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If (π, V ) is a continuous representation of the Lie group G on a Fréchet space V , the subspace V (1) of
differentiable vectors is that of all v such that

π(x)v =
d

dt
π
(
exp(tx)

)
v
∣∣∣
t=0

exists for all x in the Lie algebra g. Inductively, v lies in V (n+1) if it lies in V (1) and π(x)v lies in V (n) for all
x in g. The subspace of smooth vectors is

V∞ =
⋂
V (n) .

It is stable under both G and the universal enveloping algebra U(g). It is itself a Fréchet space with the

semi­norms
∥∥π(X)v

∥∥
ρ
forX in U(g) and ρ a semi­norm of V . The restriction of π to V∞ is also a continuous

representation of G.

Fix a left­invariant Haar measure dx = dℓx on G. For f in C∞
c (G), let

π(f) =

∫

G

f(x)π(x) dx .

We have

π(y)π(f) =

∫

G

f(x)π(yx) dx =

∫

G

f(y−1z)π(z) dz = π(Lyf) ,

where L is the left regular representation of G. From this it can be deduced that for any v in V and f in

C∞
c (G) the vector π(f) is smooth, and more precisely that if X lies in U(g) then π(X)π(f)v = π(LXf)v.

This implies that V∞ is dense in V , since if {fn} is a Dirac sequence on G then π(fn)v → v. The subspace

of V∞ spanned by the π(f)v with f in C∞
c (G) is called the Gårding subspace of V .

It is relatively easy to show that a smooth vector may be expressed as a linear combination of π(f)v with f in

Cm
c (G) for arbitrarily highm, as explained in [Cartier:1974]. I’ll say something about this in the first section.

It is considerably more difficult to see that if V is a Fréchet space then the smooth vectors and the Gårding

subspace coincide. This remarkable result was proved in [Dixmier­Malliavin:1978].

Their main result, which is what this essay is concerned with, is this:

Theorem (Dixmier­Malliavin) Suppose G to be a Lie group, (π, V ) a continuous representation of G on a
Fréchet space. Every smooth vector v in V may be represented as a finite linear combination

v =
∑

π(fk)vk

with each fk in C∞
c (G) and each vk in V∞.

After an introductory section, I’ll follow closely the exposition of [Dixmier­Malliavin:1978], at least in sub­

stantial matters. But their paper is quite condensed and their logic is intricate, and I have tried to come up
with a more relaxed account. In one place, I’ll correct what seems to be a minor error in their treatment. And
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in the third section I’ll pose a problem of general interest about infinite products that is quite easy to state,
but not obviously so easy to solve.
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1. Introduction

I’ll summarize what was known before the work of Dixmier and Malliavin. The basic fact is one about
Euclidean space Rn.

1.1. Proposition. For eachm ≥ 0 we can express

δ0 =
∑

k≤m

∂kfi/∂x
k

where each fi lies in C
m
c (Rn).

Proof. This is relatively elementary. Suppose at first that n = 1.

y = f(x)

x = 0 x = 1

Let g(x) be a smooth non­negative function on R with support on [0, 1], such
that ∫ 1

0

g(x) dx = 1

and set

f(x) =

{
0 if x ≤ 0∫ ∞

x

g(x) dx for x > 0.

The function f(x) has a jump discontinuity at x = 0, and more precisely as a distribution it satisfies the
equation

Df = δ0 − g(x) δ0 = Df + g ,

where D = d/dx. We can continue on to higher derivatives. The trick is to consider the functions xmf
instead of f . For example: (a) xf is C0 and

Dxf = f + xDf

= f + xδ0 − xg(x)

= f − g1,1 (say)

D2xf = Df −D(xg)

= δ0 − (g +D(xg))

= δ0 − g2,1
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since xδ0 = 0. (b) The function x2f is C1 and

Dx2f = 2xf + x2Df

= 2xf + x2δ0 − x2g(x)

= 2xf − x2g(x)

= 2xf − g1,2

D2x2f = 2f + 2xDf −Dg1,2

= 2f − (2xg +Dg1,2)

= 2f − g2,2

D3x2f = 2Df −D()

= 2δ0 − (2g +Dg2,2) .

= 2δ0 − g3,2 .

