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idea • BRWIBBM direct analysis of the

extreme>
• Gaussian processes : we have more tools

← ↳
Tools to compare comparing Gaussian

different Gaussian processes models with

non - Gaussian

Gaussian comparison
• Two indep . Gaussian processes ,

mean zero
,

"

one is more correlated than other
"

→ max of one is larger then max of
other

Example Binary BRW 2
"
iid Gaussian

Cov : overlap .

two diff : 0

Max *
KY indep .

Kahanes Thm : ✗ 14 n - dim Gaussian mean Zero
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Rem • In particular :
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Cov that you
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understand



• There are more functions connected to

maximum
,
where such a result holds

.

Methods used to
prove

them (useful
on its own ) ( Kahane Thm)

Build Xh whose covariance interpolates
between the one of ✗ and Y.
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• Gaussian integration by parts:
9 moderate growth µ, ,,

→
assure to

know sigh
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magic where the

covariance appears !



Work with functions that are not

twice differentiable :

Approximate them
.

✓

One application
Two - speed BRW :

First % levels NCO
,
oil

The other 12 level Nco , 024
sat 120,2 + Izod = n
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> Gaussian comparison :

E- of maxima are ordered !
"

Lower functions have higher Max
"
.



Comparing with Gaussian model with

non - Gaussian

1) Localization works for non - Gaussian

things

Berry - Essen bound

Thm Let ( Wi
,
jell sequence of inekp .

random vectors on URD
,
BURN

,
P)

with mean Elwjl and Eor matrix
Covlwi ) .

Define m
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Qm law of Wnt . -- + Wm .

Then there exists a constant c Conly dep d)
sit Gaussian measure

f with mean Mm ,
sup IQMIAI - 2µm
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Idea why it could be useful

if you are able to write your model
not identically distr.

in terms of sum of iadep . increments .

[ increments → Wi]

Then : compare
to corresponding Gaussian

measure !

↳
e.g.

Gaussian branching random walk
.

Difficulty : Need good bounds for r.h.si
.

This method has been successfully used

tryin ,
Delius

, Harper
" Maxima of a

randomized Riemann Zeta function "
.

→ Toolbox to
compare different models

.



Useful Tools
→ localization

→ first + second moments
→ Comparing Gaussian models

via Gaussian
compare

→ to iron - Gaussian ones !
[ still d a lot to be understood

- . . ]


