{N(C)}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n\nu} \leftrightarrow \partial\Lambda_n) > Cn^{-d}$.

Proof.

Let $N(C)$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect C. $\mathbb{E} \sum_C \text{small} N(C)^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$

$$\mathbb{E} \sum_{C \text{ small}} N(C)^{(d-1)/d} \leq Cn^{d/2+C\nu} + Cn^{C\nu} \mathbb{E} \sum_C \sqrt{N(C)}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}.

$$\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$$

$$\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \leq Cn^{d/2+C\nu} + Cn^{C\nu} \mathbb{E} \sum \sqrt{N(\mathcal{C})}.$$

We may add the requirement “\mathcal{C} small” on the right hand side, as the possible large clusters can only add a factor of $Cn^{d/2+C\nu}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(C)$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect C. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(C)^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$

$$\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(C)^{(d-1)/d} \leq Cn^{d/2+C\nu} + Cn^{C\nu} \mathbb{E} \sum_{\mathcal{C} \text{ small}} \sqrt{N(C)}.$$

We may add the requirement “\mathcal{C} small” on the right hand side, as the possible large clusters can only add a factor of $Cn^{d/2+C\nu}$.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$

$$\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \leq Cn^{d/2+C\nu} + Cn^{C\nu} \mathbb{E} \sum_{\mathcal{C} \text{ small}} \sqrt{N(\mathcal{C})}.$$

We may add the requirement “\mathcal{C} small” on the right hand side, as the possible large clusters can only add a factor of $Cn^{d/2+C\nu}$. Since our clusters all touch both $\Lambda_{n/4}$ and $\partial \Lambda_{n/2}$ we must have $N(\mathcal{C}) > cn^{1-\nu}$ for all \mathcal{C}.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^{\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$

$$\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \leq Cn^{d/2+C\nu} + Cn^{C\nu} \mathbb{E} \sum_{\mathcal{C} \text{ small}} \sqrt{N(\mathcal{C})}.$$

We may add the requirement “\mathcal{C} small” on the right hand side, as the possible large clusters can only add a factor of $Cn^{d/2+C\nu}$. Since our clusters all touch both $\Lambda_{n/4}$ and $\partial \Lambda_{n/2}$ we must have $N(\mathcal{C}) > cn^{1-\nu}$ for all \mathcal{C}. Thus

$$\sum_{\mathcal{C} \text{ small}} \sqrt{N(\mathcal{C})} \leq Cn^{-(1-\nu)(d-2)/d} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}.$$
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Proof.

Let $N(\mathcal{C})$ be the number of n^ν-subboxes of $\Lambda_{n/2}$ that intersect \mathcal{C}. $\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \geq cn^{(1-\nu)(d-1)}$

\[\mathbb{E} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d} \leq Cn^{d/2+C\nu} + Cn^{C\nu} \mathbb{E} \sum_{\mathcal{C} \text{ small}} \sqrt{N(\mathcal{C})}. \]

We may add the requirement “\mathcal{C} small” on the right hand side, as the possible large clusters can only add a factor of $Cn^{d/2+C\nu}$. Since our clusters all touch both $\Lambda_{n/4}$ and $\partial \Lambda_{n/2}$ we must have $N(\mathcal{C}) > cn^{1-\nu}$ for all \mathcal{C}. Thus

\[\sum_{\mathcal{C} \text{ small}} \sqrt{N(\mathcal{C})} \leq Cn^{-(1-\nu)(d-2)/d} \sum_{\mathcal{C} \text{ small}} N(\mathcal{C})^{(d-1)/d}. \]

For ν sufficiently small, we reach a contradiction.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

The proof in a nutshell

The Aizenman-Kesten-Newman-Cerf argument gives

$$\mathbb{P}(\Lambda_n^\nu \leftrightarrow \Lambda_n) \leq \text{uninteresting terms } n^{-d} \sum \sqrt{|C|}.$$

The contradictory assumption, the isoperimetric inequality and the fact that there are no large clusters give

$$\mathbb{P}(\Lambda_n^\nu \leftrightarrow \Lambda_n) \geq \text{uninteresting terms } n^{-d} \sum |C|(d-1)/d.$$

And these two contradict.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c}(\Lambda_{n^\nu} \leftrightarrow \partial \Lambda_n) > Cn^{-d}$.