Here each gk,m is smooth. Thus we now set

m[k] =

{
1 if k = 0

m(m− 1) . . . (m− k + 1) k > 0.

and define smooth functions gk,m inductively:

g 0,m = 0

g k+1,m = m[k]xm−kg +Dgk,m

One can now verify by induction on k for each fixedm that

Dkxmf = m[k]xm−kf + g k,m (k ≤ m)

Dm+1xmf = m! δ0 + gm+1,m .

This proves the Proposition in dimension one. In higher dimensions, one uses this equation together with
the fact that δ0 can be interpreted as the product of distributions δxi=0 with support on the coordinate

hyperplanes. In dimension two, for example,

∂2

∂x∂y

(
f(x)f(y)

)
−

∂

∂x

(
f(x)g(y)

)
−

∂

∂y

(
g(x)f(y)

)
+ g(x)g(y) = δ0 .

If G is abelian, then the following result is immediate. Otherwise, a mildly technical argument that I won’t

reproduce here (and which can be extracted from the argument in the last section of this essay) implies:

1.2. Corollary. If (π, V ) is a continuous representation of the Lie group G and v lies in V∞ then for every
m ≥ 0 one can write

v =
∑

π(fi)vi

with fi in C
(m)
c (G) and vi in V

∞.

This has been adequate for many purposes in representation theory, but the result of Dixmier and Malliavin

is a drastic improvement. Its proof is very intricate, a real tour de force. Much of what is to come is therefore
rather technical. I’ll try to motivate it here, more or less by going backwards.

First of all, the argument in the last section of this essay reduces the question to one about distributions

with compact support in dimension one. This in turn can be reduced to one about tempered distributions in
dimension one. There are some technical aspects to this reduction I won’t explain here, partly involved in the
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reduction from compact support to tempered, but very roughly the problem about tempered distributions is
this: can we find a series (cm) and a function ψ in S(R) such that

∞∑

0

amψ
(m) = δ0 ?

At first sight this seems a very unfamiliar problem, but if we apply the Fourier transform to this equation, at
least formally, we get the equivalent problem of finding a function χ in S(R) such that

( ∑
(2πi)mamx

m
)
χ(x) = 1 or χ(x) =

1∑
(2πi)mamx

m
.

This suggests setting

(2π)mam =

{
0 ifm is odd

(−1)ℓαℓ ifm = 2ℓ,

with αℓ > 0. Then the formula becomes (still formally)

χ(x) =
1∑
αℓx

2ℓ
,

which implies that at least χ(x) is of rapid decrease at ∞. Proving that its derivatives are also of rapid

decrease, and satisfying various other technical conditions on the coefficients αℓ, is more difficult. What
Dixmier and Malliavin do is search for functions with infinite product expansions

ϕ(z) =
∑

αℓx
2ℓ =

∏ (
1 +

x2

λ2
ℓ

)
.

Under mild conditions on the λℓ this will define an entire function with simple zeroes z = ±λℓ i. Thus χ
will have simple poles at those same values of z, and under a very restrictive condition on the λℓ its inverse

Fourier transform will have an expansion

ψ(y) =
∑ e−2πλℓy

ϕ′(λℓi)
,

which turns out to be all we need. A very crude model, as we’ll see, is

ϕ(z) =
sinh(z)

z
with

1

ϕ(x)
= 2|x|e−|x|(1 + e−2|x| + e−4|x| + · · · )

for x 6= 0.
———————————

I assume from now on throughout this essay that 0 < λ1 < λ2 < λ3 < . . . is a monotonic sequence
of positive numbers such that

∑ 1

λ2
m

<∞ .

———————————

In particular, the λm are unbounded. From standard results about infinite products it follows that:

1.3. Proposition. The infinite product

ϕλ(z) =

(
1 +

z2

λ2
1

)(
1 +

z2

λ2
2

)(
1 +

z2

λ2
3

)
. . .

defines an entire function of z whose zeroes are simple and located at ±λmi.

One well known example of Proposition 1.3 is

sinh(z)

z
=
ez − e−z

2z
=

(
1 +

z2

π2

)(
1 +

z2

4π2

)(
1 +

z2

9π2

)
. . .
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2. Infinite products and Schwartz functions

In this section and the next, let G = R. I recall that the Schwartz space S(R) is the space of all smooth

functions f(x) on R all of whose derivatives are O(1/|x|N ) at infinity for all N .

