Invariant measures for KdV and Toda-type discrete integrable systems

Online Open Probability School 12 June 2020

David Croydon (Kyoto)

joint with

Makiko Sasada (Tokyo) and Satoshi Tsujimoto (Kyoto)

1. KDV AND TODA-TYPE DISCRETE INTEGRABLE SYSTEMS

KDV AND TODA LATTICE EQUATIONS

Korteweg-de Vries (KdV) equation:

$$\frac{\partial u}{\partial t} + 6u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0,$$

where $u = (u(x,t))_{x,t \in \mathbb{R}}.$

Source: Shnir

$$\begin{cases} \frac{d}{dt}p_n &= e^{-(q_n - q_{n-1})} - e^{-(q_{n+1} - q_n)}, \\ \frac{d}{dt}q_n &= p_n, \end{cases}$$

where $p_n = (p_n(t))_{t \in \mathbb{R}}, q_n = (q_n(t))_{t \in \mathbb{R}}$

KDV AND TODA LATTICE EQUATIONS

Source: Brunelli

Korteweg-de Vries (KdV) equation:

$$\frac{\partial u}{\partial t} + 6u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0,$$

ere $u = (u(x,t))_{x,t \in \mathbb{R}}.$

Source: Singer et al

Toda lattice equation:

$$\begin{cases} \frac{d}{dt}p_n &= e^{-(q_n - q_{n-1})} - e^{-(q_n + 1 - q_n)}, \\ \frac{d}{dt}q_n &= p_n, \end{cases}$$

where $p_n = (p_n(t))_{t \in \mathbb{R}}, q_n = (q_n(t))_{t \in \mathbb{R}}.$

BOX-BALL SYSTEM (BBS)

Discrete time deterministic dynamical system (cellular automaton) introduced in 1990 by Takahashi and Satsuma. In original work, configurations $(\eta_x)_{x\in\mathbb{Z}}$ with a finite number of balls were considered. (NB. Empty box: $\eta_x = 0$; ball $\eta_x = 1$.)

- Every ball moves exactly once in each evolution time step
- The leftmost ball moves first and the next leftmost ball moves next and so on...
- Each ball moves to its nearest right vacant box

BBS CARRIER

- Carrier moves left to right
- Picks up a ball if it finds one
- Puts down a ball if it comes to an empty box when it carries at least one ball

Set U_n to be number of balls carried from n to n + 1, then

$$U_n = \begin{cases} U_{n-1} + 1, & \text{if } \eta_n = 1, \\ U_{n-1}, & \text{if } \eta_n = 0, U_{n-1} = 0, \\ U_{n-1} - 1, & \text{if } \eta_n = 0, U_{n-1} > 0, \end{cases}$$

and

$$(T\eta)_n = \min\left\{1 - \eta_n, U_{n-1}\right\}.$$

• • • •

LATTICE EQUATIONS

The local dynamics of the BBS are described via a system of lattice equations:

where $F_{udK}^{(1,\infty)}$ is an involution, as given by:

$$F_{udK}^{(1,\infty)}(\eta,u) := (\min\{1-\eta,u\}, \eta + u - \min\{1-\eta,u\}).$$

This is (a version of) the *ultra-discrete KdV equation (udKdV)*. Can generalise to box capacity $J \in \mathbb{N} \cup \{\infty\}$ and carrier capacity $K \in \mathbb{N} \cup \{\infty\}$.

BASIC QUESTIONS

In today's talk, I will address two main topics for the BBS (and related systems):

- Existence and uniqueness of solutions to initial value problem for (udKdV) with infinite configurations?
- I.i.d. invariant measures on initial configurations?

Other recent developments in the study of the BBS that I will not talk about:

• Invariant measures based on solitons, e.g. [Ferrari, Nguyen, Rolla, Wang]. See also [Levine, Lyu, Pike], etc.

 Generalized hydrodynamic limits, e.g. [C., Sasada], [Kuniba, Misguich, Pasquier].

INTEGRABLE SYSTEMS DERIVED FROM THE KDV AND TODA EQUATIONS

ULTRA-DISCRETE KDV EQUATION (UDKDV)

Variables are \mathbb{R} -valued. Parameter J represents box capacity, K represents carrier capacity. Multi-coloured version of BBS/UDKDV also studied [Kondo].

