# Invariant measures for 

KdV and Toda-type discrete integrable systems

Online Open Probability School<br>12 June 2020<br>David Croydon (Kyoto)<br>joint with<br>Makiko Sasada (Tokyo) and Satoshi Tsujimoto (Kyoto)

## 1. KDV AND TODA-TYPE DISCRETE INTEGRABLE SYSTEMS

## KDV AND TODA LATTICE EQUATIONS



Source: Shnir


Korteweg-de Vries (KdV) equation:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+6 u \frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}=0 \\
& \text { where } u=(u(x, t))_{x, t \in \mathbb{R}}
\end{aligned}
$$

Toda Iattice equation:

$$
\begin{aligned}
& \qquad \begin{cases}\frac{d}{d t} p_{n} & =e^{-\left(q_{n}-q_{n-1}\right)}-e^{-\left(q_{n+1}-q_{n}\right)} \\
\frac{d}{d t} q_{n} & =p_{n},\end{cases} \\
& \text { where } p_{n}=\left(p_{n}(t)\right)_{t \in \mathbb{R}}, q_{n}=\left(q_{n}(t)\right)_{t \in \mathbb{R}} .
\end{aligned}
$$

## KDV AND TODA LATTICE EQUATIONS




KdV 2-soliton

Source: Brunelli


Source: Singer et al

Korteweg-de Vries (KdV) equation:

$$
\frac{\partial u}{\partial t}+6 u \frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}=0
$$

where $u=(u(x, t))_{x, t \in \mathbb{R}}$.

Toda lattice equation:

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{d}{d t} p_{n} & =e^{-\left(q_{n}-q_{n-1}\right)}-e^{-\left(q_{n+1}-q_{n}\right)} \\
\frac{d}{d t} q_{n} & =p_{n},
\end{aligned} \\
& \text { where } p_{n}=\left(p_{n}(t)\right)_{t \in \mathbb{R}}, q_{n}=\left(q_{n}(t)\right)_{t \in \mathbb{R}} .
\end{aligned}
$$

## BOX-BALL SYSTEM (BBS)

Discrete time deterministic dynamical system (cellular automaton) introduced in 1990 by Takahashi and Satsuma. In original work, configurations $\left(\eta_{x}\right)_{x \in \mathbb{Z}}$ with a finite number of balls were considered. (NB. Empty box: $\eta_{x}=0$; ball $\eta_{x}=1$.)

- Every ball moves exactly once in each evolution time step
- The leftmost ball moves first and the next leftmost ball moves next and so on...
- Each ball moves to its nearest right vacant box



## BBS CARRIER

- Carrier moves left to right
- Picks up a ball if it finds one
- Puts down a ball if it comes to an empty box when it carries at least one ball
Set $U_{n}$ to be number of balls carried from $n$ to $n+1$, then
$U_{n}= \begin{cases}U_{n-1}+1, & \text { if } \eta_{n}=1, \\ U_{n-1}, & \text { if } \eta_{n}=0, U_{n-1}=0, \\ U_{n-1}-1, & \text { if } \eta_{n}=0, U_{n-1}>0,\end{cases}$
and

$$
(T \eta)_{n}=\min \left\{1-\eta_{n}, U_{n-1}\right\}
$$



## LATTICE EQUATIONS

The local dynamics of the BBS are described via a system of lattice equations:
where $F_{u d K}^{(1, \infty)}$ is an involution, as given by:

$$
F_{u d K}^{(1, \infty)}(\eta, u):=(\min \{1-\eta, u\}, \eta+u-\min \{1-\eta, u\}) .
$$

This is (a version of) the ultra-discrete $K d V$ equation ( $u d K d V$ ). Can generalise to box capacity $J \in \mathbb{N} \cup\{\infty\}$ and carrier capacity $K \in \mathbb{N} \cup\{\infty\}$.

## BASIC QUESTIONS

In today's talk, I will address two main topics for the BBS (and related systems):

- Existence and uniqueness of solutions to initial value problem for (udKdV) with infinite configurations?
- I.i.d. invariant measures on initial configurations?

Other recent developments in the study of the BBS that I will not talk about:

- Invariant measures based on solitons, e.g. [Ferrari, Nguyen, Rolla, Wang]. See also [Levine, Lyu, Pike], etc.

- Generalized hydrodynamic limits, e.g. [C., Sasada], [Kuniba, Misguich, Pasquier].


## INTEGRABLE SYSTEMS DERIVED FROM THE KDV AND TODA EQUATIONS



## ULTRA-DISCRETE KDV EQUATION (UDKDV)



Variables are $\mathbb{R}$-valued. Parameter $J$ represents box capacity, $K$ represents carrier capacity. Multi-coloured version of BBS/ UDKDV also studied [Kondo].