This section will be concerned with a very general question raised implicitly by [Dixmier­Malliavin:1978],
and answered by them for one very special family of cases. Suppose, as earlier, that

ϕλ(z) =

(
1 +

z2

λ2
1

)(
1 +

z2

λ2
2

)(
1 +

z2

λ2
3

)
. . .

The inverse

χλ(x) =
1

ϕλ(x)

is meromorphic on C with simple poles at ±λmi. The following question arises naturally:

The function ϕλ(x) grows faster at infinity on R than any polynomial, and hence the restriction of χλ to
R is of rapid decrease at infinity. In what circumstances is this restriction in the Schwartz space?

Since

ϕ′
λ(z) =

∑

k

2z

λ2
k

∏

ℓ 6=k

(
1 +

z2

λ2
ℓ

)

the residue at λmi is 1/ϕ′
λ(iλj), where

ϕ′
λ(iλj) =

2i

λj

∏

ℓ 6=j

(
1 −

λ2
j

λ2
ℓ

)
.

For example, we have already seen that the function x/ sinhx has a product expansion of the type we are
considering. It lies in S(R), since it is even and we have a converging expansion for |x| 6= 0:

x

sinh(x)
=

2x

ex − e−x
= 2|x|e−|x|

(
1 + e−2|x| + e−4|x| + · · ·

)
.

Hence all of its derivatives are of essentially exponential decrease at ∞.

I do not know of any really satisfactory conditions on the sequence λm that guarantee that χλ will lie in S(R),
but it seems often to be the case. [Dixmier­Malliavin:1978] proves that χλ(x) lies in the Schwartz space for a

class of sequences λ satisfying rather stringent conditions. I generalize their conditions slightly, and define

a sequence λm to be admissible if λ1 ≥ 1 and λm+1/λm > q > 1. The condition on λ1 is just a matter of
convenience. One immediate consequence of admissibility is that both

λm ≥ qm

λm+k/λm ≥ qk .

Later on, we’ll see very specific admissible sequences, chosen to satisfy various criteria. Dixmier and
Malliavin assume that the λm are a monotonic subsequence of the positive powers of 2 (i.e. that q = 2), but I
believe that looking at a slightly more general case is illuminating.

2.1. Theorem. If (λm) is an admissible sequence then the function χλ(x) lies in S(R).

Proof. It will be long, and parts of it of some independent interest. I’ll not yet assume that λ is admissible.

Since χλ is of rapid decrease, its inverse Fourier transform

ψλ(y) =

∫ ∞

−∞

χλ(x)e−2πixy dx
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is a well defined, smooth, and even, and in order to show that χλ lies in S(R) it suffices to show that ψλ lies
in S(R). For any t ≥ 0 not equal to one of the λmi the real function x 7→ χλ(x+ it) is still of rapid decrease.

We may now shift contours, picking up residues as we do so, to deduce that

ψλ(y) =

k∑

j=0

e−2πλjy

ϕ′(iλj)
+ e−2πty

∫ ∞

−∞

χλ(x+ it)e2πixy dx

if λk < t = tk < λk+1. We want to be able to move tk to infinity. In the end we’ll get this result:

2.2. Proposition. If (λm) is admissible, then

(a) for y > 0, the Fourier transform of χλ may be expressed as

ψλ(y) =

∞∑

j=0

e−2πλjy

ϕ′(iλj)

(b) there exists a constant Cλ > 0 such that

1∣∣ϕ′(iλm)
∣∣ ≤

λm

Cλ

for everym.

It will follow from the proof of (a) that the series in question converges, and (b) strengthens this considerably.

Proof. I’ll first begin the proof of (a), but as we’ll see the proofs of both reduce to almost identical questions.

We have

χλ(x+ it) =
1

ϕλ(x+ it)
, ϕλ(x+ it) =

∏

j≥1

(
1 +

(x + it)2

λ2
j

)
.

I am going to separate the first factor from the others. Let’s look at the norm of that factor, assuming t ≥ λ1:

∣∣∣∣1 +

(
x+ it

λ1

)2 ∣∣∣∣
2

=
∣∣1 + (s+ iτ)2

∣∣2 (s = x/λ1, τ = t/λ1)

=
∣∣(1 + s2 − τ2) + 2isτ

∣∣2

= (1 + s2 − τ2)2 + 4s2τ2

= (s2 − α2)2 + 4s2(1 + α2)

= (s2 + α2)2 + 4s2 ≥ s4 + 4s2 + 1

if α2 = τ2 − 1 ≥ 0. Thus when t ≥ λ1

∣∣ϕλ(x+ it)
∣∣ ≥ (s4 + 4s2 + 1)

∏

j≥2

(
1 +

(x+ it)2

λ2
j

)
.