DISCRETE KDV EQUATION (DKDV)

Variables are $(0, \infty)$ -valued. UDKDV is obtained as ultra-discrete/ zero-temperature limit by making change of variables:

$$\alpha = e^{-J/\varepsilon}, \qquad \beta = e^{-K/\varepsilon}, \qquad a = e^{a/\varepsilon}, \qquad b = e^{b/\varepsilon}.$$

ULTRA-DISCRETE TODA EQUATION (UDTODA)

Variables are \mathbb{R} -valued. For BBS(1, ∞), can understand $(Q_n^t, E_n^t)_{n \in \mathbb{Z}}$ as the lengths of consequence ball/empty box sequences.

DISCRETE TODA EQUATION (DTODA)

Variables are $(0, \infty)$ -valued. UDTODA is obtained as ultradiscrete/ zero-temperature limit by making change of variables:

$$a = e^{-a/\varepsilon}, \qquad b = e^{-b/\varepsilon}, \qquad c = e^{-b/\varepsilon}.$$

INTEGRABLE SYSTEMS DERIVED FROM THE KDV AND TODA EQUATIONS

NB. [Quastel, Remenik 2019] connected the KPZ fixed point to the Kadomtsev-Petviashvili (KP) equation. Both dKdV and dToda can be obtained from the discrete KP equation.

2. GLOBAL SOLUTIONS BASED ON PATH ENCODINGS

PATH ENCODING FOR BBS AND CARRIER

Let η be a finite configuration. Define $(S_n)_{n \in \mathbb{Z}}$ by $S_0 = 0$ and $S_n - S_{n-1} = 1 - 2\eta_n$. Let $U_n = M_n - S_n$, where $M_n = \max_{m \le n} S_m$.

Can check $(U_n)_{n\in\mathbb{Z}}$ is a carrier process, and the path encoding of $T\eta$ is

$$TS_n = 2M_n - S_n - 2M_0$$

PITMAN'S TRANSFORMATION

The transformation

$$S \mapsto 2M - S$$

is well-known as Pitman's transformation. (It transforms onesided Brownian motion to a Bessel process [Pitman 1975].)

Given the relationship between η and S, and U = M - S, the relation $TS = 2M - S - 2M_0$ is equivalent to:

$$(T\eta)_n + U_n = \eta_n + U_{n-1},$$

i.e. conservation of mass.

'PAST MAXIMUM' OPERATORS

Model	'Past maximum'	Path encoding dynamics
udKdV	$M^{\vee}(S)_n := \sup_{m \le n} \left(\frac{S_m + S_{m-1}}{2} \right)$	$T^{\vee}(S) = 2M^{\vee}(S) - S$
dKdV	$M^{\Sigma}(S)_n := \log\left(\sum_{m \le n} \exp\left(\frac{S_m + S_{m-1}}{2}\right)\right)$	$T^{\Sigma}(S) = 2M^{\Sigma}(S) - S$
udToda	$M^{\vee^*}(S)_n := \begin{cases} \sup_{m \le \frac{n-1}{2}} S_{2m}, & n \text{ odd,} \\ \frac{M^{\vee^*}(S)_{n+1} + M^{\vee^*}(S)_{n-1}}{2}, & n \text{ even,} \end{cases}$	$\mathcal{T}^{\vee^*}(S) = \boldsymbol{\theta} \circ T^{\vee^*}(S),$ where $T^{\vee^*}(S) := 2M^{\vee^*}(S) - S$
dToda	$M^{\Sigma^*}(S)_n := \begin{cases} \log\left(\sum_{m \le \frac{n-1}{2}} \exp\left(S_{2m}\right)\right), & n \text{ odd}, \\ \frac{M^{\Sigma^*}(S)_{n+1} + M^{\Sigma^*}(S)_{n-1}}{2}, & n \text{ even} \end{cases}$	$\mathcal{T}^{\Sigma^*}(S) = \boldsymbol{\theta} \circ T^{\Sigma^*}(S),$ where $T^{\Sigma^*}(S) := 2M^{\Sigma^*}(S) - S$

Above corresponds to udKdV (J,∞) and dKdV $(\alpha,0)$; parameters appear in path encoding. More novel 'past maximum' operators for udKdV(J,K), $J \leq K$ [C., Sasada]. Spatial shift θ needed for Toda systems.

