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1. KDV AND TODA-TYPE
DISCRETE INTEGRABLE SYSTEMS



KDV AND TODA LATTICE EQUATIONS
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Korteweg-de Vries (KdV) equation:
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where u = (u(z,t) ), ter-

Toda lattice equation:
%pn —_ e_(qn_Qn—l) - e_(qn-l—l_qn)’
%QR — pn7

where pn = (pn(t))ter, an = (an(t))ier-



KDV AND TODA LATTICE EQUATIONS

Korteweg-de Vries (KdV) equation:
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Source: Brunelli

Toda lattice equation:
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Source: Singer et al where pn, = (pn(t))icr, gn = (gn(t))ier-



BOX-BALL SYSTEM (BBS)

Discrete time deterministic dynamical system (cellular automa-
ton) introduced in 1990 by Takahashi and Satsuma. In original
work, configurations (nz).cz With a finite number of balls were

considered. (NB. Empty box: n, = 0; ball np = 1.)
e Every ball moves exactly once in each evolution time step

e [ he leftmost ball moves first and the next leftmost ball
moves next and so on...

e Each ball moves to its nearest right vacant box

Dynamics T : {0,1}# — {0, 1}%:
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where (Tn), = 0 to left of particles.



BBS CARRIER

e Carrier moves left to right
e Picks up a ball if it finds one
e Puts down a ball if it comes to an
empty box when it carries at least
one ball
Set U, to be number of balls carried
from n to n+ 1, then
Up—1+1, if g =1,
Unp=1< U,_1, if n, =0,U,_1 =0,
Up,-1—1, ifn,=0,U,_1 >0,

and

(Tn)n = min{l —np,Up_1}.
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LATTICE EQUATIONS

The local dynamics of the BBS are described via a system of
lattice equations:
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where F,lgclif(’o) is an involution, as given by:

1, _ . .
F,id]?o)(n,u) = (min{l —n,u},n+u—min{l —n,u}).
This is (a version of) the ultra-discrete KdV equation (udKdV).

Can generalise to box capacity J € NU {oco} and carrier capacity
K € NU{o0o}.



BASIC QUESTIONS

In today’'s talk, I will address two main topics for the BBS (and
related systems):

e EXxistence and uniqueness of solutions to initial value problem
for (udKdV) with infinite configurations?

e [.i.d. invariant measures on initial configurations?

Other recent developments in the study of the BBS that I will
not talk about:

e Invariant measures based on solitons, e.g. [Ferrari, Nguyen,
Rolla, Wang]. See also [Levine, Lyu, Pike], etc.

e Generalized hydrodynamic limits, e.g. [C., Sasada], [Kuniba,
Misguich, Pasquier].



INTEGRABLE SYSTEMS DERIVED FROM
THE KDV AND TODA EQUATIONS

Korteweg-de Vries

Toda lattice equation

(KdV) equation Continuous limit
Continuous limit | | Discretization Continuous limit | | Discretization
Discrete KdV - 5611{ convolution Discrete Toda
equation [T T T T T T T T splir = equation
Ultra-discretization Ultra-discretization
Ultra-discrete KAV |_ _ _ _ _ Self-comvolution Ultra-discrete Toda
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Special case Special case

Box-ball system




ULTRA-DISCRETE KDV EQUATION (UDKDV)

Model | Lattice structure | Local dynamics: F,id‘]’]?)

t+1 a+min{J—a,b}
udkdV Tin — min{a,K—b}

Ut 4 %U}fb : ] b+min{a, Kb}
‘ —min{J—a,b}
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Variables are R-valued. Parameter J represents box capacity,
K represents carrier capacity. Multi-coloured version of BBS/
UDKDV also studied [Kondo].



DISCRETE KDV EQUATION (DKDV)

Model | Lattice structure | Local dynamics: chj’é’ﬁ)
t+1 b(1+Bab)
dKdV Wy, CET
U,ﬁ_lg’*Uﬁ b T a(l4+aab)
. ‘ (1+Bab)
Wp, a

Variables are (0, oo)-valued. UDKDV is obtained as ultra-discrete/
zero-temperature limit by making change of variables:

e e—J/a) B = e_K/g,

a = e b= eb/e.



ULTRA-DISCRETE TODA EQUATION (UDTODA)

Model L attice structure Local dynamics: F gt
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Variables are R-valued. For BBS(1,00), can understand (Q},, EY),c7
as the lengths of consequence ball/empty box sequences.
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DISCRETE TODA EQUATION (DTODA)

Model Lattice structure Local dynamics: Fyp
dToda gt b+c 2
S |
t t
I Ih g b a

Variables are (0, oco)-valued.