Since (s4 + 4s2 + 1)−1/2 is integrable over (−∞,∞) we shall be through proving (a) if we can choose the tk
suitably and find a lower bound for

∏

j≥2

(
1 +

(x+ itk)2

λ2
j

)

valid for all large enough k. Following Dixmier and Malliavin, I choose

tk =
√
λkλk+1 .
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Since

ϕ′
λ(iλℓ) =

2i

λℓ

∏

j 6=ℓ

(
1 −

λ2
ℓ

λ2
j

)
,

the proof of (b) will also follow if we can find a good lower bound for some infinite products.

I first find a lower bound for some of the terms in the product. The track of 1 + (s+ iτ)2 as s ranges over all
of R behaves in one of two possible ways, depending on whether τ > 1 or τ < 1. In the first case it swings

around the origin to its left, and in the second to its right:

track of 1 + (s + i/2)2

track of 1 + (s + 2i)2

In either case ∣∣∣∣1 +

(
x+ it

λj

)2 ∣∣∣∣ ≥
∣∣1 − (t/λj)

2
∣∣ .

To conclude the proof of the Lemma, we must find a lower bound for

(
1 −

λkλk+1

λ2
2

)(
1 −

λkλk+1

λ2
3

)
· · ·

(
1 −

λkλk+1

λ2
m

)
· · ·

independent of k, and one for
∏

m 6=k

(
1 −

λ2
k

λ2
m

)

also independent of k. The arguments in the two cases are almost identical, so I’ll do just one. We shall need

this rather elementary result:

2.3. Lemma. If the aj are a sequence of positive numbers with
∑
aj < 1 then

∏
(1 − aj) > 1 − (a0 + a1 + a2 + · · · ) .

Proof. By induction. The hypotheses imply that 0 < aj < 1. Let pn =
∏

j<n(1−aj), sn = a0+a1+· · ·+an−1.

By assumption pn < 1, sn < 1. To start, p1 = 1 − a0 = 1 − s1 > 0. For the induction step, if pn ≥ 1 − sn

then

pn+1 = pn(1 − an) > (1 − sn)(1 − an) = 1 − sn − an + snan > 1 − sn+1 .

I divide up the terms in the infinite product into several cases, the basic dichotomy being j ≤ k and j > k,
or equivalently tk/λj > 1 and tk/λj < 1 (with tk =

√
λkλk+1).
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The first step is to find a lower bound for the infinite tail product
(

1 −
λkλk+1

λ2
k+1

)(
1 −

λkλk+1

λ2
k+2

)
· · ·

(
1 −

λkλk+1

λ2
k+ℓ+1

)
· · ·

Now for ℓ ≥ 0
λkλk+1

λ2
k+ℓ+1

≤
1

q2ℓ+1
, 1 −

λkλk+1

λ2
k+ℓ+1

≥ 1 −
1

q2ℓ+1
.

If ℓ is large enough this will be very close to 1. Then we have
(

1 −
λkλk+1

λ2
k+ℓ+1

)(
1 −

λkλk+1

λ2
k+ℓ+2

)(
1 −

λkλk+1

λ2
k+ℓ+3

)
. . .

>

(
1 −

1

q2ℓ+1

)(
1 −

1

q2ℓ+3

)(
1 −

1

q2ℓ+5

)
. . .

> 1 −

(
1

q2ℓ+1
+

1

q2ℓ+3
+

1

q2ℓ+5
+ · · ·

)

= 1 −
1

q2ℓ+1

(
1 −

1

q2

)−1

.

So if we set

Qℓ =

(
1 −

1

q

)(
1 −

1

q3

)
. . .

(
1 −

1

q2ℓ−1

)

he whole tail product will be greater than Qℓ/2.

Something similar happens form ≤ k. Here

λkλk+1

λ2
k−ℓ

≥ q2ℓ+1, 1 −
λkλk+1

λ2
k−ℓ

≤ 1 − q2ℓ+1 .

