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1. KDV AND TODA-TYPE

DISCRETE INTEGRABLE SYSTEMS



KDV AND TODA LATTICE EQUATIONS

Source: Shnir

Korteweg-de Vries (KdV) equation:

∂u

∂t
+6u

∂u

∂x
+

∂3u

∂x3
= 0,

where u = (u(x, t))x,t∈R.

Toda lattice equation:






d
dtpn = e−(qn−qn−1) − e−(qn+1−qn),
d
dtqn = pn,

where pn = (pn(t))t∈R, qn = (qn(t))t∈R.



KDV AND TODA LATTICE EQUATIONS

Source: Brunelli

Korteweg-de Vries (KdV) equation:
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where u = (u(x, t))x,t∈R.

Source: Singer et al

Toda lattice equation:






d
dtpn = e−(qn−qn−1) − e−(qn+1−qn),
d
dtqn = pn,

where pn = (pn(t))t∈R, qn = (qn(t))t∈R.



BOX-BALL SYSTEM (BBS)

Discrete time deterministic dynamical system (cellular automa-

ton) introduced in 1990 by Takahashi and Satsuma. In original

work, configurations (ηx)x∈Z with a finite number of balls were

considered. (NB. Empty box: ηx = 0; ball ηx = 1.)

• Every ball moves exactly once in each evolution time step

• The leftmost ball moves first and the next leftmost ball

moves next and so on...

• Each ball moves to its nearest right vacant box

・・・

・・・
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Dynamics T : {0,1}Z → {0,1}Z:

(Tη)n = min







1− ηn,
n−1
∑

m=−∞

(ηm − (Tη)m)







,

where (Tη)n = 0 to left of particles.



BBS CARRIER

• Carrier moves left to right

• Picks up a ball if it finds one

• Puts down a ball if it comes to an

empty box when it carries at least

one ball

Set Un to be number of balls carried

from n to n+1, then

Un =











Un−1 +1, if ηn = 1,
Un−1, if ηn = 0, Un−1 = 0,
Un−1 − 1, if ηn = 0, Un−1 > 0,

and

(Tη)n = min {1− ηn, Un−1} .



LATTICE EQUATIONS

The local dynamics of the BBS are described via a system of

lattice equations:

ηt+1
n

OO

ηt+1
n+1

OO

· · ·U t
n−1

//F
(1,∞)
udK U t

n
//F

(1,∞)
udK U t

n+1 · · · ,

ηtn
...

ηtn+1
...

where F
(1,∞)
udK is an involution, as given by:

F
(1,∞)
udK (η, u) := (min{1− η, u}, η + u−min{1− η, u}) .

This is (a version of) the ultra-discrete KdV equation (udKdV).

Can generalise to box capacity J ∈ N ∪ {∞} and carrier capacity

K ∈ N ∪ {∞}.



BASIC QUESTIONS

In today’s talk, I will address two main topics for the BBS (and

related systems):

• Existence and uniqueness of solutions to initial value problem

for (udKdV) with infinite configurations?

• I.i.d. invariant measures on initial configurations?

Other recent developments in the study of the BBS that I will

not talk about:

• Invariant measures based on solitons, e.g. [Ferrari, Nguyen,

Rolla, Wang]. See also [Levine, Lyu, Pike], etc.
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• Generalized hydrodynamic limits, e.g. [C., Sasada], [Kuniba,

Misguich, Pasquier].



INTEGRABLE SYSTEMS DERIVED FROM

THE KDV AND TODA EQUATIONS



ULTRA-DISCRETE KDV EQUATION (UDKDV)

Model Lattice structure Local dynamics: F
(J,K)
udK

udKdV ηt+1
n

U t
n−1

//U t
n

ηtn

OO

a+min{J−a,b}
−min{a,K−b}

b //

b+min{a,K−b}
−min{J−a,b}

a

OO

Variables are R-valued. Parameter J represents box capacity,

K represents carrier capacity. Multi-coloured version of BBS/

UDKDV also studied [Kondo].



DISCRETE KDV EQUATION (DKDV)

Model Lattice structure Local dynamics: F
(α,β)
dK

dKdV ωt+1
n

U t
n−1

//U t
n

ωt
n

OO

b(1+βab)
(1+αab)

b //

a(1+αab)
(1+βab)

a

OO

Variables are (0,∞)-valued. UDKDV is obtained as ultra-discrete/

zero-temperature limit by making change of variables:

α = e−J/ε, β = e−K/ε, a = ea/ε, b = eb/ε.



