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Suppose k to be a padic field—a finite extension of Qp or Zp((T )).

Among many parallels between the structures of real and padic groups, one of the most remarkable is that
there exist analogues of real symmetric spaces for semisimple padic groups. These are the buildings of

Bruhat and Tits. Among them is the tree on which PGL2(k) acts, and that is what this essay and others

related to it are all about.

The group GL2(R) acts on the space of all symmetric 2 × 2 real matrices:

X : S 7−→ X ·S · tX ,

and preserves the open cone C of positive definite matrices. The quotient PGL2(R) = GL2(R)/{scalars}
therefore acts on the space P(C), the space of such matrices modulo positive scalars. In effect, P(C)
parametrizes the shapes of ellipses in the plane. The isotropy subgroup of I is the image O2 = O2/{±I} in

PGL2(R), so that P(C) may be identified with PGL2(R)/O2. The embedding of SL2 into GL2 identifies this
with SL2(R)/SO2.

The hollow cone C0 of nonnegative symmetric matrices of rank one that borders C is also stable under
GL2(R). To each point of C0 corresponds the null line of the corresponding quadratic form, and P(C0) may

be identified with P1(R), the space of lines in R2. This space compactifies P(C).

If we choose coordinates
[

z + y x
x z − y

]

for symmetric matrices, the space C is where z, z2 − y2− x2 > 0. The intersection of this and the plane z = 1
is the open disc x2 + y2 < 1, which may be identified with P(C).

There exists a Riemannian metric on P(C), invariant with respect to PGL2(R) and unique with this property,

up to a positive scalar multiple. In the obvious scheme, geodesics are straight line segments inside the unit

disk—this is the Kleinmodel. The Poincarémodel is derived from this by stereographic projection, and in this
model geodesics are circular arcs intersecting the unit circle at right angles. In the Poincaré model, SL2(R)
acts by fractional linear transformations. Interesting representations of SL2(R) are obtained on eigenspaces
of the nonEuclidean Laplacian.

The BruhatTits tree is the analogue of this for padic fields. It parametrizes norms on k2 of a certain type,

modulo similarity. It is a graph whose nodes are in bijection with PGL2(k)/K , where now K = PGL2(o).
In this essay I shall define it and prove some of its elementary properties, and in later essays show how it can

be used in harmonic analysis on SL2(k) and PGL2(k). Very little of what I’ll say is original, but the material
is widely scattered in the literature, and sometimes available in only a sketchy manner.

The space P(C) is the simplest of the noncompact symmetric spaces. In general, there corresponds one

of these to every semisimple real Lie group G. It is isomorphic to G/K , where K is a maximal compact
subgroup of G, and parametrizes certain involutions of the Lie algebra of G. For groups of higher rank,

buildings generalize the trees constructed here. They are important in understanding the structure of such
groups, but play a relatively small role in analysis. Doing analysis on the tree of SL2(k) offers a unique

opportunity to understand many analytical phenomena intuitively.
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The standard reference for the material in this part is Chapitre II of [Serre:1977].

This is one of a collection of essays on different topics all related in someway to harmonic analysis on SL2(k),
with k a padic field. It began as a set of notes about applications of the BruhatTits tree associated to SL2(k),
but has grown enormously.

Much of this essay was written while I was giving a series of lectures on related material at the Tata Institute
for Fundamental Research. I wish to thank the Institute for its hospitality, andmy audience for their patience.
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1. Notation

Throughout the entire collection of essays on the tree of BruhatTits, let

k = a field with a discrete valuation

o = the associated ring of integers
p = the maximal ideal of o

̟= a generator of p

q = the cardinality of o/p, assumed to be finite

The quotient o/p is isomorphic to the Galois field Fq . Every x 6= 0 in k can be factored as u̟k with u a unit

in o. The norm

|x| =

{

0 if x = 0
q−k x = u̟k

on k satisfies the nonArchimedean conditions

|xy| = |x| |y|

|x + y| = max |x|, |y| if |x| 6= |y|

≤ |x| = |y| otherwise.

The ring o is the set of x with |x| ≤ 1, and there exists on k a unique Haar measure assigning o measure 1.
Multiplication by x 6= 0 scales measures by |x|.

I shall write ∗̟n for a general element of k of norm q−n.

Eventually, k will be required to be complete. This means that it is complete in the topology defined by

the norm, and this happens if and only if o is the projective limit of quotients o/pn. In this case k is locally
compact. One useful example in which completeness does not hold is that in which k = Q and o is the ring

Z(p), the ring of rational numbers a/b with b relatively prime to the prime number p. One point of the less

restrictive assumption is that one might want to implement algorithmically some of the results presented
here.

Although I shall be working with a limited range of reductive groups—the groups SL2, GL2, PGL2 and tori
contained in them—it will be convenient to use some notation and terminology from the general theory.

ALGEBRAIC TORI. Analgebraic torus definedover abasefield is an algebraic group that becomes isomorphic
to a product of multiplicative groups upon base field extension. Of course, one example is itself a product of

multiplicative groups, in which case it is said to be split .

If T is an algebraic torus, let X∗(T ) be the lattice of algebraic homomorphisms from T to the multiplicative

group Gm defined over ks. The dual lattice is X∗(T ), that of homomorphisms from the multiplicative group

into T . If T is the group of diagonal matrices in SL2, for example, this last is the free module of rank one
spanned by the map

x 7−→

[

x 0
0 1/x

]

.

The duality of X∗(T ) and X∗(T ) is expressed by the equation

λ(µ∨(x)) = x〈λ,µ∨〉 .

If T is not split over k it is completely characterized by the action of the Galois group on X∗(T ), and the
maximal split torusA in T is that whose groupX∗(A) is the sublattice whose elements are fixed by the Galois

group. I shall often use additive notation for X∗(T ), so that λ∨ maps x to xλ∨

.
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There will be two types of nontrivial tori of principal interest. Suppose E/k to be a separable quadratic

extension, generated by a root ζ of the quadratic equation

x2 − bx + c = 0 = (x − ζ)(x − ζ) .

The norm of x + yζ is
(x + yζ)(x + yζ) = x2 + bxy + cy2 .

One of the two associated tori is the multiplicative group of E, considered as an algebraic torus defined over

k. This is the algebraic variety (of dimension two)
{

(x, y, z)
∣

∣ (x2 + bxy + cy2)z = 1
}

.

The multiplicative group of k itself sits in here as the diagonal subgroup. The other torus is the group N1
E/k

of elements of E of norm 1, the variety
x2 + bxy + cy2 = 1 .