If we choose ℓ large enough so q2ℓ+1 ≥ 2, then this is ≤ 1, hence ≥ 1 in absolute value. All in all, as long as
k ≥ ℓ+ 1 we get a lower bound on the magnitude of the product

∞∏

j=2

∣∣∣∣1 −
t2k
λ2

j

∣∣∣∣

that is independent of k. This concludes the proof of Proposition 2.2,

To conclude the proof of Theorem 2.1, I must show that all the functions xmdnψλ/dx
n are bounded for y > 0.

I shall prove, among other things, that the derivatives of ψλ are computed by taking derivatives of the terms
in the series.

Formally we have

ymψ
(n)
λ (y) =

∞∑

j=0

(−2πλj)
n y

me−2πλjy

ϕ′(iλj)
,

and this series for the derivatives converges according to part (b) of Proposition 2.2.

For the series for ymψ
(n)
λ (y) we therefore have the crude but adequate estimate

∣∣∣∣
∞∑

j=0

(−2πλj)
n y

me−2πλjy

ϕ′(iλj)

∣∣∣∣ ≤
(2π)n

C

∞∑

j=0

λn+1
j yme−2πλjy .

The function y 7→ yme2πλy in the range y > 0 has its maximum value at m/2πλ, and is there equal to

(m/2πλe)m. The series is therefore dominated by
(
m

2πe

)m ∑
λn+1−m

j .

Since this converges for n+ 1 −m ≤ −2 orm ≥ n+ 3, the series for ymψ
(n)
λ (y) converges uniformly in the

region y > 0 and the function is bounded there. This concludes the proof of Theorem 2.1.
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3. Interlude: a curious question

The strategy applied here, of bounding each factor in an infinite product, is very special to admissible

sequences λm. Consider instead the product expansion

ϕ(z) = sinh(z)/z =
∏ (

1 +
z2

π2m2

)
, χ(z) =

z

sinh(z)
.

In this case with tk = π(k + 1/2)

1

ϕ(x+ itk)
=

2(x+ π(k + 1/2)i)

(−1)ki(ex + e−x)

so that once again we can pass the integral terms

e−2πky

∫

R

χ(x+ itk)e2πixy dx

off to tk = ∞. Also

ϕ′(πmi) =
cosh(πmi)

πmi
=

(−1)m

πmi

so one can use the series

ψ(y) =
∑

m=1

(−1)m(πmi)e−πmy

to show that χ(x) is in the Schwartz space, by explicit calculation. But this is not at all easy to tell from the

infinite product expansion. There is thus some evidence that Theorem 2.1 and even Proposition 2.2 are true
in very general circumstances, but it is not easy to see a common factor in the proofs of the cases in which

they are known to be true.

4. The main lemma

The group R acts on S(R) by translation:

Lxϕ(y) = ϕ(y − x)

and this gives rise to an action by functions in C∞
c (R): The multiplicative group also acts:

µcf(x) = f(x/c) .

Lfϕ =

∫

R

f(y)Lyϕdy, [Lfϕ](y) =

∫

R

f(x)ϕ(y − x) dx = [f ∗ ϕ](y) .

This is also ∫

R

f(x)µ−1[Lyϕ](x) dx

and so the formula for convolution makes sense if f is a tempered distribution.

Let Ŝ(R) be the topological dual of S(R), the space of tempered distributions on R. The key lemma in the
proof of the theorem of Dixmier­Malliavin is this:

4.1. Lemma. (Main Lemma) Given any sequence of positive constants Am (m ≥ 1), there exists a sequence
of positive constants αm with α0 = 1 and αm ≤ Am for m ≥ 1, as well as a function ψ in S(R), such that

m∑

j=0

(−1)jαjδ
(2j) ∗ ψ −→ δ
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in Ŝ(R) asm→ ∞.

The function ψ will be chosen as ψλ for an admissible sequence λm that will arise in the course of the

proof, depending on the Am. From now on, following [Dixmier­Malliavin:1978], I assume that q = 2 for all
admissible sequences, so λm = 2nm with nm+1 > nm.