'PAST MAXIMUM' OPERATORS

 $T^{\vee} = udKdV, T^{\sum} = dKdV, T^{\vee*} = udToda, T^{\sum^{*}} = dToda.$

GENERAL APPROACH

Aim to change variables $a_n^t := \mathcal{A}_n(\eta_n^t)$, $b_n^t := \mathcal{B}_n(u_n^t)$ so that $(a_{n-m}^{t+1}, b_n^t) = K_n(a_n^t, b_{n-1}^t)$ satisfies

$$K_n^{(1)}(a,b) - 2K_n^{(2)}(a,b) = a - 2b.$$

Path encoding given by

$$S_n - S_{n-1} = a_n.$$

Existence of carrier $(b_n)_{n \in \mathbb{Z}}$ equivalent to existence of 'past maximum' satisfying

$$M_n = K_n^{(2)} \left(S_n - S_{n-1}, M_{n-1} - S_{n-1} \right) + S_n.$$

Dynamics then given by $S \mapsto T^M S := 2M - S - 2M_0$.

Advantage: M equation can be solved in examples. Moreover, can determine uniquely a choice of M for which the procedure can be iterated. Gives existence and uniqueness of solutions.

APPLICATION TO $BBS(J,\infty)$

Given $\eta = (\eta_n)_{n \in \mathbb{Z}} \in \{0, 1, \dots, J\}^{\mathbb{Z}}$, let *S* be the path given by setting $S_0 = 0$ and $S_n - S_{n-1} = J - 2\eta_n$ for $n \in \mathbb{Z}$. If *S* satisfies

$$\lim_{n \to \infty} \frac{S_n}{n} > 0, \qquad \lim_{n \to -\infty} \frac{S_n}{n} > 0$$

then there is a unique solution $(\eta_n^t, U_n^t)_{n,t\in\mathbb{Z}}$ to udKdV that satisfies the initial condition $\eta^0 = \eta$. This solution is given by

$$\eta_n^t := \frac{J - S_n^t + S_{n-1}^t}{2}, \qquad U_n^t := M^{\vee}(S^t)_n - S_n^t + \frac{J}{2}, \qquad \forall n, t \in \mathbb{Z},$$

where $S^t := (T^{\vee})^t(S)$ for all $t \in \mathbb{Z}$.

[Essentially similar results hold for other systems.]

APPLICATION TO BBS (J,∞)

[Simulation with J = 1. For configurations, time runs upwards.]

3. INVARIANT MEASURES VIA DETAILED BALANCE

APPROACHES TO INVARIANCE

1. Ferrari, Nguyen, Rolla, Wang: BBS soliton decomposition.

2. C., Kato, Tsujimoto, Sasada - *Three conditions theorem for BBS* (later generalized). Any two of the three following conditions imply the third:

$$\overleftarrow{\eta} \stackrel{d}{=} \eta, \qquad \overline{U} \stackrel{d}{=} U, \qquad T\eta \stackrel{d}{=} \eta,$$

where $\overleftarrow{\eta}$ is the reversed configuration, and \overline{U} is the reversed carrier process given as $\overleftarrow{\eta}_n = \eta_{-(n-1)}$, $\overline{U}_n = U_{-n}$.

3. C., Sasada - Detailed balance for locally-defined dynamics.

DETAILED BALANCE (HOMOGENEOUS CASE)

Consider homogenous lattice system

Suppose μ is a probability measure such that $\mu^{\mathbb{Z}}(\mathcal{X}^*) = 1$, where \mathcal{X}^* are those configurations for which there exists a unique global solution.

It is then the case that $\mu^{\mathbb{Z}} \circ T^{-1} = \mu^{\mathbb{Z}}$ if and only if there exists a probability measure ν such that

$$(\mu \times \nu) \circ F^{-1} = \mu \times \nu.$$

Moreover, when this holds, $U_n^t \sim \nu$ (under $\mu^{\mathbb{Z}}$).