UDTODA is obtained as ultra-

discrete/ zero-temperature limit by making change of variables:

a=e ¢

b= e_b/e, c=eb/e



Korteweg-de Vries

INTEGRABLE SYSTEMS DERIVED FROM
THE KDV AND TODA EQUATIONS

(KdV) equation

Continuous limit IID[scretization

Discrete KdV
equation

Ultra-discretization

Ultra-discrete KdV
equation

Special case

Continuous limit

Self-convolution
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Box-ball system

Toda lattice equation

Continuous limit ||Discrelization

Discrete Toda
equation

Ultra-discretization

Ultra-discrete Toda
equation

Special case

NB. [Quastel, Remenik 2019] connected the KPZ fixed point
to the Kadomtsev-Petviashvili (KP) equation. Both dKdV and
dToda can be obtained from the discrete KP equation.



2. GLOBAL SOLUTIONS
BASED ON PATH ENCODINGS



PATH ENCODING FOR BBS AND CARRIER

A Let n be a finite configuration.

~,

Let
N\/\ A~ Up = My — Sp,

where M, = maX,,<, Sm.

Define (Sn)nez by So =0 and

Can check (Un),ecyz is a carrier process,
and the path encoding of I is

0000 60 O __ 00 O TSy = 2My — Sy — 2Mp.




PITMAN’'S TRANSFORMATION

The transformation
S—2M — S

is well-known as Pitman’s transformation. (It transforms one-
sided Brownian motion to a Bessel process [Pitman 1975].)

Given the relationship between n and S, and U = M — S, the
relation T'S = 2M — S — 2Mg is equivalent to:

(Tn)n + Un=nn+Up_1,

i.e. conservation of mass.



‘PAST MAXIMUM’ OPERATORS

Model ‘Past maximum’ Path encoding dynamics
V(¢ Sm ‘|‘Sm—1 N N :
udKdV M*(S), := sup — TV(S)=2M"(S)—S
m<n
m+ Sm | S/Q S(Q y
dKdV )n:=log | D exp T=(S)=2M=(S)—S
m<n
U sup,, -1 Som- n odd, TV (S)=00T v (S),
udToda | MTS)r =0y (Spoedt” s oo where e
2 , ’ 77 (S):=2M" (S)—S
: 2(S)=00T%(S),
lob< —1 €xXp (52, ) n odd. T=(S) ;
dToda | M= (S),:= Tt xP(S2m) ) | where

ME"(S), MZ S)n—
( )+1J2r O 1; n even

T (S) :=2M%"(S)—S

Above corresponds to udKdVV(J,>) and dKdV(«,0); parameters
appear in path encoding. More novel ‘past maximum’ operators

for udKdV(J,K), J < K [C., Sasada].

Toda systems.

Spatial shift & needed for



‘PAST MAXIMUM’ OPERATORS

TV =udKdV, T2-=dKdV, TV* =udToda, T2 =dToda.



GENERAL APPROACH

Aim to change variables al, := An(nt), b, := Bp(ul) so that
(altl bty = Kn(al, bl ;) satisfies

K, b) — 2K (a,b) = a — 20
Path encoding given by
Existence of carrier (by),cz €quivalent to existence of ‘past max-
imum’ satisfying
M, = quz) (Sn —Sp_1,M,_1 — Sn—l) + S5.
Dynamics then given by S +— TMS :=2M — 5 — 2M).
Advantage: M equation can be solved in examples. Moreover,

can determine uniquely a choice of M for which the procedure
can be iterated. Gives existence and uniqueness of solutions.



APPLICATION TO BBS(J,x)

Given n = (n)nez € {0,1,...,J}%, let S be the path given by
setting So =0 and S, — S,,_1 = J —2n, for n € Z. If S satisfies
S S
im == > 0, im == >0

n—,o00 n n——oo M
then there is a unique solution (n}, U},), tez to udKdV that sat-
isfies the initial condition n° = . This solution is given by
t t
77t — ']_Sn_l_sn—l
n - 2 )
where St := (TV)!(S) for all t € Z.

J
Ul = MY(S"), — s;;+§, Vn,t € Z,

[Essentially similar results hold for other systems.]



APPLICATION TO BBS(J,x)

0 20 40 60 80 100

[Simulation with J = 1. For configurations, time runs upwards.]



3. INVARIANT MEASURES
VIA DETAILED BALANCE



APPROACHES TO INVARIANCE
1. Ferrari, Nguyen, Rolla, Wang: BBS soliton decomposition.

2. C., Kato, Tsujimoto, Sasada - Three conditions theorem
for BBS (later generalized). Any two of the three following
conditions imply the third:

Ly, oL, T
where Y is the reversed configuration, and U is the reversed

carrier process given as ‘i, = N—(n—1) Up =U_y,.