The group of characters of the first is generated by

(x, y, z) 7−→ x + yζ, x + yζ

and conjugation swaps them. The character group of the second is generated by either x + ζy or x − ζy.
Conjugation swaps these, and hence acts as multiplication by−1 on its character group.

REDUCTIVE GROUPS. If G is one of the three groups SL2 or GL2, then

P = the subgroup of upper triangular matrices in G

A = the subgroup of diagonal matrices in P

N = the subgroup of unipotent matrices in P

N = the group opposite to N

δ = the character of the adjoint action of A on the Lie algebra n

K = G(o)

w =

[

◦ −1
1 ◦

]

.

I shall add a subscript if the context requires a distinction among the groups G—for example AGL or ASL.

If H is any algebraic subgroup of G, I’ll let H(o) be the matrices in H with entries in o, and H(pm) the

subgroup of h in H(o) with h ≡ I mod pm.

The valuation on k allows one to identify X∗(A) with A/A(o), taking λ∨ to λ∨(̟). This allows us to identify

X∗(A) with the particular subgroup

A =
{

λ∨(̟)
∣

∣ λ∨ ∈ X∗(A)
}

generated by the image of X∗(A). The character

δ: a 7−→ | detAdn(a)|

makes sense for all these groups. In each case, define

A−− = {a ∈ A | δ(a) ≤ 1}

A++ = {a ∈ A | δ(a) ≥ 1}

A−− = intersection of A with A−−

A++ = intersection of A with A++

For each of the groups G = GL2 or SL2, I define αG to be a particular element of A/A(o). Thus

αGL = α =

[

̟ ◦

◦ 1

]

modulo scalars

αSL =

[

̟ ◦

◦ 1/̟

]

.
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2. Lines

The tree of SL2 is an elaboration of a much more elementary object. In this section, begin by supposing k to
be an arbitrary field.

The projective line P = P1(k) is by definition the set of lines through the origin in k2. To it is associated a
graph. The nodes in the graph are all the nonzero subspaces in k2, and two of these are connected by an edge

if and only if one is contained in the other. There are thus two types of nodes, a central node representing k2

itself, and one for each point of P. The only edges in this graph are those from the center to the node of a line.

The points of P are parametrized by nonzero points of k2 modulo scalar multiplication. The set P contains

a copy of k itself, the line ((x, 1)) through (x, 1). In addition there is the line ((1, 0)). By convention, the line
((x, y)) is labeled by x/y, which makes the last point ∞. There is a second notable copy of k in P as well, the

points ((1, x)). Each of these copies is an affine algebraic variety, and the coordinate transformation on their

intersection is x 7→ 1/x since ((x, 1)) = ((1, 1/x)). This defines P as an algebraic variety over k.

If k = Fq there are q + 1 points in P. If k = F2, for example, the graph looks like this:

∞

0

1

The group GL2(k) acts on k2, and this induces a transitive action of PGL2(k) on P. The stabilizer of ∞ is

the group P of upper triangular matrices. The stabilizer of 0 is the opposite parabolic subgroup P of lower
triangular matrices. The covering of P by two copies of k corresponds to the covering of GL2 by NwP and

NP . Explicitly:

2.1. Lemma. (Bruhat factorization) Let

g =

[

a b
c d

]

.

(a) The matrix g belongs to NwP = PwN if and only if c 6= 0, and then (with ∆ = det)

g =

[

1 a/c
◦ 1

] [

◦ −1
1 0

] [

c ◦

◦ ∆/c

] [

1 d/c
◦ 1

]

=

[

1 a/c
◦ 1

] [

∆/c ◦

◦ c

] [

◦ −1
1 0

] [

1 d/c
◦ 1

]

.

(b) The matrix g belongs to NP if and only if a 6= 0, and then

g =

[

1 ◦

c/a 1

] [

a ◦

◦ ∆/a

] [

1 b/a
◦ 1

]

.

Now suppose k to be a local field k. A point (x, y) in o2 is called primitive if one of x and y is a unit.

2.2. Lemma. The pair (a, c) is primitive if and only if the omodule generated by (a, c) is a summand of o2.

Proof. One can easily find a matrix

g =

[

a b
c d

]

whose determinant is a unit. Therefore its columns make a basis of o2.
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The space P(o) is bydefinition the set of all osubmodulesof o2 that are summands—the lines of o2. According

to the Lemma, this set may be identifiedwith the set of primitive pairs modulo scalar multiplication by units.

If ℓ is a line in P(k) then ℓ∩o2 is a line in o2, and we thus get a canonical map from P(k) to P(o). The following
is immediate:

2.3. Lemma. This map is a bijection.

For u generating a line in k2 let [[u]] be the corresponding omodule, and 〈〈u〉〉 the corresponding line in P(k).
If we are given a basis (u, v) of o2 and x is in k ∪ {∞}, I’ll write x instead of v + xu: thus [[x]] and 〈〈x〉〉.
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3. Lattices

A lattice in k 2 is any finitely generated osubmodule that spans k 2 as a vector space, for example o2.

3.1. Proposition. Every lattice in k 2 is free over o of rank 2.

Proof. The proof will be constructive. The lattice is finitely generated, so wemay suppose givenm generators
of the osubmodule L, and suppose M = ML to be the 2 × m matrix whose columns are those generators.

Multiplying by matrices in GLn(o) on the right does not change the lattice the columns generate. The
Proposition is therefore a consequence of:

3.2. Lemma. Every 2 × n matrix of rank 2 with entries in k may be reduced through multiplication on the
right by a matrix in GLn(o) to one whose nonzero columns are of the form

[

̟m x
◦ ̟n

]

.

The integers m, n are unique, and the entry x is unique modulo pm.

Proof of the Lemma. I’ll specify precisely what multiplications need to be carried out. These will be what I

call integral column operations .

There are three types of integral column (or, for that matter, row) operations:

(a) permuting columns (rows);

(b) multiplying one column (row) by a unit of o;
(c) adding to any column (row) an integral multiple of another.

Thes column operations may be effected throughmultiplication on the right bymatrices inGLm(o), typically
embedded copies of

[

◦ 1
1 ◦

]

,

[

u ◦

◦ 1

]

,

[

1 ◦

◦ u

]

,

[

1 x
◦ 1

]

,

[

1 ◦

x 1

]

.

Multiplication on the right by any one of these clearly does not change the lattice generated by the columns.