We can derive a useful bound from the series for ψλ. As we have seen, this gives us for y ≥ 1

∣∣ψ(n)
λ (y)

∣∣ ≤ Cλ(2π)n
∞∑

k=0

λn+1
k e−2πλk ,

where Cλ is chosen so ∣∣∣∣
1

ϕ′
λ(λki)

∣∣∣∣ ≤ Cλλk

for all k. Let F (λ) = λn+1e−2πλ. Since

F ′(λ) = (n+ 1)λne−2πλ − (2π)e−2πλ = (n+ 1 − 2πλ)λn−1e−2πλ ,

it is monotonic increasing from λ = 0 to νn = (n + 1)/2π, where it takes a maximum value µn, and from

there on monotonic decreasing. We now have an estimate

(2π)−nC−1
∣∣ymψ

(n)
λ (y)

∣∣ ≤
∑

λk≤νn

µn +
∑

λk>νn

λn+1
k e−2πλk .

Since λk ≥ 2k the first sum is at most ⌊log2 νn⌋µn. Since λk+1 ≥ 2λk the second is at most

∑

k=0

(νn2k)n+1e−2πνn2k

.

It is in this last step that [Dixmier­Malliavin:1978] seems to err, apparently assuming λn+1e−2πλ to be
monotonic throughout. No matter, in any case their final claim is true:

4.2. Lemma. For each n there exists a numberMn such that

∣∣ψ(n)
λ (y)

∣∣ ≤Mn

for all y ≥ 1 and all admissible sequences λ.

Now to conclude the proof of the Main Lemma. We shall choose the λk by induction. First of all, recall that
A0 = 1. For the induction step, suppose we have chosen the λk for k < m so that in the expansion

∑
α

(m)
k z2k =

∏m

k=1

(
1 +

z2

λ2
k

)

each α
(m)
k < (2π)kAk. Now choose λm large enough among the powers of 2 so that in the polynomial

expansion of
∏m

k=0

(
1 +

z2

λ2
k

)
=

(
1 +

z2

λ2
m

)
·
∏m−1

k=0

(
1 +

z2

λ2
k

)

each coefficient α
(m+1)
k < (2π)kAk. In the limit one obtains the expansion

∞∑

0

αkz
2k = χλ(z)
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with each αk ≤ (2π)kAk. Thus for each finitem we have

Φm(z) =

∑m
0 αkz

2k

χλ(z)
< 1

and Φm −→ 1 both as a function and as a tempered distribution (convergence in the weak topology). Taking

Fourier transforms, we get
m∑

0

(−1)kαk
δ(2k)

(2π)2n
ψλ −→ δ

asm→ ∞.

We cannowdeduce easily a variant of themain theoremofDixmier­Malliavin. It is not particularly important,

but it displays directly the basic mechanism of the proof of the theorem itself.

4.3. Proposition. Given ϕ in S(R) there exist f and g in S(R) with ϕ = f ∗ g.

Proof. I start with an elementary if clumsy lemma, one which will be used also a few times later on.

4.4. Lemma. Given a map Cj,k from N1+p to R, there exists a sequence (αj) such that

∑

j

αj |Cj,k| <∞

for every k ∈ Np.

Proof. Set C∗
j = supm≤j,n≤(j,j,...,j) |Cm,n|. Herem ≤ n in Nn means inequality component­wise. Thus C∗

j

is a monotonically increasing sequence. Choose the αj so that
∑
αjC

∗
j < ∞, say by setting αj = 1/j2C∗

j .
For k in Np let |k| be the maximum value of its coordinates. Then

∞∑

0

αj |Cj,k| =
∑

j<|k|

αj |Cj,k| +

∞∑

j=|k|

αj |Cj,k| ≤
∑

j<|k|

αj |Cj,k| +

∞∑

j=|k|

αj |C
∗
j | <∞ .

Given ϕ in S(R), let Cj,k,ℓ = sup |y|k|ϕ(2j+ℓ)(y)|. Choose the Aj according to the lemma, so that∑
AjCj,k,ℓ <∞ for all k, ℓ.

Choose ψ according to the Main Lemma so that

∑
(−1)jαjδ

(2j) ∗ ψ → δ, αj ≤ Aj .

Then ∑
(−1)jαjδ

(2j) ∗ ψ ∗ ϕ =
∑

(−1)jαjδ
(2j) ∗ ϕ ∗ ψ → ϕ

in S(R). Because αj ≤ Aj , the sum
∑
αjϕ

(2j) converges to a function Φ in S(R), for any sequence αj ≤ Aj ,

and Φ ∗ f = ϕ.