Going through the calculation gives

$$\nu < \frac{d - 2}{d^3 + 4d^2 + d - 2}$$

so, say, $1/64$ at $d = 3$.
Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu = \nu(d) > 0$, $\mathbb{P}_{p_c} (\Lambda_n^\nu \leftrightarrow \partial \Lambda_n) > C n^{-d}$.

- Going through the calculation gives
 \[\nu < \frac{d - 2}{d^3 + 4d^2 + d - 2} \]
 so, say, $1/64$ at $d = 3$.

- The theorem holds also at $d = 2$ (known since the 80s, with a different proof).
\begin{align*}
\chi(p_c) &= \infty \\
\sum_{x \in \partial \Lambda_n} \mathbb{P}_{p_c}(0 \leftrightarrow \Lambda_n x) &\geq 1 \\
\mathbb{P}_{p_c}(x \leftrightarrow \Lambda_{2n} y) &> cn^{-C} \\
\mathbb{P}_{p_c} (\Lambda_{nc} \leftrightarrow \Lambda_n) &> cn^{-1/4} \\
\mathbb{P}_{p_c} (\exists \text{ large cluster}) &< 1 - c \\
\mathbb{P}_{p_c} (\Lambda_{nc} \leftrightarrow \partial \Lambda_n) &> Cn^{-d} \\
\mathbb{P}_{p_c} (\text{crossing}) &> c
\end{align*}
For $d \geq 3$, \(\mathbb{P}(\Lambda_n^c \leftrightarrow \Lambda_n \setminus \Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-1/8} \).
For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-1/8}$.

Here

Cerf
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n \stackrel{\Lambda_n \setminus \Lambda_n^c}{\longleftrightarrow} \partial \Lambda_n) \leq Cn^{-1/8}$.

Proof.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$.
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n \leftrightarrow \partial \Lambda_n) \leq Cn^{-1/8}$.

Proof.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n \leftrightarrow \partial \Lambda_n) > cn^{-1/8}$.
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \leftrightarrow_{\Lambda_n^c} \partial \Lambda_n) \leq Cn^{-1/8}$.

Proof.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^\eta \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^{\eta} \leftrightarrow \partial \Lambda_n^\eta) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^{\gamma} \leftrightarrow_{\Lambda_n^{\gamma}} \partial \Lambda_n)$ (i.e. we need to show that P is small).
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \leftrightarrow \Lambda_n \cap \partial \Lambda_n) \leq Cn^{-1/8}$.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^\eta \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_n^\gamma$, $\mathbb{P}(A \leftrightarrow \partial \Lambda_n) \geq P$.
Theorem

For $d \geq 3$, $\Pr(\Lambda_n^c \xleftrightarrow{\Lambda_n \setminus \Lambda_n^c} \partial \Lambda_n) \leq C n^{-1/8}$.

Let η be sufficiently small so that $\Pr(\Lambda_n^\eta \Leftrightarrow \Lambda_n) \leq C n^{-1/4}$. Let γ be sufficiently small so that $\Pr(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta) > c n^{-1/8}$. Denote $P = \Pr(\Lambda_n^\gamma \xleftrightarrow{\Lambda_n \setminus \Lambda_n^\gamma} \partial \Lambda_n)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_n^\gamma$, $\Pr(A \xleftrightarrow{\Lambda_n \setminus A} \partial \Lambda_n) \geq P$.
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n^{c} \xleftrightarrow{\Lambda_n/\Lambda_n^{c}} \partial \Lambda_n) \leq Cn^{-1/8}$.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^{\eta} \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^{\gamma} \leftrightarrow \partial \Lambda_n^{\eta}) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^{\gamma} \xleftrightarrow{\Lambda_n/\Lambda_n^{\gamma}} \partial \Lambda_n)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_n^{\gamma}$, $\mathbb{P}(A \xleftrightarrow{\Lambda_n/A} \partial \Lambda_n) \geq P$.

Let $\Lambda_n^{\gamma} \subseteq B \subseteq \Lambda_n^{\eta-1}$ and condition on $B = \mathcal{C}(\Lambda_n^{\gamma})$.
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \leftrightarrow \Lambda_n \setminus \Lambda_n^c \searrow \partial \Lambda_n) \leq Cn^{-1/8}$.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^\eta \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^\gamma \leftrightarrow \Lambda_n \setminus \Lambda_n^\gamma \searrow \partial \Lambda_n)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_n^\gamma$, $\mathbb{P}(A \leftrightarrow \Lambda_n \setminus A \searrow \partial \Lambda_n) \geq P$.