## DISCRETE KDV EQUATION (DKDV)

| Model | Lattice structure | Local dynamics: $F_{d K}^{(\alpha, \beta)}$ |
| :---: | :---: | :---: |
| dKdV | $\omega_{n}^{t+1}$ | $\frac{b(1+\beta a b)}{(1+\alpha a b)}$ |
|  | $U_{n-1}^{t} \xrightarrow{\sim} \omega_{n}^{t}$ | $b \xrightarrow{\omega_{n}^{t}}$ |

Variables are $(0, \infty)$-valued. UDKDV is obtained as ultra-discrete/ zero-temperature limit by making change of variables:

$$
\alpha=e^{-J / \varepsilon}, \quad \beta=e^{-K / \varepsilon}, \quad a=e^{a / \varepsilon}, \quad b=e^{b / \varepsilon}
$$

## ULTRA-DISCRETE TODA EQUATION (UDTODA)



Variables are $\mathbb{R}$-valued. For $\operatorname{BBS}(1, \infty)$, can understand $\left(Q_{n}^{t}, E_{n}^{t}\right)_{n \in \mathbb{Z}}$ as the lengths of consequence ball/empty box sequences.

## DISCRETE TODA EQUATION (DTODA)

| Model | Lattice structure | Local dynamics: $F_{d T}$ |
| :---: | :---: | :---: |
| dToda | $I_{n}^{t+1} \quad J_{n}^{t+1}$ | $b+c \frac{a b}{b+c}$ |
|  |  |  |

Variables are $(0, \infty)$-valued. UDTODA is obtained as ultradiscrete/ zero-temperature limit by making change of variables:

$$
a=e^{-a / \varepsilon}, \quad b=e^{-b / \varepsilon}, \quad c=e^{-b / \varepsilon}
$$

## INTEGRABLE SYSTEMS DERIVED FROM THE KDV AND TODA EQUATIONS



NB. [Quastel, Remenik 2019] connected the KPZ fixed point to the Kadomtsev-Petviashvili (KP) equation. Both $d K d V$ and dToda can be obtained from the discrete KP equation.
2. GLOBAL SOLUTIONS BASED ON PATH ENCODINGS

## PATH ENCODING FOR BBS AND CARRIER



Let $\eta$ be a finite configuration.
Define $\left(S_{n}\right)_{n \in \mathbb{Z}}$ by $S_{0}=0$ and

$$
S_{n}-S_{n-1}=1-2 \eta_{n}
$$

Let

$$
U_{n}=M_{n}-S_{n}
$$

where $M_{n}=\max _{m \leq n} S_{m}$.
Can check $\left(U_{n}\right)_{n \in \mathbb{Z}}$ is a carrier process, and the path encoding of $T \eta$ is

$$
T S_{n}=2 M_{n}-S_{n}-2 M_{0}
$$

## PITMAN'S TRANSFORMATION

The transformation

$$
S \mapsto 2 M-S
$$

is well-known as Pitman's transformation. (It transforms onesided Brownian motion to a Bessel process [Pitman 1975].)

Given the relationship between $\eta$ and $S$, and $U=M-S$, the relation $T S=2 M-S-2 M_{0}$ is equivalent to:

$$
(T \eta)_{n}+U_{n}=\eta_{n}+U_{n-1}
$$

i.e. conservation of mass.
'PAST MAXIMUM' OPERATORS

| Model | 'Past maximum' | Path encoding dynamics |
| :---: | :---: | :---: |
| udKdV | $M^{\vee}(S)_{n}:=\sup _{m \leq n}\left(\frac{S_{m}+S_{m-1}}{2}\right)$ | $T^{\vee}(S)=2 M^{\vee}(S)-S$ |
| dKdV | $M^{\Sigma}(S)_{n}:=\log \left(\sum_{m \leq n} \exp \left(\frac{S_{m}+S_{m-1}}{2}\right)\right)$ | $T^{\Sigma}(S)=2 M^{\Sigma}(S)-S$ |
| udToda | $M^{\vee^{*}}(S)_{n}:= \begin{cases}\sup _{m \leq \frac{n-1}{2}} S_{2 m}, & n \text { odd }, \\ \frac{M^{\vee^{*}}(S)_{n+1}+M^{\vee^{*}}(S)_{n-1}}{2}, & n \text { even, }\end{cases}$ | $\begin{aligned} & \mathscr{T}^{\vee^{*}}(S)=\theta \circ T^{\vee^{*}}(S), \\ & \text { where } \\ & T^{\vee^{*}}(S):=2 M^{\vee^{*}}(S)-S \end{aligned}$ |
| dToda | $M^{\Sigma^{*}}(S)_{n}:= \begin{cases}\log \left(\sum_{m \leq \frac{n-1}{2}} \exp \left(S_{2 m}\right)\right), & n \text { odd } \\ \frac{M^{\Sigma^{*}}(S)_{n+1}+M^{\Sigma^{*}}(S)_{n-1}}{2}, & n \text { even }\end{cases}$ | $\begin{aligned} & \mathscr{T}^{\Sigma^{*}}(S)=\theta \circ T^{\Sigma^{*}}(S), \\ & \text { where } \\ & T^{\Sigma^{*}}(S):=2 M^{\Sigma^{*}}(S)-S \end{aligned}$ |

