Quiz 1

2017-09-21

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1 pt) Compute

$$\lim_{x \to -3} \frac{x^2 + 7}{|x + 1|}$$

Solution. As $x \to -3$, the numerator converges to $(-3)^2 + 7 = 16$, while the denominator converges to |-3+1| = |-2| = 2. So, the limit equals 8.

(b) (1 pt) Compute

$$\lim_{x \to +\infty} \frac{3x^2 - 2}{2x^2 + x + 5}$$

Solution. We compute

$$\lim_{x \to +\infty} \frac{3x^2 - 2}{2x^2 + x + 5} = \lim_{x \to +\infty} \frac{\frac{3x^2 - 2}{x^2}}{\frac{2x^2 + x + 5}{x^2}} = \lim_{x \to +\infty} \frac{3 - \frac{2}{x^2}}{2 + \frac{1}{x} + \frac{5}{x^2}} = \frac{3}{2}$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2 pt) Compute

$$\lim_{x \to 1^{-}} \frac{\sqrt{(x-1)^2}}{x^2 - 1}$$

Solution. As $x \to 1^-$, we have that 1 - x is positive and so, $\sqrt{(x-1)^2} = \sqrt{(1-x)^2} = 1 - x$. Thus we get

$$\lim_{x \to 1^{-}} \frac{\sqrt{(x-1)^2}}{x^2 - 1} = \lim_{x \to 1^{-}} \frac{1-x}{(x-1)(x+1)} = \lim_{x \to 1^{-}} \frac{-1}{x+1} = -\frac{1}{2}.$$

(b) (2 pt) Compute

$$\lim_{x \to -\infty} x - \sqrt{x^2 + x}$$

Solution. As $x \to -\infty$, we have a limit type of " $-\infty - \infty$ "; so, the above limit does not exist and it diverges to $-\infty$.

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the two real numbers a and b such that $\lim_{x\to 2} f(x)$ exists for

$$f(x) = \begin{cases} \frac{x^2 - ax - 6}{x - 2} & \text{if } x < 2\\ 3 + bx & \text{if } x > 2. \end{cases}$$

Solution.

First of all, the limit exists if

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x).$$

Since the denominator of $\frac{x^2 - ax - 6}{x - 2}$ converges to 0 as $x \to 2$, then we need the numerator also to converge to 0, i.e., $\lim_{x\to 2^-} x^2 - ax - 6 = 0$ and so, 4 - 2a - 6 = 0, i.e., $\underline{a = -1}$. With this value a = -1, we have

$$\lim_{x \to 2^{-}} f(x)$$

= $\lim_{x \to 2^{-}} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2^{-}} \frac{(x + 3)(x - 2)}{x - 2} = \lim_{x \to 2^{-}} (x + 3) = 5.$

So, we require $\lim_{x\to 2^+} f(x) = 5$. Then, we see

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 3 + bx = 3 + 2b.$$

Thus, 3 + 2b = 5, therefore $\underline{b} = 1$.

- **1.** Each part of this question is worth 1 mark.
 - (a) (1 pt) Compute

$$\lim_{x \to -1} \frac{3}{\sqrt{7x^3 + 11}}$$

Solution.

$$\lim_{x \to -1} \frac{3}{\sqrt{7x^3 + 11}} = \lim_{x \to -1} \frac{3}{\sqrt{7(-1)^3 + 11}} = \frac{3}{\sqrt{4}} = \frac{3}{2}.$$

(b) (1 pt) Compute

$$\lim_{t \to -\infty} \frac{t^2 + 4t}{5t^2 + 1}$$

Solution. We compute

$$\lim_{t \to -\infty} \frac{t^2 + 4t}{5t^2 + 1} = \lim_{t \to -\infty} \frac{t^2(1 + 4/t)}{t^2(5 + 1/t^2)} = \lim_{t \to -\infty} \frac{1 + 4/t}{5 + 1/t^2} = \frac{1}{5}$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2 pt) Compute

$$\lim_{x \to 1^+} \frac{|1 - x|}{x^2 + x - 2}$$

Solution. As $x \to 1^+$, we have that x - 1 is positive and so, |1 - x| = |x - 1| = x - 1. Thus we get

$$\lim_{x \to 1^+} \frac{|1-x|}{x^2 + x - 2} = \lim_{x \to 1^+} \frac{x - 1}{(x - 1)(x + 2)} = \lim_{x \to 1^+} \frac{1}{x + 2} = \frac{1}{3}.$$

(b) (2 pt) Compute

$$\lim_{x \to -\infty} x^2 + x$$

Solution. As $x \to -\infty$, we have a limit type of " $\infty - \infty$ ", however if we factor out the leading term, we have

$$\lim_{x \to -\infty} x^2 + x = \lim_{x \to -\infty} x^2 \left(1 + \frac{1}{x} \right) = \infty$$

for $(1+\frac{1}{x}) \to 1$ and $x^2 \to \infty$ as $x \to -\infty$.

