Branching random walks, continuation

BRW with killing/selection/interactions

Example for a BRW with killing: \(p(2) = 1 \)

\[\Pr[X = 0] = 1 - p \]
\[\Pr[X = 1] = p \]

ray: \(v_0, v_1, v_2, v_3, \ldots \)

\(v_{i+1} \) child of \(v_i \)

\[\Delta (\varepsilon, p) = \Pr[\exists i \cup \text{ray s.t.} \]
\[S_{v_i} \geq (x^* - \varepsilon)_j, \quad \forall j \geq 1] \]
\[= \Pr["\text{nearby optimal ray}"] \]

Q: \(\Delta (\varepsilon, p) \rightarrow ? \) (for fixed \(p \), as \(\varepsilon \rightarrow 0 \))

* For \(p > \frac{1}{2} \), \(x^* = 1 \), with prob. there is an optimal ray \(\rightarrow \delta (\varepsilon, p) \rightarrow 0 \)
\[p = \frac{1}{2} \quad \mathbb{P}(\varepsilon, p) \sim c \varepsilon \quad (R, Remantle) \]

Take \(\varepsilon = \frac{1}{n} \) \(u = \frac{1}{\varepsilon} \)

\[\frac{P}{n} \left[\text{Every only 1's up to level } u \right] \sim \frac{2}{n} \]

(PL crit, GW process survives up to gen. \(u \) \(\sim \frac{2}{n} \))

- For \(p < \frac{1}{2} \),
 \[\log \mathbb{P}(\varepsilon, p) \sim \frac{-c(p)}{\sqrt{\varepsilon}} \quad \text{for } \varepsilon \to 0 \]
 (NG, Y. Hu, Z. Shi)

Idea:
Replace large deviations for endpoint with large deviations for the whole path.
Theorem

\(\{ \ldots, Y_2, Y_1 \} \) iid \(\mathbb{E} \left[\frac{1}{i} \right] = 0, \mathbb{E} |Y_1|^2 + \delta < \infty \)

\(S_n = \sum_{i=1}^{n} Y_i \), \(g_1(\cdot), g_2(\cdot) \) cont., \(g_1(0) < 0 < g_2(0) \)

\(g_1 < g_2 \)

\[\frac{a_n^2}{2} \log \mathbb{P} \left[\frac{g_1(i)}{a_n} \leq \frac{\sum_{i=1}^{n} Y_i}{a_n} \leq g_2(i/a_n) \right] \]

\[\rightarrow -J(g_1, g_2, \delta^2) \]

Here \(a_n \to \infty, \frac{a_n}{\sqrt{n}} \to 0 \)

N-BRW

Example with selection

- keep only the N individuals with the largest positions

Bouvet / Deuvidal / Moeller / Meunier
\[M_{n,N} = \max_{v \in D_{n,N}} S_v \]

Then \(\frac{M_{n,N}}{n} \xrightarrow{u \to \infty} x_N^* \) a.s.

Thus J. Bévard, J.-B. Gouezé
\[p(2) = 1, \quad \mathbb{E}[e^{x^*}] < \infty \quad \forall x \in \mathbb{R} \]
\[x^* - x_N^* \sim \frac{\text{const}}{(\log N)^2} \quad \text{for } N \to \infty \]

\[\rightarrow \text{J. Bévard P. Mailléard for heavy-tailed } X, \text{ i.e.} \]
\[\mathbb{P}[X > t] \sim \frac{1}{t^x} \quad 0 < x < 2 \]

Heuristics: The foll. two events are comparable:

(1) BRW with killing at slope \(x^* - \varepsilon \), starting with \(N \) particles survives

(2) \(N - \text{BRW moves at a speed} \geq x^* - \varepsilon \).

(1) Prob. is \(1 - (1 - p(\varepsilon))^N \)
\[(2) \quad x^* - x^*_N \text{ should be of order } \varepsilon = \varepsilon(N) \text{ with } \varepsilon \text{ s.t.} \]
\[\delta(\varepsilon) \approx \frac{1}{N} \]

But since \(\delta(\varepsilon) \approx e^{-\frac{c}{\sqrt{\varepsilon}}} \approx \frac{1}{N} \)

have \(\varepsilon \approx \frac{c}{(\log N)^2} \).

L- BRW

- keep only the individuals within (spatial) distance \(L \) to \(M_n \), remove all the others.

\[x^*_L = \lim_{n \to \infty} \frac{M_{u,L}}{n} \quad \text{clearly:} \quad x^*_L \leq x^* \]

Conj. BDMM

\[x^*_L \approx x^*_L = \log N\]

Thus for L-BBM by M. Pain.

BRW with interactions
Take a BRW with some $X \sim N(0,1)$. Fix $R \in \mathbb{R}$

- Kill two particles if they come closer than R.

Is the survival probability strictly positive? Open!

Fragmentation process

$(I_t)_{t \geq 0}$

Fix $\alpha > 0$. I_t is collection of disjoint intervals $\in (0,1)$

An interval (a, b) with $u = b - a$ splits into u subintervals at rate $\alpha (a, a + \frac{u}{m}, a + \frac{2u}{m}, \ldots, b)$

$N_t(j) = \#$ intervals (a, b) at time $t \in (a, b - a = m \cdot j$)

Multitype branching process

Types in \mathbb{N}_0. Particles die at rate q_j, replaced by m offspring of type $j+1$. ($q > 0$ fixed)
\[N_t(j) = \# \text{particles of type } j \text{ present at time } t \]

- Tree-indexed RW

\[
(\text{We}) \text{ indep.} \quad \text{We} = \mathcal{E} x p(\mu^n)
\]

if \(e \) goes from level \(u-1 \) to level \(u \).

Say \(v \) is alive at time \(t \) if \(S_v \leq t, S_{v_i} > t \) \(\forall 1 \leq i \leq u \).

Study \(N_t = \sum_{n \geq 0} N_t(n) \) \(\forall \) child of \(v \).

- Work in progress with

 P. Duszewski, S. Johnston, J. Puchono, D. Schmid

Thus Buennou / Douweelb

\[q \leq 1: \mathbb{E} \left[N_t \right] \sim t^\beta \] where

\[q = m^{-1} = \frac{t^{-1}}{\alpha}, \quad \beta = \frac{\log m}{\log \frac{1}{q}} \]

\[\mathbb{E} \left[N_t \right] = \sum_{e=0}^{\infty} m^e e^{-q e t} \]
* \(q > 1 \) \quad \text{"explosive"}
* \(q = 1 \) \quad \text{"classical"}
* \(q < 1 \) \quad \text{"slow"}