Row operations can be carried out through multiplication on the left by matrices in GL2(o), and amount to

a change of basis in k 2.

Now to start the description of the process. Because the lattice has rank 2, there exists at least one nonzero
entry in the second row. One among them will have maximal norm, and we may swap columns if necessary
to get it into the lower left corner. By an operation of type (b), we may make it ̟n for some n, and then we

may apply operations of type (c) to reduce the rest of the second row to 0.

We now look at the first row. Again beginning with a swap if necessary, possibly followed by a unit column

multiplication, wemay get an entry in position (1, 2) of the form̟m and of maximal norm in columns c ≥ 2.
We may then apply operations of type (c) to make the first row in columns 3 to n vanish. The only nonzero
entries are now in columns 1, 2, giving us this:

[

x ̟m

̟n
◦

]

.

A column swap will conclude the computation.

As for uniqueness, let o0 be themodule generated by (1, 0). Then (̟m, 0) is a generator of L∩ o0 and ̟m+n

determined by det(g).

Let G = GL2(k) or SL2(k), with other notation as in the Introduction. I recall that K = G(o).
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3.3. Corollary. (Iwasawa factorization) Every matrix in G can be expressed as

[

̟m x
◦ ̟n

]

k =

[

1 x
◦ 1

] [

̟m−n
◦

◦ 1

] [

̟n
◦

◦ ̟n

]

k

with k in K , unique m, n, and x in k unique modulo pm.

This implies also that any element of G(k) can be factored as kp with k in K , p in P .

Proof. Only the case of SL2 is not an immediate consequence of the Lemma. But if g in SL2(k) be expressed
in the form of the Corollary, we can replace p by pu and k by u−1k, with u in P ∩ GL2(o) to obtain k in

SL2(o).

Corollary 3.3 is equivalent to the claim that K acts transitively on P1(k).

The group GL2(k) acts transitively on bases of k 2, hence also on the set of lattices. The stabilizer of o2 is K ,
so with that choice of base lattice the set of lattices may be identified with GL2(k)/K .

3.4. Proposition. (Principal divisor theorem) Given a matrix g in G, there exist matrices k1, k2 in K and a
diagonal matrix

d =

[

̟m
◦

◦ ̟n

]

such that
g = k1dk2 .

The diagonal matrix d is unique up to permutation of the diagonal entries.

Proof. The proof is a variation on that of the Lemma 3.2. By column and row permutations, we may assume

that the left corner entry is that of maximal norm in the entire matrix, and by a unit columnmultiplicationwe

may assume it to be ̟m. Row and column operations of type (3), followed by a unit column multiplication,
make it of the right form.

As for uniqueness, after a swap if necessary, the greatest common divisor of the entries of the matrix is ̟m,
and | det(g)| = |∗̟m+n|.

3.5. Corollary. If L and M are two lattices, there exists a basis (e, f) of L and integers m ≤ n such that
(̟me, ̟nf) is a basis of M .

In these circumstances I call [̟m: ̟n] the matrix index of the pair (L, M) and qm+n the index. If m, n ≥ 0
this last is indeed the index, the size of L/M . If L = o2 and (e, f) form an obasis of M , this is also

∣

∣det [ e f ]
∣

∣

−1
.

Proof. I suppose L and M to be given as 2 × 2 matrices λ and µ of rank 2. Use a coordinate system in which
L = o2. This means replacing λ by I and µ by λ−1µ. Apply the previous Proposition to it. The columns of

k1 form a basis of L, and those of µk−1
2 = k1d form one of M .

As a consequence of the proof of Lemma 3.2:

3.6. Corollary. The group K is generated by the matrices corresponding to integral column operations.

In fact, we can be a bit more explicit about this.

3.7. Proposition. The group K is the disjoint union

N(o)wP (o) ⊔ N(p)P (o) .
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Proof. This follows from the Bruhat decomposition ( Lemma 2.1) of G(F). If the matrix g lies in K and c is a
unit, then part (a) implies that g lies in N(o)wP (o). If c is not a unit it will lie in p, and a will be a unit. Then

(b) tells us that

g =

[

1 ◦

c/a 1

] [

a ◦

◦ det/a

] [

1 b/a
◦ 1

]

.

3.8. Proposition. Every g in GL2 may be represented in one of two forms:

g = n

[

̟ℓ 0
0 1

] [

̟m
◦

◦ ̟m

]

k (ℓ ≥ 0) or g = n

[

1 0
0 ̟ℓ

] [

̟m
◦

◦ ̟m

]

k (ℓ > 0) .

Here n lies in N(o), n in N(o). The integers ℓ, m are unique.

This can also be formulated as saying that the group G is the union of

N(o)A−−K and N(p)A++K .

The intersection of the two pieces is the product of K and the centre of G.

Proof. It will be useful to have explicit formulas. According to Proposition 3.4, let g = k1α
−mzk2 with

m ≥ 0, z a diagonal matrix, and say

k1 =

[

a b
c d

]

.

If c is a unit, we can write k1 = nwan∗ with

n =

[

1 a/c
◦ 1

]

in N(o) ,

and then, since αmP (o)α−m ⊆ P (o):

k1α
−mk2 = nαm ·something in KZG .

If c is not a unit we can write k1 = nan with

n =

[

1 ◦

c/a 1

]

,

and then

k1α
−mk2 = nα−m ·something in KZG .

It will be seen later that this has a simple interpretation in terms of the geometry of the tree.

A subset Ω of GL2(k) bounded if the matrix entries of the elements of Ω and Ω−1 are bounded. If k is
complete, Ω is bounded if and only if it is compact. The product of any number of bounded sets is bounded.

By Proposition 3.4, a set is bounded if and only if it is contained in the union of a finite number of double

cosets K̟λK . Any bounded set is contained in the union of a finite number of translates of K .

3.9. Proposition. The stabilizer of any lattice in GL2(k) is a bounded subgroup. If k is complete, it is open
and compact. Conversely, any bounded subgroup stabilizes some lattice.

Proof. For this, one may as well replace k by its completion. If L = g(o2) then its stabilizer is gKg−1.

Suppose K∗ to be a bounded subgroup, and let L = o2. The intersection of two, hence of any finite number
of, lattices is again a lattice. If H = K∗ ∩ K , then K∗/H is in bijection with K∗K/K , hence finite. If

K∗ =
⋃

kiH =
⋃

k∈K kH then
⋂

kiL =
⋂

k∈K kL is a lattice stable under it.
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4. The tree

The BruhatTits tree of G = SL2(k) is a graph X on which the group PGL2(k) acts. The geometry of this
graph encodes much of the group structure.