KDV-TYPE EXAMPLES

udKdV Up to trivial measures and technical conditions, i.i.d. invariant measures are either:

- shifted, truncated exponential, or;
- scaled, shifted, truncated, bipartite geometric. Carrier marginal is of same form.

 $dKdV(\alpha,0)$ I.i.d. invariant measures are given by:

• $\mu = GIG(\lambda, c\alpha, c)$ with $2 \int \log(x) \mu(dx) < -\log \alpha$.

Carrier marginal of form $\nu = IG(\lambda, c)$.

Duality gives $dKdV(0,\beta)$ invariant measures.

NB. GIG=generalised inverse Gaussian, IG=inverse gamma.

Remark Can check ergodicity of the relevant transformations.

CHARACTERISATION THEOREMS

[Kac 1939] If X and Y are independent, then X + Y, X - Y are independent if and only if X and Y are normal with a common variance.

[Matsumoto, Yor 1998], [Letac, Wesolowski 2000] If X > 0 and Y > 0 are independent, then

$$(X+Y)^{-1}, \qquad X^{-1} - (X+Y)^{-1}$$

are independent if and only if X has a generalised inverse Gaussion (GIG) distribution and Y has a gamma distribution.

NB. Appears in study of exponential version of Pitman's transformation, and random infinite continued fractions.

CONJECTURE

 $dKdV(\alpha,\beta)$ Detailed balance solution:

$$\mu \times \nu = GIG(\lambda, c\alpha, c) \times GIG(\lambda, c\beta, c).$$

Conjecture These are only solutions to detailed balance for $F_{dK}^{(\alpha,\beta)}$. In particular, can [Letac, Wesolowski 2000] be generalised to

$$(X,Y) \mapsto \left(\frac{Y(1+\beta XY)}{1+\alpha XY}, \frac{X(1+\alpha XY)}{1+\beta XY}\right)$$

with $\alpha\beta > 0$?

Remark Our result for udKdV solves (up to technicalities) the 'zero temperature' version based on the map:

$$(X, Y) \mapsto (Y - \max\{X + Y - J, 0\} + \max\{X + Y - K, 0\},\$$

 $X - \max\{X + Y - K, 0\} + \max\{X + Y - J, 0\}$).

SPLITTING TODA-TYPE EXAMPLES

Decompose the map F_{udT} into F_{udT^*} and $F_{udT^*}^{-1}$:

[Can do similarly for F_{dT} .] Invariance of $(\tilde{\mu} \times \mu)^{\mathbb{Z}}$ for udToda can be related to the existence of $(\tilde{\nu}, \nu)$ such that

$$(\mu \times \nu) \circ F_{udT^*}^{-1} = (\tilde{\mu} \times \tilde{\nu}),$$

NB. This is also equivalent to local invariance of $\tilde{\mu} \times \mu \times \nu$ under F_{udT} , cf. Burke's property, or to

$$(\tilde{\mu} \times \mu \times \nu) \circ (F_{udT}^{(2,3)})^{-1} = (\mu \times \nu).$$

TODA-TYPE EXAMPLES

udToda Up to trivial measures and technical conditions, alternating i.i.d. invariant measures are either:

- shifted exponential, or;
- scaled, shifted geometric.

dToda Alternating i.i.d. invariant measures are given by:

• gamma distributions.

NB. Can completely characterise detailed balance solutions in these cases using classical results:

- $(X,Y) \mapsto (\min\{X,Y\}, X-Y)$ [Ferguson, Crawford 1964-1966];
- $(X, Y) \mapsto (X + Y, X/(X + Y))$ [Lukacs 1955].

Ergodicity is an open question.

LINKS BETWEEN DETAILED BALANCE SOLUTIONS

RELATED STOCHASTIC INTEGRABLE SYSTEMS cf. [CHAUMONT, NOACK 2018]

 $(\tilde{\mu} \times \mu \times \nu) \circ R^{-1} = \mu \times \nu$

- Directed LPP: $R = F_{udT}^{(2,3)}$.
- Directed polymer (site weights): $R = F_{dT}^{(2,3)}$. Directed polymer (edge weights), higher spin vertex models...