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the two real numbers a and b such that $\lim_{x\to -2} f(x)$ exists for

$$f(x) = \begin{cases} \frac{x^2 + ax - 4}{x + 2}, & x < -2\\ -x^2 + bx, & x > -2 \end{cases}$$

Solution.

First of all, the limit exists if

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{+}} f(x).$$

For the fraction $\frac{x^2+ax-4}{x+2}$, the denominator converges to 0 as $x \to -2$, then we need the numerator also to converge to 0, i.e., $\lim_{x\to -2^-} x^2+ax-4=0$ and so, $(-2)^2 - 2a - 4 = 0$, i.e., $\underline{a=0}$. With this value a = 0, we have

$$\lim_{x \to -2^{-}} f(x)$$

$$= \lim_{x \to -2^{-}} \frac{x^2 + ax - 2^2}{x + 2} = \lim_{x \to -2^{-}} \frac{x^2 - 2^2}{x + 2}$$

$$= \lim_{x \to -2^{-}} \frac{(x + 2)(x - 2)}{x + 2} = \lim_{x \to -2^{-}} x - 2 = -2 - 2 = -4.$$

So, we require $\lim_{x\to -2^+} f(x) = -4$. Then, we see

$$\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} -x^2 + bx = -4 - 2b$$

Therefore $\underline{b} = 0$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1 pt) Compute

$$\lim_{x \to 2} \frac{x^2 - 10}{|x - 5|}$$

Solution. As $x \to 2$, the numerator converges to $(2)^2 - 10 = -6$, while the denominator converges to |2 - 5| = |-3| = 3. So, the limit equals -2.

(b) (1 pt) Compute

$$\lim_{x \to +\infty} \frac{2x^2 - 5}{3x^2 - 3x - 2}$$

Solution. We compute

$$\lim_{x \to +\infty} \frac{2x^2 - 5}{3x^2 - 3x - 2} = \lim_{x \to +\infty} \frac{\frac{2x^2 - 5}{x^2}}{\frac{3x^2 - 3x - 2}{x^2}} = \lim_{x \to +\infty} \frac{2 - \frac{5}{x^2}}{3 - \frac{3}{x} - \frac{2}{x^2}} = \frac{2}{3}$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2 pt) Compute

$$\lim_{x \to -2^{-}} \frac{\sqrt{(x+2)^2}}{x^2 - 4}$$

Solution. As $x \to -2^-$, we have that x + 2 is negative and so, $\sqrt{(x+2)^2} = \sqrt{(-x-2)^2} = -x-2$. Thus we get

$$\lim_{x \to -2^{-}} \frac{\sqrt{(x+2)^2}}{x^2 - 4} = \lim_{x \to -2^{-}} \frac{-x - 2}{(x+2)(x-2)} = \lim_{x \to -2^{-}} \frac{-1}{x-2} = \frac{1}{4}.$$

(b) (2 pt) Compute

$$\lim_{x \to -\infty} 2x - \sqrt{x^2 - 3x}$$

Solution. As $x \to -\infty$, we have a limit type of " $-\infty - \infty$ "; so, the above limit does not exist since it diverges to $-\infty$.

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the two real numbers a and b such that $\lim_{x\to 1} f(x)$ exists for

$$f(x) = \begin{cases} \frac{x^2 - ax - 6}{x - 1} & \text{if } x < 1\\ 3 + bx & \text{if } x > 1. \end{cases}$$

Solution.

First of all, the limit exists if

$$\lim_{x\to 1^-}f(x)=\lim_{x\to 1^+}f(x).$$

Since the denominator converges to 0 as $x \to 1$, then we need the numerator also to converge to 0, i.e., $\lim_{x\to 1^-} x^2 - ax - 6 = 0$ and so, 1-a-6=0, i.e., $\underline{a=-5}$. With this value a=-5, we have

$$\lim_{x \to 1^{-}} f(x)$$

= $\lim_{x \to 1^{-}} \frac{x^2 + 5x - 6}{x - 1} = \lim_{x \to 1^{-}} \frac{(x + 6)(x - 1)}{x - 1} = \lim_{x \to 1^{-}} (x + 6) = 7.$

So, we require $\lim_{x\to 1^+} f(x) = 7$. Then, we see

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 3 + bx = 3 + b.$$

Thus, 3 + b = 7, therefore $\underline{b} = 4$.