• The nodes of the graph are the lattices in k2 modulo similarity.

For each lattice L let 〈〈L〉〉 be the corresponding node of the graph, or in other words its equivalence class,

the set of lattices {̟nL}.

If L and M are lattices, Corollary 3.5 asserts that we can find a basis (e, f) of L such that (̟me, ̟nf) is a
basis of M , for some integersm ≤ n. The difference n−m is an invariant of the similarity class of M , so that

the definition inv(〈〈L〉〉: 〈〈M〉〉) = n−m makes sense. This invariant is 1 if and only if the two nodes possess
representatives L and M with L/M ∼= o/p, or equivalently

̟L ⊂ M ⊂ L .

In this case, I’ll call them neighbours . Being neighbours is a symmetric relationship.

• There is an edge of the BruhatTits graph between two nodes if and only if they are neighbours.

The nodes linked by an edge to 〈〈L〉〉 thus correspond to lines of L/̟L ∼= (Fq)
2, and there are q + 1 of them.

If u and v form a basis of k2, let [[u, v]] be the lattice they span and 〈〈u, v〉〉 the corresponding node. (As we

shall see later, this is consistent with my earlier notation for lines in k2 and o2.)

The space P1(Fq) may be identified with the union of a copy of Fq and a point called ∞. The first are the

lines in F2 through the points (x, 1), and the second the single line through (1, 0). This implies:

• The neighbours of 〈〈u, v〉〉 are the 〈〈̟u, xu + v〉〉 as x ranges over o/p, together with 〈〈u, ̟v〉〉 .

Fix once and for all basis vectors and particular nodes

u0 = (1, 0)

v0 = (0, 1)

νm= 〈〈̟mu0, v0〉〉 = 〈〈u0, ̟
−mv0〉〉 (m ∈ Z) ,

so that ν0 is the equivalence class of o2. This choice makes possible the notation [[x]] and 〈〈x〉〉 for [[v0 + xu0]]
and 〈〈v0 + xu0〉〉.

Any g in GL2(k) takes a lattice [[u, v]] to the lattice [[gu, gv]]. The group GL2(k) preserves equivalence of

lattices, and it also preserves the lattice pair invariant. Hence it transforms edges to edges, and therefore acts
as an automorphism of the graph X. By definition, this action factors through PGL2(k). The group PGL2(k)
acts transitively on nodes of the graph. The stabilizer in PGL2(k) of the node ν0 is the maximal compact
subgroup PGL2(o), which is therefore the analogue in PGL2(k) of the image of O(2) in PGL2(R).

Suppose that L = o2 and that the matrix index of [L: M ] is [̟m: ̟n]. I call 〈〈M〉〉 even or odd depending on
the parity of n − m. The action of SL2(k) preserves this parity, and in fact there are exactly two orbits of the

group SL2(k) among the nodes of the graph, each one corresponding to lattices of a given parity.

A chain of lattices is a finite or halfinfinite sequence of lattices

L0 ⊃ L1 ⊃ . . . ⊃ Ln ⊃ Ln+1 . . .

with

Ln ⊃ Ln+1 ⊃ ̟Ln

for all n. A chain of nodes is the sequence of nodes associated to such a sequence of lattices.
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A standard chain of lattices is one of the form

[[u0, v0]] — [[̟u0, v0]] — [[̟2u0, v0]] — · · · ,

whether finite or infinite. I’ll call a chain simple if, like this one, it does not backtrack—i.e. none of the Li

are equivalent.

4.1. Proposition. Every finite simple chain of lattices may be transformed to a standard one by an element of
GL2(k). If k is complete, this is true of any chain.

Proof. The proof is by induction on the length of the chain

L0 ⊃ L1 ⊃ · · · ⊃ Ln ,

in which we may assume Lk ⊃ Lk+1 ⊃ ̟Lk for all k. It will be constructive.

Since GL2(k) acts transitively on nodes, we may assume that L0 = o2.

If n = 1, the image of L1 in L0/̟L0 is a line. We can find a matrix g in GL2(Fq) transforming it to the line
through (1, 0), and if g in GL2(o) has image g, then gL1 is [[̟, 1]], corresponding to the node ν1.

The first part of the Proposition will now follow from this:

4.2. Proposition. Any finite simple chain that starts out [[u0, v0]] — [[̟u0, v0]] may be transformed to a
standard chain with the same initial pair by an element of the form

[

1 x
◦ 1

]

with x in p.

This will follow by induction from:

4.3. Lemma. Suppose given a finite chain (Li) (0 ≤ i ≤ n + 1) with Li = [[̟i, 1]] for 1 ≤ i ≤ n. There exists
x ∈ pn such that

[

1 x
◦ 1

]

takes every Li to [[̟i, 1]].

Implicit in this statement is that when x lies in pn this matrix takes [[̟i, 1]] to itself for every i ≤ n.

Proof of the Lemma. We know that the lattices linked to ν0 are 〈〈u0, ̟v0〉〉 and the 〈〈̟u0, xu0 + v0〉〉 as

x ranges over o/p. Translating by αm, we see that the lattices linked to νm are 〈〈̟m−1u0, v0〉〉 and the

〈〈̟m+1u0, xu0 + v0〉〉 as x ranges over pm/pm+1. The first one amounts to a backtrack. For the last set, the
Lemma is clear.

To conclude the proof of Proposition 4.1: when k is complete, the product of the matrices

[

1 xn

◦ 1

]

found inductively will then converge.

4.4. Corollary. Every finite simple chain of nodes in the graph may be transformed to a standard one by an
element of GL2(k). If k is complete, this is true of any chain.

4.5. Corollary. The distance |x:y| between two nodes x and y is the pair invariant inv(x: y).

Only a short additional argument is necessary to prove:
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4.6. Corollary. The graph X is a connected tree.

Proof. If M is any lattice, we may find a basis (e, f) of L = o2 such that some (̟me, ̟nf) is a basis of M .

Replacing M by some multiple of itself, then we may assume m = 0, n ≥ 0. That means that there exists a
chain of lattices [[u0, ̟

kv0]] from L to M . This proves that the graph is connected. That it is a tree follows

from the preceding Proposition, since no standard chain has a loop.

The node ν0 may be chosen as root.

The structure of X is completely determined by the properties: (a) it is connected; (b) it is a tree; (c) every
node has q + 1 neighbours. For example, when q = 2 it looks like this:

ν0

ν−1

ν1
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5. Compactification

The tree for k and its completion are the same. What is different between the two is a certain asymptotic

behaviour at infinity.

