1. (15 points) (a) Work over the complex numbers. Let \(A = \begin{pmatrix} 3 & -2 \\ 8 & -5 \end{pmatrix} \). Find the eigenvalues and state their geometric and algebraic multiplicities.

(b) Is the matrix above diagonalizable? Explain your answer.
In either case, write down a similarity transform putting \(A \) in Jordan normal form.

(c) Let \(B \) be a real matrix with characteristic polynomial \((x + 2)^2(x - 3)^2\). What are the possible Jordan normal forms of \(B \)? To avoid repetition, give your answers with eigenvalues sorted from smallest-in-magnitude to largest-in-magnitude, and if two Jordan forms \(J_1 \) and \(J_2 \) happen to be similar matrices, give only one. You may omit 0-entries if you wish.

2. (15 points) (a) Let \(P_n \) be the \(\mathbb{R} \)-vector space of polynomials of degree at most \(n \) with real coefficients. Let \(S = \{ p_1, \ldots, p_{n+1} \} \subseteq P_n \) be a set of \(n+1 \) polynomials, satisfying \(p_i(0) = 0 \) for all \(i \). Either prove \(S \) is linearly dependent, or give an example to show \(S \) may be linearly independent.

(b) Let \(\vec{u} \) and \(\vec{v} \) be elements of a real inner-product space. Suppose that

\[
|\vec{u} + \vec{v}| = |\vec{u}| + |\vec{v}|
\]

Show that \(\vec{u} \) and \(\vec{v} \) are linearly dependent. Name, or otherwise state clearly, any theorems that you use.

3. (15 points) Let \(k \) be a field. Consider the \(2 \times 2 \) matrix

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

with entries in \(k \).

(a) Let \(z \in k \) satisfy the sector equation: \(bz^2 + (a - d)z - c = 0 \). Show that \(\vec{v} = \begin{pmatrix} 1 \\ z \end{pmatrix} \) is an eigenvector of \(A \) and determine the corresponding eigenvalue.

(b) Now consider the quotient ring \(R = k[\epsilon]/(\epsilon^2) \). All elements of \(R \) may be written uniquely in the form \(x + \epsilon y \) where \(x, y \in k \). Determine all solutions \(z \in R \) to the equation

\[
\epsilon z^2 - z - 1 = 0.
\]

(c) Let the ring \(R \) be as in the previous part. Find a vector \(\begin{pmatrix} r \\ s \end{pmatrix} \) of elements in \(R \) such that the ideal generated by \(\{r, s\} \) is all of \(R \) and such that

\[
\begin{pmatrix} 1 & \epsilon \\ 1 & 2 \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = \lambda \begin{pmatrix} r \\ s \end{pmatrix}
\]

for some \(\lambda \in R \). Hint: try solving an equation like the sector equation from part (a).
4. (15 points) Let R be a commutative ring and let $f : R \to R$ be a surjective ring homomorphism.

(a) Let f^n denote the composite of f with itself n times. Suppose there exists some integer $m \geq 1$ such that $\ker(f^{m+1}) \subset \ker(f^m)$. Prove that f is injective.

(b) Give an example of a ring R and a homomorphism $f : R \to R$ that is surjective but not injective (you do not have to provide proof).

5. (15 points) Let p be a prime number. Let k be a field of characteristic p and \overline{k} be an algebraic closure of k. Let $c \in k$ be an element. Consider the polynomial $f(x) = x^p - x + c$.

a. Suppose $\alpha \in \overline{k}$ is a root $f(\alpha) = 0$. Determine $f(\alpha + 1)$.

b. Prove that if f does not split over k, then f is irreducible over k.

6. (15 points) Let $D = D_7$ denote the dihedral group of order 14. This group has a presentation $D = \{a, b | a^2 = b^7 = abab = e\}$.

(a) Let $i \in \{0, \ldots, 6\}$. Determine the order of the element ab^i in D, in terms of i.

(b) Write down all elements of order 7 in D.

(c) Consider the set G of all group automorphisms $\phi : D \to D$. The set G forms a group under composition. What is the order of G?

(d) Describe a homomorphism $\phi : D \to D$ such that $\phi \neq \text{id}_D$ but such that $\phi \circ \phi \circ \phi = \text{id}_D$.