Above corresponds to $u d K d V(J, \infty)$ and $\operatorname{dKdV}(\alpha, 0)$; parameters appear in path encoding. More novel 'past maximum' operators for $\operatorname{udKdV}(J, K), J \leq K$ [C., Sasada]. Spatial shift $\theta$ needed for Toda systems.

## ‘PAST MAXIMUM' OPERATORS


$T^{\vee}=$ udKd $\vee, T^{\sum}=\mathrm{dK} \mathrm{dV}, T^{\vee *}=$ udToda, $T^{\sum^{*}}=\mathrm{dToda}$.

## GENERAL APPROACH

Aim to change variables $a_{n}^{t}:=\mathcal{A}_{n}\left(\eta_{n}^{t}\right), b_{n}^{t}:=\mathcal{B}_{n}\left(u_{n}^{t}\right)$ so that $\left(a_{n-m}^{t+1}, b_{n}^{t}\right)=K_{n}\left(a_{n}^{t}, b_{n-1}^{t}\right)$ satisfies

$$
K_{n}^{(1)}(a, b)-2 K_{n}^{(2)}(a, b)=a-2 b
$$

Path encoding given by

$$
S_{n}-S_{n-1}=a_{n}
$$

Existence of carrier $\left(b_{n}\right)_{n \in \mathbb{Z}}$ equivalent to existence of 'past maximum' satisfying

$$
M_{n}=K_{n}^{(2)}\left(S_{n}-S_{n-1}, M_{n-1}-S_{n-1}\right)+S_{n}
$$

Dynamics then given by $S \mapsto T^{M} S:=2 M-S-2 M_{0}$.
Advantage: $M$ equation can be solved in examples. Moreover, can determine uniquely a choice of $M$ for which the procedure can be iterated. Gives existence and uniqueness of solutions.

## APPLICATION TO BBS $(J, \infty)$

Given $\eta=\left(\eta_{n}\right)_{n \in \mathbb{Z}} \in\{0,1, \ldots, J\}^{\mathbb{Z}}$, let $S$ be the path given by setting $S_{0}=0$ and $S_{n}-S_{n-1}=J-2 \eta_{n}$ for $n \in \mathbb{Z}$. If $S$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n}>0, \quad \lim _{n \rightarrow-\infty} \frac{S_{n}}{n}>0
$$

then there is a unique solution $\left(\eta_{n}^{t}, U_{n}^{t}\right)_{n, t \in \mathbb{Z}}$ to udKdV that satisfies the initial condition $\eta^{0}=\eta$. This solution is given by
$\eta_{n}^{t}:=\frac{J-S_{n}^{t}+S_{n-1}^{t}}{2}, \quad U_{n}^{t}:=M^{\vee}\left(S^{t}\right)_{n}-S_{n}^{t}+\frac{J}{2}, \quad \forall n, t \in \mathbb{Z}$,
where $S^{t}:=\left(T^{\vee}\right)^{t}(S)$ for all $t \in \mathbb{Z}$.
[Essentially similar results hold for other systems.]

## APPLICATION TO BBS $(J, \infty)$


[Simulation with $J=1$. For configurations, time runs upwards.]
3. INVARIANT MEASURES

## VIA DETAILED BALANCE

## APPROACHES TO INVARIANCE

1. Ferrari, Nguyen, Rolla, Wang: BBS soliton decomposition.
2. C., Kato, Tsujimoto, Sasada - Three conditions theorem for $B B S$ (later generalized). Any two of the three following conditions imply the third:

$$
\overleftarrow{\eta} \stackrel{d}{=} \eta, \quad \bar{U} \stackrel{d}{=} U, \quad T \eta \stackrel{d}{=} \eta
$$

where $\bar{\eta}$ is the reversed configuration, and $\bar{U}$ is the reversed carrier process given as $\overleftarrow{\eta}_{n}=\eta_{-(n-1)}, \bar{U}_{n}=U_{-n}$.
3. C., Sasada - Detailed balance for locally-defined dynamics.

## DETAILED BALANCE <br> (HOMOGENEOUS CASE)

Consider homogenous lattice system


Suppose $\mu$ is a probability measure such that $\mu^{\mathbb{Z}}\left(\mathcal{X}^{*}\right)=1$, where $\mathcal{X}^{*}$ are those configurations for which there exists a unique global solution.