• From now on, I shall assume k to be complete.

5.1. Proposition. Suppose
L0 ⊃ L1 ⊃ L2 ⊃ . . .

to be a simple chain of lattices in k2. Then
⋂

Ln = ℓ ∩ o2

for some unique line ℓ in k2.

That is to say that in some sense the lattices Ln have ℓ as limit.

Proof. From Proposition 4.1, since the claim is true if Ln = [[̟nu0, v0]].

The tree possesses a rather simple and obvious topology. The previous result suggests how to compactify
it by adding to it the points of P1(k). Therefore I define X to be the union of X and P(k). It remains to

define on it a topology. The topologies on X and P(k) are the usual ones, so it remains to specify a basis of
neighbourhoods of points in P(k).

For 0 ≤ m < ∞, let Lm(ℓ) be the lattice generated by (pm)2 and ℓ ∩ o2. It depends only on the image of

ℓ modulo pm. For example, L0(ℓ) = o2, and if ℓ is the line through (0, 1) then Lm(ℓ) is the node νm. As
m → ∞ the lattice Lm(ℓ) has as limit the line ℓ.

5.2. Lemma. Every lattice in k2 is equivalent to some Lm(ℓ).

This gives a convenient way to label points of X. Of course ℓ is uniquely determined only modulo pm.

Proof. Suppose L to be a lattice in k2. One may assume it to be contained in o2. Scaling, one may assume that

o2/L has no torsion. Let m be least such that ̟mo2 ⊆ L. Then the image of L in (o/pm)2 is isomorphic to

the line generated by some primitive (x, y) in o2 (which is unique onlymodulo pm). Let ℓ be the line spanned
by (x, y).

By convention, let L∞(ℓ) = ℓ. For each m < ∞ let Um(ℓ) be the set of all Ln(λ) for n ≥ m contained in
Lm(ℓ). The line ℓ itself lies in this set, as does the lattice Lm(ℓ). Let Um(ℓ) be the set of corresponding nodes

of X.

I leave it as an exercise to verify:

5.3. Proposition. The topology defined so as to have the Um(ℓ) as neighbourhoods of ℓ makes the union
of X and P(k) into a compact topological space. The action of GL2(k) on the tree extends to one on this
compactification, compatible with that on P1(k).

As a consequence of Lemma 5.2:

5.4. Proposition. Every branch with ν0 as terminus is that associated to some sequence of lattices

L0(ℓ) ⊂ L1(ℓ) ⊂ · · · ⊂ Lm(ℓ) ⊂ · · ·

for some unique line ℓ in k2.

5.5. Proposition. The nodes associated to theLm(ℓ) as ℓ ranges over P(k) are the nodes on the circle of radius
m with center ν0.

In effect, this labelling introduces a mind of polar coordinate system.

Finding a basis of Lm(ℓ) depends somewhat on ℓ. This is related to the Bruhat decomposition of P(F).

5.6. Proposition. Suppose ℓ to be the span of the primitive vector (x, y). Then:
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(a) if y is a unit, then (̟mu0, v0 + (x/y)u0) is a basis of Lm(ℓ);
(b) if x is a unit, then (u0 + (y/x)v0, ̟

mv0) is a basis of Lm(ℓ).
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6. Neighbourhood structure and the action of K

The action of K = SL2(o) on X is fairly simple.

6.1. Proposition. Elemernts of the group SL2(o) acts transitively on the nodes ofX at fixed distance from ν0.

Proof. By Proposition 5.5, the points at distance m are the points Lm(ℓ) for ℓ in P(k). But P(k) is the same as
P(o), so it suffices to see that SL2(o) acts transitively on the primitive pairs (x, y) in o2. But the matrix in the

proof of Lemma 2.2 can be chosen to have determinant 1.

In other words, the orbits of SL2(o) are the circles around ν0.

6.2. Proposition. Elements of the congruence subgroup SL2(p
m) fixes all points at distance ≤ m from ν0.

Two nodes at greater distance lie in the same orbit if and only if they are exterior to the same node at distance
m from ν0.

Proof. Suppose ν a node at distance n > m from ν0, and that y is the point at distance m from ν0 on the path

to ν0. By rotation, it may be assumed that y = νm. The claim follows from any one of several results proved

earlier.

The group K = SL2(o) fixes ν0, representing the lattice o2, while its twin K∗ = α−1Kα fixes its neighbour

α−1(ν0) = ν−1. Since every compact subgroup fixes some lattice, these two subgroups of SL2(k) aremaximal
compact. They are not conjugate in SL2, but in GL2 conjugation by

[

◦ 1
̟ ◦

]

swaps them.
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7. Apartments and the action of A

An apartment is a doubly infinite geodesic path in X. It is the union of two branches from one node with no
common edge. One apartment is

A = B0 ∪ B∞ = {νm |m ∈ Z} .

Here is a graphical rendering of it:

ν0

ν1

ν2

ν3

ν−1

ν−2

ν−3

α

It is a matter of convention which infinite geodesic I choose to be standard since—as we shall now see—all

are equivalent. The choice I have made is convenient for visualization.

Elements of GL2(k) take apartments to apartments.

7.1. Proposition. The group SL2(k) acts transitively on apartments.

Recall that we are now assuming k to be complete.

Proof. It suffices to prove this when one of the apartments is A. Suppose given some other apartment χ,
say with two branches χ0 and χ∞ running out in opposite directions from the same node ν, which we may

assume to have even parity. Since GL2(k) acts transitively on branches, we may transform χ∞ to the branch

B∞. Because ν and ν0 both have even parity, we may assume g to be in SL2(k).

In effect, we may now assume that χ∞ = B∞. By Lemma 4.3 we may now find a matrix

[

1 x
0 1

]

with x in o that transforms the other branch χ0 of X into the other branch B0 of A. But these matrices fix all
the nodes on B∞, so X is taken toA.

The apartment A has 0 and ∞ as its ends.
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7.2. Corollary. An apartment is the geodesic path in X between its ends ℓ0, ℓ∞ in P(k). It is taken into itself
by the group of matrices having these ends as eigenlines. If xi is a generator of ℓi, then its nodes are the

〈〈̟mx0, x∞〉〉 = 〈〈x0, ̟
−mx∞〉〉 .