Let $\Lambda_n^\gamma \subseteq B \subseteq \Lambda_n^{\eta - 1}$ and condition on $B = \mathcal{C}(\Lambda_n^\gamma)$. Let $A = \overline{B}$. Outside A, the conditioning has no effect.
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \leftrightarrow \Lambda_n \setminus \Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-1/8}$.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^\eta \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\gamma) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_n^\gamma$, $\mathbb{P}(A \leftrightarrow \partial \Lambda_n) \geq P$.

Let $\Lambda_n^\gamma \subseteq B \subseteq \Lambda_n^{\eta - 1}$ and condition on $B = \mathcal{C}(\Lambda_n^\gamma)$. Let $A = \overline{B}$. Outside A, the conditioning has no effect. Use the lemma and get

$$\mathbb{P}(B = \mathcal{C}(\Lambda_n^\gamma), A \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathcal{C}(\Lambda_n^\gamma)).$$
For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \leftrightarrow \partial \Lambda_n) \leq Cn^{-1/8}$.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^\eta \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n)$. Let $\Lambda_n^\gamma \subseteq B \subseteq \Lambda_n^{\eta - 1}$ and condition on $B = \mathcal{C}(\Lambda_n^\gamma)$. Let $A = \overline{B}$. Then

$\mathbb{P}(B = \mathcal{C}(\Lambda_n^\gamma), A \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathcal{C}(\Lambda_n^\gamma))$.
For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \leftrightarrow \Lambda_n \ \partial \Lambda_n) \leq Cn^{-1/8}$.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^{\eta} \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^{\gamma} \leftrightarrow \partial \Lambda_n^{\eta}) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^{\gamma} \leftrightarrow \partial \Lambda_n)$. Let $\Lambda_n^{\gamma} \subseteq B \subseteq \Lambda_n^{\eta-1}$ and condition on $B = \mathcal{C}(\Lambda_n^{\gamma})$. Let $A = \overline{B}$. Then

$\mathbb{P}(B = \mathcal{C}(\Lambda_n^{\gamma}), A \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathcal{C}(\Lambda_n^{\gamma}))$. Sum over all such B and get

$\mathbb{P}(\Lambda_n^{\gamma} \leftrightarrow \partial \Lambda_n^{\eta}, \overline{\mathcal{C}(\Lambda_n^{\gamma})} \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(\Lambda_n^{\gamma} \leftrightarrow \partial \Lambda_n^{\eta})$.

But the left-hand side implies $\Lambda_n^{\eta} \leftrightarrow \partial \Lambda_n$.
Theorem

For \(d \geq 3 \), \(\mathbb{P}(\Lambda_n^c \leftrightarrow \Lambda_n \setminus \Lambda_{n \gamma} \setminus \partial \Lambda_n) \leq C n^{-1/8} \).

Let \(\eta \) be sufficiently small so that \(\mathbb{P}(\Lambda_{n \eta} \leftrightarrow \Lambda_n) \leq C n^{-1/4} \). Let \(\gamma \) be sufficiently small so that \(\mathbb{P}(\Lambda_{n \gamma} \leftrightarrow \partial \Lambda_{n \eta}) > c n^{-1/8} \). Denote \(P = \mathbb{P}(\Lambda_{n \gamma} \leftrightarrow \partial \Lambda_n) \). Let \(\Lambda_{n \gamma} \subseteq B \subseteq \Lambda_{n \eta} - 1 \) and condition on \(B = \mathcal{C}(\Lambda_{n \gamma}) \). Let \(A = \overline{B} \). Then

\[
\mathbb{P}(B = \mathcal{C}(\Lambda_{n \gamma}), A \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathcal{C}(\Lambda_{n \gamma})).
\]

Sum over all such \(B \) and get

\[
\mathbb{P}(\Lambda_{n \gamma} \leftrightarrow \partial \Lambda_{n \eta}, \mathcal{C}(\Lambda_{n \gamma}) \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(\Lambda_{n \gamma} \leftrightarrow \partial \Lambda_{n \eta})
\]

But the left-hand side implies \(\Lambda_{n \eta} \leftrightarrow \partial \Lambda_n \).
\[\Lambda_n \gamma \subset \mathcal{C}(\Lambda_n \gamma) \subset \Lambda_n \eta \subset \Lambda_n \]
Theorem

For \(d \geq 3 \), \(\mathbb{P}(\Lambda_n^c \leftrightarrow \Lambda_n \, \partial \Lambda_n) \leq Cn^{-1/8} \).