ULTRA-DISCRETE TODA EQUATION (UDTODA)

Model Lattice structure Local dynamics: FudT

udToda Qt+1
n Et+1

n

U t
n

//U t
n+1

Et
n

OO

Qt
n+1

OO

min{b, c} a+b
−min{b,c}

c //
a+c
−min{b,c}

b

OO

a

OO

Variables are R-valued. For BBS(1,∞), can understand (Qt
n, E

t
n)n∈Z

as the lengths of consequence ball/empty box sequences.



DISCRETE TODA EQUATION (DTODA)

Model Lattice structure Local dynamics: FdT

dToda It+1
n J t+1

n

U t
n

//U t
n+1

J t
n

OO

Itn+1

OO

b+ c ab
b+c

c //
ac
b+c

b

OO

a

OO

Variables are (0,∞)-valued. UDTODA is obtained as ultra-

discrete/ zero-temperature limit by making change of variables:

a = e−a/ε, b = e−b/ε, c = e−b/ε.



INTEGRABLE SYSTEMS DERIVED FROM

THE KDV AND TODA EQUATIONS

NB. [Quastel, Remenik 2019] connected the KPZ fixed point

to the Kadomtsev-Petviashvili (KP) equation. Both dKdV and

dToda can be obtained from the discrete KP equation.



2. GLOBAL SOLUTIONS

BASED ON PATH ENCODINGS



PATH ENCODING FOR BBS AND CARRIER

Let η be a finite configuration.

Define (Sn)n∈Z by S0 = 0 and

Sn − Sn−1 = 1− 2ηn.

Let

Un = Mn − Sn,

where Mn = maxm≤n Sm.

Can check (Un)n∈Z is a carrier process,

and the path encoding of Tη is

TSn = 2Mn − Sn − 2M0.



PITMAN’S TRANSFORMATION

The transformation

S 7→ 2M − S

is well-known as Pitman’s transformation. (It transforms one-

sided Brownian motion to a Bessel process [Pitman 1975].)

Given the relationship between η and S, and U = M − S, the

relation TS = 2M − S − 2M0 is equivalent to:

(Tη)n + Un = ηn + Un−1,

i.e. conservation of mass.



‘PAST MAXIMUM’ OPERATORS

Above corresponds to udKdV(J,∞) and dKdV(α,0); parameters

appear in path encoding. More novel ‘past maximum’ operators

for udKdV(J,K), J ≤ K [C., Sasada]. Spatial shift θ needed for

Toda systems.



‘PAST MAXIMUM’ OPERATORS

T∨ =udKdV, T
∑

=dKdV, T∨∗ =udToda, T
∑∗

=dToda.



GENERAL APPROACH

Aim to change variables atn := An(ηtn), btn := Bn(utn) so that

(at+1
n−m, btn) = Kn(atn, b

t
n−1) satisfies

K
(1)
n (a, b)− 2K

(2)
n (a, b) = a− 2b.

Path encoding given by

Sn − Sn−1 = an.

Existence of carrier (bn)n∈Z equivalent to existence of ‘past max-

imum’ satisfying

Mn = K
(2)
n

(

Sn − Sn−1,Mn−1 − Sn−1
)

+ Sn.

Dynamics then given by S 7→ TMS := 2M − S − 2M0.

Advantage: M equation can be solved in examples. Moreover,

can determine uniquely a choice of M for which the procedure

can be iterated. Gives existence and uniqueness of solutions.



APPLICATION TO BBS(J,∞)

Given η = (ηn)n∈Z ∈ {0,1, . . . , J}
Z, let S be the path given by

setting S0 = 0 and Sn − Sn−1 = J − 2ηn for n ∈ Z. If S satisfies

lim
n→∞

Sn

n
> 0, lim

n→−∞

Sn

n
> 0

then there is a unique solution (ηtn, U
t
n)n,t∈Z to udKdV that sat-

isfies the initial condition η0 = η. This solution is given by

ηtn :=
J − St

n + St
n−1

2
, U t

n := M∨(St)n−St
n+

J

2
, ∀n, t ∈ Z,

where St := (T∨)t(S) for all t ∈ Z.

[Essentially similar results hold for other systems.]



APPLICATION TO BBS(J,∞)

[Simulation with J = 1. For configurations, time runs upwards.]



3. INVARIANT MEASURES

VIA DETAILED BALANCE



APPROACHES TO INVARIANCE

1. Ferrari, Nguyen, Rolla, Wang: BBS soliton decomposition.

2. C., Kato, Tsujimoto, Sasada - Three conditions theorem

for BBS (later generalized). Any two of the three following

conditions imply the third:

←−η
d
= η, Ū

d
= U, Tη

d
= η,

where ←−η is the reversed configuration, and Ū is the reversed

carrier process given as ←−η n = η−(n−1), Ūn = U−n.