It is then the case that $\mu^{\mathbb{Z}} \circ T^{-1}=\mu^{\mathbb{Z}}$ if and only if there exists a probability measure $\nu$ such that

$$
(\mu \times \nu) \circ F^{-1}=\mu \times \nu
$$

Moreover, when this holds, $U_{n}^{t} \sim \nu$ (under $\mu^{\mathbb{Z}}$ ).

## KDV-TYPE EXAMPLES

udKdV Up to trivial measures and technical conditions, i.i.d. invariant measures are either:

- shifted, truncated exponential, or;
- scaled, shifted, truncated, bipartite geometric.

Carrier marginal is of same form.
$\mathbf{d K d V}(\alpha, 0)$ I.i.d. invariant measures are given by:

- $\mu=G I G(\lambda, c \alpha, c)$ with $2 \int \log (x) \mu(d x)<-\log \alpha$.

Carrier marginal of form $\nu=I G(\lambda, c)$.
Duality gives $d K d V(0, \beta)$ invariant measures.
NB. $G I G=$ generalised inverse Gaussian, $I G=$ inverse gamma.

Remark Can check ergodicity of the relevant transformations.

## CHARACTERISATION THEOREMS

[Kac 1939] If $X$ and $Y$ are independent, then $X+Y, X-Y$ are independent if and only if $X$ and $Y$ are normal with a common variance.
[Matsumoto, Yor 1998], [Letac, Wesolowski 2000] If $X>0$ and $Y>0$ are independent, then

$$
(X+Y)^{-1}, \quad X^{-1}-(X+Y)^{-1}
$$

are independent if and only if $X$ has a generalised inverse Gaussion (GIG) distribution and $Y$ has a gamma distribution.

NB. Appears in study of exponential version of Pitman's transformation, and random infinite continued fractions.

## CONJECTURE

$\mathbf{d K d V}(\alpha, \beta)$ Detailed balance solution:

$$
\mu \times \nu=G I G(\lambda, c \alpha, c) \times G I G(\lambda, c \beta, c)
$$

Conjecture These are only solutions to detailed balance for $F_{d K}^{(\alpha, \beta)}$. In particular, can [Letac, Wesolowski 2000] be generalised to

$$
(X, Y) \mapsto\left(\frac{Y(1+\beta X Y)}{1+\alpha X Y}, \frac{X(1+\alpha X Y)}{1+\beta X Y}\right)
$$

with $\alpha \beta>0$ ?
Remark Our result for udKdV solves (up to technicalities) the 'zero temperature' version based on the map:

$$
\begin{aligned}
& (X, Y) \mapsto(Y-\max \{X+Y-J, 0\}+\max \{X+Y-K, 0\} \\
& \quad X-\max \{X+Y-K, 0\}+\max \{X+Y-J, 0\})
\end{aligned}
$$

## SPLITTING TODA-TYPE EXAMPLES

Decompose the map $F_{u d T}$ into $F_{u d T^{*}}$ and $F_{u d T^{*}}^{-1}$ :

[Can do similarly for $F_{d T}$.] Invariance of $(\tilde{\mu} \times \mu)^{\mathbb{Z}}$ for udToda can be related to the existence of $(\tilde{\nu}, \nu)$ such that

$$
(\mu \times \nu) \circ F_{u d T^{*}}^{-1}=(\tilde{\mu} \times \tilde{\nu})
$$

NB. This is also equivalent to local invariance of $\tilde{\mu} \times \mu \times \nu$ under $F_{u d T}$, cf. Burke's property, or to

$$
(\tilde{\mu} \times \mu \times \nu) \circ\left(F_{u d T}^{(2,3)}\right)^{-1}=(\mu \times \nu)
$$

## TODA-TYPE EXAMPLES

udToda Up to trivial measures and technical conditions, alternating i.i.d. invariant measures are either:

- shifted exponential, or;
- scaled, shifted geometric.
dToda Alternating i.i.d. invariant measures are given by:
- gamma distributions.

NB. Can completely characterise detailed balance solutions in these cases using classical results:

- ( $X, Y$ ) $\mapsto(\min \{X, Y\}, X-Y)$ [Ferguson, Crawford 1964-1966];
- $(X, Y) \mapsto(X+Y, X /(X+Y))$ [Lukacs 1955].

Ergodicity is an open question.

## LINKS BETWEEN DETAILED BALANCE SOLUTIONS


RELATED STOCHASTIC INTEGRABLE SYSTEMS cf. [CHAUMONT, NOACK 2018]


$$
(\tilde{\mu} \times \mu \times \nu) \circ R^{-1}=\mu \times \nu
$$



- Directed LPP: $R=F_{u d T}^{(2,3)}$.
- Directed polymer (site weights): $R=F_{d T}^{(2,3)}$.

Directed polymer (edge weights), higher spin vertex models...