Let \(\eta \) be sufficiently small so that \(\mathbb{P}(\Lambda_n \eta \leftrightarrow \Lambda_n) \leq Cn^{-1/4} \). Let \(\gamma \) be sufficiently small so that \(\mathbb{P}(\Lambda_n \gamma \leftrightarrow \partial \Lambda_n \eta) > cn^{-1/8} \). Denote \(P = \mathbb{P}(\Lambda_n \gamma \leftrightarrow \partial \Lambda_n) \). Let \(\Lambda_n \gamma \subseteq B \subseteq \Lambda_n \eta - 1 \) and condition on \(B = \mathcal{C}(\Lambda_n \gamma) \). Let \(A = \overline{B} \). Then

\[
\mathbb{P}(B = \mathcal{C}(\Lambda_n \gamma), A \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathcal{C}(\Lambda_n \gamma)).
\]

Sum over all such \(B \) and get

\[
\mathbb{P}(\Lambda_n \gamma \leftrightarrow \partial \Lambda_n \eta, \mathcal{C}(\Lambda_n \gamma) \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(\Lambda_n \gamma \leftrightarrow \partial \Lambda_n \eta)
\]

But the left-hand side implies \(\Lambda_n \eta \leftrightarrow \partial \Lambda_n \). So we get

\[
Cn^{-1/4} \geq \mathbb{P}(\Lambda_n \eta \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(\Lambda_n \gamma \leftrightarrow \partial \Lambda_n \eta) > cP \cdot n^{-1/8}
\]
Theorem

For $d \geq 3$, $\mathbb{P}(\Lambda_n^c \xleftrightarrow{\Lambda_n \setminus \Lambda_n^c} \partial \Lambda_n) \leq Cn^{-1/8}$.

Let η be sufficiently small so that $\mathbb{P}(\Lambda_n^\eta \leftrightarrow \Lambda_n) \leq Cn^{-1/4}$. Let γ be sufficiently small so that $\mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta) > cn^{-1/8}$. Denote $P = \mathbb{P}(\Lambda_n^\gamma \xleftrightarrow{\Lambda_n \setminus \Lambda_n^\gamma} \partial \Lambda_n)$. Let $\Lambda_n^\gamma \subseteq B \subseteq \Lambda_n^{\eta-1}$ and condition on $B = \mathcal{C}((\Lambda_n^\gamma))$. Let $A = \overline{B}$. Then

$\mathbb{P}(B = \mathcal{C}(\Lambda_n^\gamma), A \xleftrightarrow{\Lambda_n \setminus A} \partial \Lambda_n) \geq P \cdot \mathbb{P}(B = \mathcal{C}(\Lambda_n^\gamma))$. Sum over all such B and get

$\mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta, \mathcal{C}(\Lambda_n^\gamma) \xleftrightarrow{\Lambda_n \setminus \mathcal{C}(\Lambda_n^\gamma)} \partial \Lambda_n) \geq P \cdot \mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta)$

But the left-hand side implies $\Lambda_n^\eta \leftrightarrow \partial \Lambda_n$. So we get

$Cn^{-1/4} \geq \mathbb{P}(\Lambda_n^\eta \leftrightarrow \partial \Lambda_n) \geq P \cdot \mathbb{P}(\Lambda_n^\gamma \leftrightarrow \partial \Lambda_n^\eta) > cP \cdot n^{-1/8}$

or $P < Cn^{-1/8}$. \square
Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For $p < p_c$ there is a number, denoted by $\xi(p)$, such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) = e^{-\left(\xi(p) + o(1)\right)n}.$$
Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For $p < p_c$ there is a number, denoted by $\xi(p)$, such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) = e^{-(\xi(p) + o(1))n}.$$

For $p > p_c$ there is a number, also denoted by $\xi(p)$, such that

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n, 0 \leftrightarrow \infty) = e^{-(\xi(p) + o(1))n}.$$

The notation $A \leftrightarrow \infty$ means $|\mathcal{C}(A)| = \infty$.
Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For \(p < p_c \) there is a number, denoted by \(\xi(p) \), such that

\[
\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) = e^{-\left(\xi(p) + o(1)\right)n}.
\]

For \(p > p_c \) there is a number, also denoted by \(\xi(p) \), such that

\[
\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n, 0 \not\leftrightarrow \infty) = e^{-\left(\xi(p) + o(1)\right)n}.
\]

The notation \(A \leftrightarrow \infty \) means \(|\mathcal{C}(A)| = \infty \).

