Why is there a 3 ?
binary BRW Gaussian increments


$$
\begin{aligned}
& X_{V}(k)=\operatorname{sum} \text { of weights } \\
& \text { up to level } k \\
& \left\{X_{V}(k), k \in\{1,-n\}\right\} \\
& \text { path } / R W \text { with Gaussian } \\
& \text { increments. }
\end{aligned}
$$

So at level $k$
Maximal value should not be larger than

$$
\sqrt{2 \log 2} k
$$

$$
k \in\{1,-, n\}
$$

$\longrightarrow$ Why there no "particle" above
Cole

$$
\begin{gathered}
k \longmapsto \sqrt{2 \log 2} k+(C \log (k \wedge n-k) \\
\quad \vee C)
\end{gathered}
$$

with high probability: There is no particle?

Imagine: Particle at $n$ : reaches $\approx \sqrt{2 \log ^{2}} n$.

RW path $\mathrm{O} \rightarrow$ that never enters the forbidden region.


RW leading to the maximal particle:
Gaussian RW that is more or less forbidden to positive
I Discrete time Brownian bridge $0 \rightarrow 0$ in time $n$
$\mathbb{P}$ (Discrete time Brownian bridge $0 \rightarrow 0$ in time stay below (away from

$$
\begin{aligned}
\text { endpoints) } & \neq O(1) \\
& \approx \frac{1}{n} \quad \text { (Ballot estimates) }
\end{aligned}
$$

Let us try to combine this with upper bound

$$
\left.\begin{array}{rl}
P & \left(\left\{\max _{v \in V_{n}} X_{v}(n)>\sqrt{2 \log 2} n-\frac{3}{2 \sqrt{2 \log 2}} \log n\right.\right.
\end{array}+y \cdot\right\}
$$

$$
\geq 1)
$$

Markov

$$
\begin{aligned}
& \leq \mathbb{E}\left(\sum_{v \in V_{n}} \cdots \cdot\right) \\
& =2^{n} \mathbb{P}\left(X_{v}(n)>m(n)+y_{1} X_{v}\left(k_{k}\right)<\sqrt{2 \log 2} k\right)
\end{aligned}
$$

"Take out the linear drift"

$$
X_{v}(k)-\underbrace{\frac{k}{n} X_{v}(n)}_{\tilde{\pi} \frac{k}{n} \sqrt{2 \log 2} n} \text { 'discrete time }
$$

indep. of endpoint $X_{v}(n)$

$$
\begin{aligned}
& \approx 2^{n} \mathbb{P}\left(X_{v}(n)>m(n)+\gamma\right) \mathbb{P}\left(X_{v}(k)-\frac{k}{n} X_{2}(n)\right. \\
& <0 \text { ) } \\
& \text { IP (Brownian bridge } \\
& \begin{array}{l}
\approx 2^{n} \underbrace{\approx}_{\frac{\sqrt{n}}{m(n)+y}} e^{-(m(n)+y)^{2} / 2 n} \underbrace{\frac{1}{\sqrt{n}}}_{1})^{2}
\end{array}
\end{aligned}
$$

Needed - $\frac{1}{2 \sqrt{2 \log 2}} \log n$ to cancel $\frac{1}{\sqrt{n}}$

Now: Need: $-\frac{3}{2 \sqrt{2 \log 2}} \log n!$
This the correct answer. (for order of $\max 1$.
$\rightarrow$ This gives upper bound.
Lower bound: 2 Second moment

$$
\frac{\left.\left(\mathbb{E}\left(\sum_{V \in V_{n}} M_{2}-\right\}\right)\right)^{2} \quad \operatorname{c-s}}{\left.\mathbb{E}\left(\left(\sum_{V \in V_{n}} M_{\{-\}}\right)^{2}\right) \hat{P}_{\text {Paley-zygmund }} \sum_{V \in V_{n}}\{-\} \geq 1\right)}
$$

Useful: 1 order 1.1 close to one
Goal To put extra constraint in
112 3 such that the second moment

$$
\mathbb{E}\left(\sum_{V_{v}, \in \ln } N_{\left.\left.\{v \ldots .)^{\mathbb{N}_{\{ }}, \ldots\right\}\right)}\right.
$$ two path is of order $\left(\mathbb{E}\left(\sum_{V \in V_{n}} \Lambda_{2-\}}\right\}\right)^{2}$ !

We used "forbidden region".

Finding good extra conditions to pot 1) $\{\ldots\}$ can be difficult.

Sometimes: In several steps Order max of BRW is $m(n)$.
$\rightarrow$ Add $\left\{\max X_{v}(n) \leqslant m(n)+c i s^{\text {large }}\right.$ to the indicator function to find more.
$\rightarrow$ Describe extremes better...

path to max

+ collection of smaller BRW's branch of

Describe the BRV seen from maximal particle!
maximum of the atted BRW + Striating value $\leqslant$ overall max.
$\longrightarrow$ Obtain quantitative estimates on extremal level sets
(Cortines, H. Louidor for BBM),
Reference: first + second moment method N. Kistler:

In other model eng. Ex and ExT:
(1) Need to find a good notion 'path'/scales.
(2) How to compute the second moment?

One option: Compare your model to a BRW (with right number levels)!
Berry -Essen
Gaussian comparison
$\rightarrow$ Thursday.