This is the simplest example of an argument we’ll see repeated later on.
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5. Functions of compact support on R

From now on I follow [Dixmier­Malliavin:1978] more closely. In this section, let C−∞(R) be the space of

distributions on R. It is the topological dual of C∞
c (R).

5.1. Lemma. Given any sequence of positive constants Am, there exists a sequence of positive constants
αm ≤ Am and functions f , g in C∞

c (R) such that

m∑

i=0

(−1)iαiδ
(2i) ∗ f → δ + g

in C−∞(R) asm→ ∞. The functions f and g may be given arbitrarily small support.

Proof. Let ω be a smooth, even function on R with support on [−3, 3], identically 1 on [−2, 2]. For every

sequence λ set

ωλ = ω · ψλ ,

with ψλ defined as in the proof of the Main Lemma. By Lemma 4.2

sup
y≥1

|ω
(n)
λ | ≤ Dn

for suitable constantsDn and all λ. Replace the constants Am by new ones

Bm = sup(Am, 1/n
2D2n, . . . , 1/n

2D2n+n) .

I claim that
p∑

0

(−1)jαj
δ(2j)

(2π)2n
∗ ωλ −→ δ + g

for some g in C∞
c (R). I suffices to verify this separately on intervals (−2, 2), (1, 4), (3,∞). On the first we

are just repeating the previous argument, since there ωλ = ψλ and therefore

p∑

0

(−1)jαj
δ(2j)

(2π)2n
∗ ωλ −→ δ .

For y ≥ 1 we have ∣∣∣∣αn
δ(2n+p)

(2π)2n
ωλ(y)

∣∣∣∣ ≤ αnD2n+p ≤
1

n2
if n ≥ p

so
p∑

0

(−1)nαn
δ(2n)

(2π)2n
ωλ

has as limit on a function in C∞
c ([1, 4]).

Scaling, one may assume f and g in this lemma to have support in arbitrarily small intervals.
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6. Smooth representations

Now for the proof of the main theorem. LetG be a Lie group, (π, V ) a continuous representation ofG on the

Fréchet space V , V∞ the subspace of smooth vectors in V . AS I have already mentioned, it also is a Fréchet

space on which G acts continuously. Fix a neighbourhood Ω of the identity of G on which the exponential
map is a diffeomorphism.

6.1. Proposition. Any v in V∞ can be expressed as a finite sum

v =
∑

π(fj)vj

with each fj ∈ C∞
c (Ω), vj ∈ V∞.

Proof. Let (Xj) be a basis ofU(g), x in g such that exp tx lies inΩ for t ≤ 1. If the ρℓ are a basis of semi­norms

on V , set ∥∥∥π(Xkx
2n)v

∥∥∥
ρℓ

= Mn,k,ℓ .

Let the αn be such that
∑
αnMn,k,ℓ < ∞ for all k, ℓ. Choose 0 < ε < 1/2 and f , g smooth functions on

[−ε, ε] such that
p∑

0

αn
δ(2n)

(2π)2n
∗ f → δ + g .

Let µ = f(x) dx, ν = g(x) dx, identified through the exponential map with measures on G with support on

exp(Rx) ∩ Ω. Then

π(µ) ∗

p∑

0

αnπ(x2n)v → v + π(ν)v

in V . The sequence
p∑

0

αnπ(x2n)v

has as limit some η in V , and then π(µ)η = v + π(ν)v.

Let {xj} (for 1 ≤ j ≤ n) be a basis of g. Applying this to x = x1 gives us measures µ0 and µ1 with support

on exp(Rx1) ∩ Ω and α0 in V∞ such that π(µ0)α0 = v + π(µ1)v. If we let α1 = v this gives us

v = π(µ0)α0 + π(µ1)α1 .

Applying it now to x = x2 and each of the αi gives us

v = π(µ00)α00 + π(µ01)α01 + π(µ10)α10 + π(µ11)α11 .

In this formula, each µij is of the form ν1 ∗ ν2 where ν1 is a measure smooth on exp(Rx1) and ν2 is smooth
on exp(Rx2), hence itself smooth on the two­dimensional image of exp(Rx1) exp(Rx2). Continuing n − 2
more times we finally get

v =
∑

s

π(µs)αs

where s varies over the subsets of {1, . . . , n} expressed in bit notation and now the µs are smooth on Ω.
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