Theorem (Duminil-Copin-K-Tassion)

\[
\xi(p) \leq e^{\left|p-p_c\right|^2}.
\]
Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For \(p < p_c \) there is a number, denoted by \(\xi(p) \), such that

\[
P_p(0 \leftrightarrow \partial \Lambda_n) = e^{-(\xi(p)+o(1))n}.
\]

For \(p > p_c \) there is a number, also denoted by \(\xi(p) \), such that

\[
P_p(0 \leftrightarrow \partial \Lambda_n, 0 \leftrightarrow \infty) = e^{-(\xi(p)+o(1))n}.
\]

The notation \(A \leftrightarrow \infty \) means \(|\mathcal{C}(A)| = \infty \).

Theorem (Duminil-Copin-K-Tassion)

\[\xi(p) \leq e^{\left|p-p_c\right|^{-2}}. \]

We will only show a lemma from proof, to demonstrate yet another use of Cerf’s theorem.
Lemma

If \(\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0 \)

The notation \(A \leftrightarrow \infty \) means \(|\mathcal{C}(A)| = \infty \).
Lemma

If \(\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0 \) then for every \(\varepsilon > 0 \) there exists an \(n \) such that for any set \(A \subseteq \Lambda_n \) intersecting both \(\{0\} \) and \(\partial \Lambda_n \) we have \(\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon \).

The notation \(A \leftrightarrow \infty \) means \(|\mathcal{C}(A)| = \infty \).
Lemma

If \(\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0 \) then for every \(\varepsilon > 0 \) there exists an \(n \) such that for any set \(A \subseteq \Lambda_n \) intersecting both \(\{0\} \) and \(\partial \Lambda_n \) we have \(\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon \).

Proof.

Let \(m \) be such that \((1 - \theta)^m < \frac{1}{3} \varepsilon \).
Lemma

If $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$ then for every $\varepsilon > 0$ there exists an n such that for any set $A \subseteq \Lambda_n$ intersecting both $\{0\}$ and $\partial \Lambda_n$ we have $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$.

Proof.

Let m be such that $(1 - \theta)^m < \frac{1}{3} \varepsilon$. Let k be so large such that

$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}.$$
Lemma
If $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$ then for every $\varepsilon > 0$ there exists an n such that for any set $A \subseteq \Lambda_n$ intersecting both $\{0\}$ and $\partial \Lambda_n$ we have $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$.

Proof.
Let m be such that $(1 - \theta)^m < \frac{1}{3} \varepsilon$. Let k be so large such that

$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}.$$

Let K be so large that

$$\mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}.$$
Lemma

If $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$ then for every $\varepsilon > 0$ there exists an n such that for any set $A \subseteq \Lambda_n$ intersecting both $\{0\}$ and $\partial \Lambda_n$ we have $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$.

Proof.

Let m be such that $(1 - \theta)^m < \frac{1}{3}\varepsilon$. Let k be so large such that

$$\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}.$$

Let K be so large that

$$\mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}.$$

Define $n = 2Km$.
Lemma

If $\theta := P(0 \leftrightarrow \infty) > 0$ then for every $\varepsilon > 0$ there exists an n such that for any set $A \subseteq \Lambda_n$ intersecting both $\{0\}$ and $\partial \Lambda_n$ we have $P(A \leftrightarrow \infty) > 1 - \varepsilon$.

Proof.

Let m be such that $(1 - \theta)^m < \frac{1}{3}\varepsilon$. Let k be so large such that

$$P(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}.$$

Let K be so large that

$$P(\Lambda_k \leftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}.$$

Define $n = 2Km$. We are now given an $A \subseteq \Lambda_n$.

Lemma

If \(\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0 \) then for every \(\varepsilon > 0 \) there exists an \(n \) such that for any set \(A \subseteq \Lambda_n \) intersecting both \(\{0\} \) and \(\partial \Lambda_n \) we have \(\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon \).

Proof.