Elements of A act as translations on A. The compact subgroup A(o) acts trivially on it, so the action factors

through A/A(o). The matrix

α =

[

̟ ◦

◦ 1

]

translates νm to νm+1. Since

[

̟m
◦

◦ ̟−m

]

≡

[

1 ◦

◦ ̟−2m

]

modulo scalar matrices ,

the subgroup A ∩ SL2(k) shifts by an even number of nodes.

The element

w =

[

◦ −1
1 ◦

]

also takes A to itself, reflecting νm to ν−m. The group generated by A ∩ SL2 and w is the normalizer in SL2

of A. Its quotient by A(o) is the affine Weyl group Waff of of the root system of SL2. It is a Coxeter group

with elementary reflections w and
[

◦ 1/̟
̟ ◦

]

.

It contains all reflections in the nodes νm of even parity. The segment ν0 — ν1 is a strict fundamental domain

for the action of Waff onA.

It is not hard to see that the group generated by A and w is precisely the stabilizer ofA.

This observation and Proposition 7.1 also imply:

7.3. Proposition. Given two apartments and an oriented edge in each, there exists g in GL2(k) inducing an
isometry of one with the other mapping one oriented edge to the other.
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ORBITS. How does A acts on X?

We can best describe the action of A in terms of a fibration of X with base A. The fibration itself is very

simple—it maps a node to the point ofA closest to it. This fibration is Aequivariant, and each fibre is taken
to itself by A(o). So in order to understand how A acts on X, the main point is to understand how A(o) acts
on a fibre.

For this purpose, it is useful to introduce a family of apartments suggeste by the Iwasawa factorization

Corollary 3.3. Recall that every g in GL2 can be expressed as

g =

[

̟m x
◦ ̟n

]

k =

[

1 x
◦ 1

] [

̟m−n
◦

◦ 1

] [

̟n
◦

◦ ̟n

]

k

with k in K . Thus

g(ν0) = 〈〈̟mu0, v0 + xu0〉〉 .

As m → ∞ this has as limit the point x in P(k), and as m → −∞ it has as limit ∞. As m varies over all of

Z it ranges over all the nodes L0
m(x) of the apartment L0(x) between these two boundary points. Coming

from x it first strikes A when m = ord(x), and then remains in A for lesser values of m. The fibre over a
point νk is therefore the union of all the nodes 〈〈̟mu0, v0 + xu0〉〉with m ≥ k, ord(x) = k. In particular, the

fibre over ν0 is the union of these points for m ≥ 0 and units x.

Every other node in X has a unique representation as

αk[[̟mu0, v0 + xu0]]

in which k is any integer, m ≥ 0 and x is a unit, unique modulo 1 + pm. Elements

[

a ◦

◦ d

]

of A(o) act on this in a simple fashion: x 7→ ax/d.

7.4. Proposition. Two nodes in the tree lie in the same Aorbit if and only if they lie at the same distance from
A.

7.5. Proposition. Two nodes in the tree lie in the same A(pn)orbit if and only if they lie on the same lateral
branch attached toA at the same distance fromA and the subset of points in common on the paths toA have
length at least n.

This will turn out to be a basic tool in computing orbital integrals.

7.6. Proposition. Suppose a to lie in A(pn) but not in A(pn+1). Then a fixes the node ν if and only if it lies at
distance ≤ n from A.

The analogous results for SL2(k) can be deduced from this and the observation that

[

t ◦

◦ 1/t

]

∼

[

t2 ◦

◦ 1

]

.

The apartments L0(x) define a certain retraction ρ of X onto A. It takes L0
m(x) to νm. In particular it maps

any node onA to itself.

7.7. Lemma. The map ρ is N invariant:
ρ(n(ν)) = ρ(ν) .
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8. The action of N

As m → ∞ the lattice [[1, ̟m]] passes off to the line through (1, 0) in P1(k). In other words, the group N
of all upper triangular unipotent matrices fixes the end of the branch {νm |m ≤ 0}, which amounts to ∞ in

P1(k). There is a finite approximation of this phenomenon. Recall that N(pm) is the subgroup of

[

1 x
0 1

]

with x ∈ pm. The following is elementary, but useful to refer to.

8.1. Proposition. (a) Elements in N(p−m) fix all nodes ν−k with k ≥ m. (b) The N(p−m)orbit of ν−k for
k < m is the set of points x at distance m − k from ν−m other than those on a path starting back to ν−m−1.

Asm → ∞ the groupN(p−m) expands, consistently with what happens at the end point. Claim (a) is trivial.

For (b) look at Lemma 4.3.

There is an important relation between the Cartan and Iwasawa factorizations. I recall first what happens

for G = SL2(R). Let K be SO(2), N be the N is the group of unipotent upper triangular matrices, A be the
group of diagonal matrices, and P = AN .

The Cartan factorization asserts that G = KA++K . Geometrically things are simple. We first represent G by
Möbius transformations of the unit disk, conjugating the more familiar action on the upper half plane by the

Cayley transform. If g = k1ak2 then it is also k1a
−1k2. Choose a so that r = a(O) lies in the interval (0, 1).

Then g(P ) = k1a(O) will lie at angle −2θ on the circle of radius r around O if

k1 =

[

cos θ − sin θ
sin θ cos θ

]

.

O ∞

g(O)

r−r

The Iwasawa factorization asserts that G = NAK . There is a simple geometric description here, too. If

g = nak then g(O) = na(O), which is on the N orbit of r. The N orbits are the circles inside the unit disk
and tangent to 1. Sowe find the circle of this sort which passes through g(O), and then findwhere it intersects

the real line.
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O ∞

g(O)

ρ

Howdo these different factorizations compare? The answer is that if g(O) lies on the circle of radius r around
O and on the N orbit through ρ then−r ≤ ρ ≤ r.

O ∞

g(O)

Verifying this is very easy, given the following picture. Keep in mind that orbits can’t cross, so a simple
continuity argument will do.

O

Here is the generalization of this for SL2(k):

8.2. Proposition. Suppose g in GL2(k). Then

(a) if g = nak is its Iwasawa factorization, then it has Cartan factorization g = k1dk2 with a(ν0) in the
convex hull in A of (a.k.a. line segment between) d(ν0) and d−1(ν0);

(b) if ν lies in A then the intersection of its Korbit and N orbit is just ν itself.

The proof of the Proposition applies the retraction ρ constructed in the last section.
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Proof. Suppose g = nak. Let ρ be the retraction referred to in Lemma 7.7. Then the image of a in A is ρ(x).
The matrix d is determined by the geodesic from ν0 to x, and the image of this path under ρ has length at

least that of ρ. But this is exactly what the Proposition asserts.