3. C., Sasada - Detailed balance for locally-defined dynamics.



DETAILED BALANCE

(HOMOGENEOUS CASE)

Consider homogenous lattice system

ηt+1
n

OO

· · ·U t
n−1

//F U t
n . . . ,

ηtn
...

Suppose µ is a probability measure such that µZ(X ∗) = 1, where

X ∗ are those configurations for which there exists a unique global

solution.

It is then the case that µZ ◦ T−1 = µZ if and only if there exists

a probability measure ν such that

(µ× ν) ◦ F−1 = µ× ν.

Moreover, when this holds, U t
n ∼ ν (under µZ).



KDV-TYPE EXAMPLES

udKdV Up to trivial measures and technical conditions, i.i.d.

invariant measures are either:

• shifted, truncated exponential, or;

• scaled, shifted, truncated, bipartite geometric.

Carrier marginal is of same form.

dKdV(α,0) I.i.d. invariant measures are given by:

• µ = GIG(λ, cα, c) with 2
∫

log(x)µ(dx) < − logα.

Carrier marginal of form ν = IG(λ, c).

Duality gives dKdV(0,β) invariant measures.

NB. GIG=generalised inverse Gaussian, IG=inverse gamma.

Remark Can check ergodicity of the relevant transformations.



CHARACTERISATION THEOREMS

[Kac 1939] If X and Y are independent, then X + Y , X − Y are

independent if and only if X and Y are normal with a common

variance.

[Matsumoto, Yor 1998], [Letac, Wesolowski 2000] If X > 0 and

Y > 0 are independent, then

(X + Y )−1, X−1 − (X + Y )−1

are independent if and only if X has a generalised inverse Gaus-

sion (GIG) distribution and Y has a gamma distribution.

NB. Appears in study of exponential version of Pitman’s trans-

formation, and random infinite continued fractions.



CONJECTURE

dKdV(α,β) Detailed balance solution:

µ× ν = GIG(λ, cα, c)×GIG(λ, cβ, c).

Conjecture These are only solutions to detailed balance for

F
(α,β)
dK . In particular, can [Letac, Wesolowski 2000] be gener-

alised to

(X, Y ) 7→

(

Y (1 + βXY )

1 + αXY
,
X(1 + αXY )

1 + βXY

)

with αβ > 0?

Remark Our result for udKdV solves (up to technicalities) the

‘zero temperature’ version based on the map:

(X, Y ) 7→ (Y −max{X + Y − J,0}+max{X + Y −K,0},

X −max{X + Y −K,0}+max{X + Y − J,0}) .



SPLITTING TODA-TYPE EXAMPLES

Decompose the map FudT into FudT ∗ and F−1udT ∗:

FudT ∗ min{b, c} F−1udT ∗
a+b
−min{b,c}

c //

c− b
2

−
min{b,c}

2

//
a+c
−min{b,c}

.

b

OO

a

OO

[Can do similarly for FdT .] Invariance of (µ̃×µ)Z for udToda can

be related to the existence of (ν̃, ν) such that

(µ× ν) ◦ F−1udT ∗ = (µ̃× ν̃),

NB. This is also equivalent to local invariance of µ̃×µ× ν under

FudT , cf. Burke’s property, or to

(µ̃× µ× ν) ◦ (F
(2,3)
udT )−1 = (µ× ν).



TODA-TYPE EXAMPLES

udToda Up to trivial measures and technical conditions, alter-

nating i.i.d. invariant measures are either:

• shifted exponential, or;

• scaled, shifted geometric.

dToda Alternating i.i.d. invariant measures are given by:

• gamma distributions.

NB. Can completely characterise detailed balance solutions in

these cases using classical results:

• (X, Y ) 7→ (min{X,Y }, X−Y ) [Ferguson, Crawford 1964-1966];

• (X, Y ) 7→ (X + Y,X/(X + Y )) [Lukacs 1955].

Ergodicity is an open question.



LINKS BETWEEN DETAILED BALANCE SOLUTIONS



RELATED STOCHASTIC INTEGRABLE SYSTEMS

cf. [CHAUMONT, NOACK 2018]

Xt+1
n
OO

U t
n−1

//R(X̃t
n, ·, ·) U t

n,

Xt
n

(µ̃× µ× ν) ◦R−1 = µ× ν

R∗ d R−1∗ e

c = U t
n−1

//g //f.

b = Xt
n

OO

a = X̃t
n

OO

(µ× ν) ◦R−1∗ = µ̃× ν̃

• Directed LPP: R = F
(2,3)
udT .

• Directed polymer (site weights): R = F
(2,3)
dT .

Directed polymer (edge weights), higher spin vertex models...