3. C., Sasada - Detailed balance for locally-defined dynamics.



DETAILED BALANCE
(HOMOGENEOUS CASE)

Consider homogenous lattice system
t+1
Tin
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nk,

Suppose p is a probability measure such that p4(X*) = 1, where
X* are those configurations for which there exists a unique global
solution.

It is then the case that uZ o T—1 = 4% if and only if there exists
a probability measure v such that

(uxv)oF 1=puxv
Moreover, when this holds, Ut ~ v (under p%).



KDV-TYPE EXAMPLES

udKdV Up to trivial measures and technical conditions, i.i.d.
invariant measures are either:

e sShifted, truncated exponential, or;

e sScaled, shifted, truncated, bipartite geometric.
Carrier marginal is of same form.

dKdV(«,0) L.i.d. invariant measures are given by:

o u=GIG(\ ca,c) with 2 [log(z)u(dz) < —log a.

Carrier marginal of form v = IG(\, ¢).

Duality gives dKdV/(0,8) invariant measures.

NB. GIG=generalised inverse Gaussian, IG=inverse gamma.

Remark Can check ergodicity of the relevant transformations.



CHARACTERISATION THEOREMS

[Kac 1939] If X and Y are independent, then X +Y, X —Y are
independent if and only if X and Y are normal with a common
variance.

[Matsumoto, Yor 1998], [Letac, Wesolowski 2000] If X > 0 and
Y > 0 are independent, then

(X 4+v)1, x 1 (x+v)'1

are independent if and only if X has a generalised inverse Gaus-
sion (GIG) distribution and Y has a gamma distribution.

NB. Appears in study of exponential version of Pitman’'s trans-
formation, and random infinite continued fractions.



CONJECTURE
dKdV(«,B8) Detailed balance solution:

uwxv=GIG(\ ca,c) x GIG(\, ¢S, c).

Conjecture These are only solutions to detailed balance for
ch?é’ﬁ). In particular, can [Letac, Wesolowski 2000] be gener-
alised to

(X,Y)|—><

with ag > 07

Y(1+45XY) X(1+4 aXY)
14+aXY = 14+ B8XY

Remark Our result for udKdV solves (up to technicalities) the
‘zero temperature’ version based on the map:

(X, Y)—» (Y —max{X+Y —J 0} +max{X +Y — K,0},

X—max{X+Y—-KO0}+max{X+Y —JO0}).



SPLITTING TODA-TYPE EXAMPLES

Decompose the map F,yr into F, g+ and F dT*'

FudT* min{b, C}

b

F it

b
)

__min{b,c}
2

a-+b
— min{b,c}

a+t+c

— min{b,c}"

a

[Can do similarly for F;p.] Invariance of (fi x )% for udToda can
be related to the existence of (,r) such that

(mXxv)o F, = (fi X D),
NB. This is also equivalent to local invariance of u x pu X v under
F,, 7, cf. Burke’s property, or to

(i x pxv)o(FZ3N)1 = (uxv).



TODA-TYPE EXAMPLES

udToda Up to trivial measures and technical conditions, alter-
nating i.i.d. invariant measures are either:

e shifted exponential, or;

e sScaled, shifted geometric.

dToda Alternating i.i.d. invariant measures are given by:
e gamma distributions.

NB. Can completely characterise detailed balance solutions in
these cases using classical results:

e (X,Y)— (Mmin{X,Y}, X—Y) [Ferguson, Crawford 1964-1966];
e (X,)Y)—»(X+Y,X/(X+Y)) [Lukacs 1955].

Ergodicity is an open question.



LINKS BETWEEN DETAILED BALANCE SOLUTIONS

Discrete KdV (., ):
GIG(A,co,c)
GIG(A,cB,c)

Ultra-discretization:

A(e) = Ae
c(g) = /¢
a(e) =e’/e
B(e)=eX/*

Ultra-discrete KdV (/,K):
stExp(A,c,J —c) X
stExp(A,c,K —¢)

Self-convolution:
B =0,
(A, cv/a) + (Az,c)

Self-convolution:
K = oo,

Discrete Toda:
Gam(A; + Ay, ¢) X

Gam(A;,c) x Gam(A;,c¢)

Ultra-discretization:

)L](S) = 118
12(8) = Ae
c(e) ==

Ultra-discrete Toda:
SExp(A; + A2, ¢)

sExp(A1,c) x sExp(Az,¢)




RELATED STOCHASTIC INTEGRABLE SYSTEMS
cf. [CHAUMONT, NOACK 2018]
Xt—l—l
n

T
Ut 1 R(X%,,) _>U?€,7

Ixuxv)oR 1T=uxv
(L X p X v) 0

R d R;1 e

c=Up_4 ] 9 | Jo (uxv)oR =[x
b= X! a= X!

e Directed LPP: R=F23)

e Directed polymer (site weights): R = ch%
Directed polymer (edge weights), higher spin vertex models...