I leave claim (b) as an exercise.

A generalization of the result for arbitrary real semisimple groups has been proved in [Kostant:1973], and
this in turn has been generalized in [Atiyah:1982]. A first step towards a generalization of this for padic

groups can be found in §4.4 of [BruhatTits:1972] (see also Theorem 2.6.11(3)–(4) of [Macdonald:1971]), and
the precise padic analogue of Kostant’s result can be found in [Hitzelberger:2010].

A FILTRATION. One feature of the apartment A that becomes more significant for groups of higher rank is

that its structure mirrors that of the unipotent subgroup of upper triangular matrices. This group is filtered
by subgroups

N(pn) =

{[

1 pn

◦ 1

]}

,

and the set of points on A fixed by this subgroup consists of all those on the branch

νn — νn−1 — νn−2 — · · · .

In other words, the filtration of N by the groups N(pn) is compatible with that of branches in A passing off

to∞, in one branch is contained in another if and only if the subgroups ofN fixing nodes in the first contains
that fixing nodes in the second. This is a crucial feature of all BruhatTits buildings.

The case

g =

[

1 ◦

x ̟m

]

can be dealt with similarly.
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9. Iwahori subgroups

9.1. Proposition. Suppose

g =

[

a b
c d

]

.

The following are equivalent:

(a) c ≡ 0 mod p ;
(b) g fixes the lattice flag

[[u0, ̟v0]] ⊂ [[u0, v0]] ;

(c) g fixes all points on the edge ν0 — ν−1;
(d) g lies in the intersection K ∩ α−1Kα.

Let I be the group of all such matrices. Its conjugates are called Iwahori subgroups . Each acts trivially on

exactly one edge of X. The quotient PGL2(k)/I may therefore be identified with the oriented edges of the

building.

Let X−1 be the set of nodes in X lying in the exterior of ν−1, the shaded region in the following figure. Let

X0 be its complement.

ν0

ν−1

ν1

X0

X−1

This partition is also a consequence of Proposition 3.8. The group I takes each of these regions into itself.

The union of ν0 and X−1 is the subset of nodes in X fixed by N(o).

Because of Proposition 4.2:
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9.2. Proposition. The orbits of I among the nodes of the building are the points at a fixed oriented distance
from the edge ν0 — ν1.

In particular:

9.3. Corollary. Each Iorbit among the nodes of X intersectsA in exactly one node.

This establishes a bijection between the orbits of I and the nodes ofA.

The orbits may be described more geometrically. Those through νm with m ≥ 0 are the endpoints of the
paths of length m leading out from ν0 that do not start with that through ν1. Those through ν−m with m > 0
are the endpoints of paths of length m that do pass through ν1.

As one consequence of the description of I orbits:

9.4. Proposition. Given an apartmentA and a chamber C in it, there exists a unique map ρ = ρA,C from the
tree ontoA with these properties:

(a) ρ is the identity on A;
(b) it is an isometry on every apartment containing C.

If IC is the Iwahori subgroup fixing C, then ρ(bx) = ρ(x) for all b in IC , x in the tree.

Proof. The proof is geometric. Choose a point y in the middle of C. If x is an arbitrary point in the building,
there exists a unique geodesic from x to y. But there also exists a unique geodesic of the same length in A
that agrees with the first for points inside C. Map x to its endpoint.

It is interesting to figure out how to compute the retraction ρ for the standard apartmentA0 and chamber e0.

That is to say, given g in PGL2(k), the retraction of ρ(ge0) will be an edge inA0. Which?

I’ll answer this in a strong sense by orienting the edges, with e0 going from ν0 to ν−1. Here the answer

is given by a result that is important in representation theory. First of all, any oriented edge of A0 is the

transform of an element in the subgroup Ω of matrices of the form

[

̟m
◦

◦ ̟n

]

,

[

◦ ̟n

̟m
◦

]

which is unique up to a scalar multiple.

If g = b1ωb2 with the bi in I and ω in Ω, then ρge0 is equal to ωe0. The proof of the following result will tell
us how to find ω.

9.5. Proposition. Every g in GL2(k) may be expressed as a product b1ωb2 with the bi in I , ω in Ω.

Proof. To go with this claim is an algorithm involving elementary Iwahori operations on columns:

• Add to a column d a multiple xc of a previous column c by some x in o;
• add to a column c a multiple xd of a subsequent column by x in p;

• multiply a column by a unit in o;

and also on rows:

• Add to a row c a multiple xd of a subsequent row d with x in o;
• add to a row d a multiple xc of a previous row with x in p;

• multiply a row by a unit in o;

Each of these column (row) operations amounts to right (resp. left) multiplication bywhat I’ll call an Iwahori

matrix .
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Here are some examples:

[ u v ]

[

1 x
0 1

]

= [ u xu + v ]

[ u v ]

[

1 0
̟x 1

]

= [ u + ̟xv v ]

[

1 x
0 1

] [

u
v

]

=

[

u + xv
v

]

[

1 0
̟x 1

] [

u
v

]

=

[

u
̟xu + v

]

.

9.6. Proposition. Any invertible 2× 2 matrix can be reduced by elementary Iwahori row and column opera
tions to a unique matrix in Ω.

Let m be the given matrix. First of all, it is easy to apply elementary row operations to obtain a matrix of the

form
[

̟k ∗̟n

◦ ̟ℓ

]

,

[

◦ ̟ℓ

̟k ∗̟n

]

.

Let’s look at the two cases separately.

(1)

g =

[

̟k u̟n

0 ̟ℓ

]

.

If k ≤ n we can subtract u̟n−k times the first column from the second to get

[

̟k 0
0 ̟ℓ

]

.

If ℓ ≤ n we can subtract u̟n−ℓ times the second row from the first to get the same matrix.

So now we may assume k > n and ℓ > n. Subtract from the second row ̟ℓ−n/u times the first. This gives

[

̟k u̟n

−̟k+ℓ−n/u 0

]

.

Divide the second column by u, multiply the second row by−u:

[

̟k ̟n

̟k+ℓ−n 0

]

.

Subtract ̟k−n times the second column from the first to get

[

0 ̟n

̟k+ℓ−n 0

]

,

which is Iwahori reduced.

(2)

g =

[

0 ̟ℓ

̟k u̟n

]

.

where u is a unit.
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If n > ℓ or n ≥ k this can be reduced to
[

0 ̟ℓ

̟k 0

]

.