Let \(m \) be such that \((1 - \theta)^m < \frac{1}{3} \varepsilon \). Let \(k \) be so large such that

\[
\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}.
\]

Let \(K \) be so large that

\[
\mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}.
\]

Define \(n = 2Km \). We are now given an \(A \subseteq \Lambda_n \). Find \(m \) elements \(a_1, \ldots, a_m \in A \) such that the translates \(a_i + \Lambda_K \) are disjoint.
Lemma

If $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$ then for every $\varepsilon > 0$ there exists an n such that for any set $A \subseteq \Lambda_n$ intersecting both $\{0\}$ and $\partial \Lambda_n$ we have $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$.
Lemma

If \(\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0 \) then for every \(\varepsilon > 0 \) there exists an \(n \) such that for any set \(A \subseteq \Lambda_n \) intersecting both \(\{0\} \) and \(\partial \Lambda_n \) we have \(\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon \).

Proof.

Let \(m \) be such that \((1 - \theta)^m < \frac{1}{3}\varepsilon \). Let \(k \) be so large such that \(\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m} \). Let \(K \) be so large that \(\mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m} \). Define \(n = 2Km \). We are now given an \(A \subseteq \Lambda_n \). Find \(m \) elements \(a_1, \ldots, a_m \in A \) such that the translates \(a_i + \Lambda_K \) are disjoint. For each \(a_i \), \(\mathbb{P}(a_i \leftrightarrow a_i + \partial \Lambda_K) \geq \theta \).
Lemma

If $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$ then for every $\varepsilon > 0$ there exists an n such that for any set $A \subseteq \Lambda_n$ intersecting both $\{0\}$ and $\partial \Lambda_n$ we have $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$.

Proof.

Let m be such that $(1 - \theta)^m < \frac{1}{3}\varepsilon$. Let k be so large such that $\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}$. Let K be so large that $\mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}$. Define $n = 2Km$. We are now given an $A \subseteq \Lambda_n$. Find m elements $a_1, \ldots, a_m \in A$ such that the translates $a_i + \Lambda_K$ are disjoint. For each a_i, $\mathbb{P}(a_i \leftrightarrow a_i + \partial \Lambda_K) \geq \theta$. Since the boxes are disjoint these are independent and we have

$$\mathbb{P}(\exists i : a_i \leftrightarrow a_i + \partial \Lambda_K) \geq 1 - (1 - \theta)^m > 1 - \frac{\varepsilon}{3}.$$
Lemma

If \(\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0 \), then for every \(\varepsilon > 0 \) there exists an \(n \) such that for any set \(A \subseteq \Lambda_n \) intersecting both \(\{0\} \) and \(\partial \Lambda_n \) we have \(\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon \).

Proof.

Let \(m \) be such that \((1 - \theta)^m < \frac{1}{3} \varepsilon \). Let \(k \) be so large such that
\[
\mathbb{P}(\Lambda_k \leftrightarrow \infty) \geq 1 - \frac{\varepsilon}{3m}.
\]
Let \(K \) be so large that
\[
\mathbb{P}(\Lambda_k \leftrightarrow \partial \Lambda_K) < \frac{\varepsilon}{3m}.
\]
Define \(n = 2 Km \). We are now given an \(A \subseteq \Lambda_n \). Find \(m \) elements \(a_1, \ldots, a_m \in A \) such that the translates \(a_i + \Lambda_K \) are disjoint. For each \(a_i \),
\[
\mathbb{P}(a_i \leftrightarrow a_i + \partial \Lambda_K) \geq \theta.
\]
Since the boxes are disjoint these are independent and we have
\[
\mathbb{P}(\exists i : a_i \leftrightarrow a_i + \partial \Lambda_K) \geq 1 - (1 - \theta)^m > 1 - \frac{\varepsilon}{3}.
\]
On the other hand
\[
\mathbb{P}(\forall i : a_i + \Lambda_k \leftrightarrow \infty, a_i + \Lambda_k \not\leftrightarrow a_i + \Lambda_K) > 1 - \frac{2\varepsilon}{3}.
\]
Lemma

If $\theta := \mathbb{P}(0 \leftrightarrow \infty) > 0$ then for every $\varepsilon > 0$ there exists an n such that for any set $A \subseteq \Lambda_n$ intersecting both $\{0\}$ and $\partial \Lambda_n$ we have $\mathbb{P}(A \leftrightarrow \infty) > 1 - \varepsilon$.
Thanks for your attention!