So now we assume n ≤ ℓ, n < k. Subtract ̟k−n/u times the second column from the first:

[

−̟k+ℓ−n/u ̟ℓ

0 u̟n

]

.

Multiply and divide by u:
[

̟k+ℓ−n ̟ℓ

0 ̟n

]

.

Subtract ̟ℓ−n times the second row from the first:

[

̟k+ℓ−n 0
0 ̟n

]

.

Remark. For groups of higher rank, the Iwahori subgroups are the stabilizers of the simplices in the Bruhat

Tits building of maximal dimension. The analogue of Proposition 9.5 is important in representation theory.
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10. Appendix. A fixed point theorem

For any two points x, y in the tree, let mx,y be the midpoint of the geodesic between them. The following
asserts that in some sense the tree has nonpositive curvature.

10.1. Proposition. (BruhatTits inequality) Given points x, y, and z on the tree, let m = mx,y. Then

|z :m|2 + |m:x|2 ≤
|z :x|2 + |z :y|2

2
.

Keep in mind that |m:x| = |m:y|.

Proof. This is an equality on an apartment, according to a theorem of Pappus. It is an easy vector calculation,

or can be proved by applying Pythagoras’ Theorem a few times.

x

y

m

z

In general, fix an apartment A containing x and y and let E be an edge containing m. If ρ is the retraction

determined by A and E, then

|z :x|2 + |z :y|2 ≥ |ρ(z):x|2 + |ρ(z):y|2 = 2|ρ(z):m|2 + 2|m:x|2 = 2|z :m|2 + 2|m:x|2 .

Any metric space satisfying this condition is called semi-hyperbolic . All BruhatTits buildings and all non

compact real symmetric spaces fall in this category. Any two points on a semihyperbolic space have a unique

midpoint between them. The sphere, for example, is not semihyperbolic.

If X is any bounded set in the tree and c a point in the tree, there exists R ≥ 0 such that |c :x| < R for all x
in X . Define Rc(X) to be the least upper bound of all such R, and define the radius RX of X to be the least
upper bound of all Rc(X) as c varies. A circumcentre for X is a point c with the property that |c :x| ≤ RX

covers X . The following is an observation due to Serre.

10.2. Corollary. Every bounded subset of the tree has a unique circumcentre.

Proof. Choose a sequence ci such that Rci
(X) → R(X). The semihyperbolic inequality implies that it is a

Cauchy sequence.

The case we shall be interested in is that in which X is a finite set. Is there a simple algorithm to find its

circumcentre?

We have now a new proof of a result we have seen before. In contrast to the earlier proof, this one can be

expanded into one for all buildings.

10.3. Corollary. Any compact subgroup of SL2(k) fixes some point on the tree.

Proof. Because it fixes the circumcentre of any orbit.

Hence the subgroups fixing nodes of the tree are maximal compact subgroups of SL2(k), and there are two

conjugacy classes of them. For PGL2(k) there is just one.
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11. Appendix. Navigating in the tree

I’ll discuss here how to draw the tree for G = SL2(Q2). This can be done at several levels of sophistication.

First I’ll describe how to draw the basic tree. This is the tree simply as a geometric object, a collection of

branches, and no association with an automorphism group. There are a number of parameters that determine
it—the dimensions of nodes and edges, how these should shrink with depth, how edges are arrayed around

a node, and colour choice. The drawing is then done by recursion, either explicitly or implicitly, with a stack,

out to some given depth. Each node is assigned an angle in, as well as location. A node draws itself, and
if the specified depth has not been exceeded it then draws edges out to neighbours, and finally draws those

neighbours by recursion. I’ll leave details as an exercise.

Still on the purely geometric level of drawing is a procedure for drawing nodes along a path like∞LRR as

indicated in this figure:

∞

L

R
R

So it is relatively simple to draw the tree as a geometric object. But for really useful (i.e. ‘intelligent’) drawings
wewant to translate back and forth betweennodes in the drawing and lattices, or betweennodes and elements

of G. That is to say, suppose o = Z(2), the localization of Z at (2). We use the action of GL2(Q) on the tree,

rather than that of the 2adic field, because it is computationally feasible. The nodes in the tree are the same
for localizations as for completions, and pretty much the only difference between the two groups is that the

group over Q is smaller and does not act transitively on apartments.

In other words, we want to associate to each node in the geometric tree a 2× 2 invertible matrix in PGL2(k),
and viceversa. This means building a bijection between certain g and paths like∞LRR as explained above.

This is easily done by applying . This tells us that the nodes in X0 are of the form nαmν0 with n in N(o)
and m ≥ 0, while those in X−1 are of the form nα−mν0 with n in N(p) and m > 0. The N(o)orbit of num

(m ≥ 0) is in bijection withN(o)/N(pm), and theN(p)orbit of νm (m < 0) is in bijection withN(p)/N(pm).

Now take q = 2. The nodes of the tree are parametrized by sequences ofL and R, either from the root node if

n ≤ 0 or from the infinite node if n > 0. So we must define the map from the section matrices parametrized

by x modulo pn to such a sequence, and viceversa.
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Suppose n > 0. We are given x as an even integer 2y modulo 2n. We find the bits of y and read from low

order i = 0 up to order i = n − 1, translating bit i:

i = 0, 2, 4, . . . odd 7→ L, even 7→ R,
i = 1, 3, 5, . . . even 7→ L, odd 7→ R

Now suppose n ≤ 0. We are given x as an integer modulo 2|n|. We find the bits of x and read from low order
i = 0 up to order i = |n| − 1, translating bit i:

i = 0, 2, 4, . . . odd 7→ L, even 7→ R
i = 1, 3, 5, . . . even 7→ L, odd 7→ R

In short, the rules are the same! They can be summarized in a table:

bit index parity bit parity L or R
0 0 R
0 1 L
1 0 L
1 1 R

But now you can see that they can be formulated most succinctly as addition modulo 2, with R = 0, L = 1.

One final remark—it might seem at first that the map between LR paths and nodes is somewhat arbitrary.
But in fact some labelings are better than others, in the sense that the geometry of the action of G looks more

or less comprehensible. The one I have chosen here seems to be best. One reason for this is that the geometry
of the orbits the matrices

[

t ◦

◦ 1/t

]

is simple. It does have one strange feature, however: the action of A on the apartment A swaps sides as it
translates.
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12. Appendix. Centrefold

ν0

ν−1

ν−2 ν−3

ν−4

ν1

ν2

ν3

ν4
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