Quiz 1

2017-09-21

Last name

First name

Student number

Email ..

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1 pt) Compute

$$
\lim _{x \rightarrow-3} \frac{x^{2}+7}{|x+1|}
$$

Solution. As $x \rightarrow-3$, the numerator converges to $(-3)^{2}+7=16$, while the denominator converges to $|-3+1|=|-2|=2$. So, the limit equals 8 .
(b) (1 pt) Compute

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}-2}{2 x^{2}+x+5}
$$

Solution. We compute

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}-2}{2 x^{2}+x+5}=\lim _{x \rightarrow+\infty} \frac{\frac{3 x^{2}-2}{x^{2}}}{\frac{2 x^{2}+x+5}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{3-\frac{2}{x^{2}}}{2+\frac{1}{x}+\frac{5}{x^{2}}}=\frac{3}{2}
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2 pt) Compute

$$
\lim _{x \rightarrow 1^{-}} \frac{\sqrt{(x-1)^{2}}}{x^{2}-1}
$$

Solution. As $x \rightarrow 1^{-}$, we have that $1-x$ is positive and so, $\sqrt{(x-1)^{2}}=\sqrt{(1-x)^{2}}=1-x$. Thus we get

$$
\lim _{x \rightarrow 1^{-}} \frac{\sqrt{(x-1)^{2}}}{x^{2}-1}=\lim _{x \rightarrow 1^{-}} \frac{1-x}{(x-1)(x+1)}=\lim _{x \rightarrow 1^{-}} \frac{-1}{x+1}=-\frac{1}{2}
$$

(b) (2 pt) Compute

$$
\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x}
$$

Solution. As $x \rightarrow-\infty$, we have a limit type of " $-\infty-\infty$ "; so, the above limit does not exist and it diverges to $-\infty$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the two real numbers a and b such that $\lim _{x \rightarrow 2} f(x)$ exists for

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x^{2}-a x-6}{x-2} & \text { if } & x<2 \\
3+b x & \text { if } & x>2
\end{array}\right.
$$

Solution.

First of all, the limit exists if

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)
$$

Since the denominator of $\frac{x^{2}-a x-6}{x-2}$ converges to 0 as $x \rightarrow 2$, then we need the numerator also to converge to 0 , i.e., $\lim _{x \rightarrow 2^{-}} x^{2}-a x-6=0$ and so, $4-2 a-6=0$, i.e., $a=-1$. With this value $a=-1$, we have

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x) \\
& =\lim _{x \rightarrow 2^{-}} \frac{x^{2}+x-6}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{(x+3)(x-2)}{x-2}=\lim _{x \rightarrow 2^{-}}(x+3)=5 .
\end{aligned}
$$

So, we require $\lim _{x \rightarrow 2^{+}} f(x)=5$. Then, we see

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 3+b x=3+2 b .
$$

Thus, $3+2 b=5$, therefore $b=1$.

1. Each part of this question is worth 1 mark.
(a) (1 pt) Compute

$$
\lim _{x \rightarrow-1} \frac{3}{\sqrt{7 x^{3}+11}}
$$

Solution.

$$
\lim _{x \rightarrow-1} \frac{3}{\sqrt{7 x^{3}+11}}=\lim _{x \rightarrow-1} \frac{3}{\sqrt{7(-1)^{3}+11}}=\frac{3}{\sqrt{4}}=\frac{3}{2}
$$

(b) (1 pt) Compute

$$
\lim _{t \rightarrow-\infty} \frac{t^{2}+4 t}{5 t^{2}+1}
$$

Solution. We compute

$$
\lim _{t \rightarrow-\infty} \frac{t^{2}+4 t}{5 t^{2}+1}=\lim _{t \rightarrow-\infty} \frac{t^{2}(1+4 / t)}{t^{2}\left(5+1 / t^{2}\right)}=\lim _{t \rightarrow-\infty} \frac{1+4 / t}{5+1 / t^{2}}=\frac{1}{5}
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2 pt) Compute

$$
\lim _{x \rightarrow 1^{+}} \frac{|1-x|}{x^{2}+x-2}
$$

Solution. As $x \rightarrow 1^{+}$, we have that $x-1$ is positive and so, $|1-x|=|x-1|=x-1$. Thus we get

$$
\lim _{x \rightarrow 1^{+}} \frac{|1-x|}{x^{2}+x-2}=\lim _{x \rightarrow 1^{+}} \frac{x-1}{(x-1)(x+2)}=\lim _{x \rightarrow 1^{+}} \frac{1}{x+2}=\frac{1}{3}
$$

(b) (2 pt) Compute

$$
\lim _{x \rightarrow-\infty} x^{2}+x
$$

Solution. As $x \rightarrow-\infty$, we have a limit type of " $\infty-\infty$ ", however if we factor out the leading term, we have

$$
\lim _{x \rightarrow-\infty} x^{2}+x=\lim _{x \rightarrow-\infty} x^{2}\left(1+\frac{1}{x}\right)=\infty
$$

for $\left(1+\frac{1}{x}\right) \rightarrow 1$ and $x^{2} \rightarrow \infty$ as $x \rightarrow-\infty$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the two real numbers a and b such that $\lim _{x \rightarrow-2} f(x)$ exists for

$$
f(x)= \begin{cases}\frac{x^{2}+a x-4}{x+2}, & x<-2 \\ -x^{2}+b x, & x>-2\end{cases}
$$

Solution.

First of all, the limit exists if

$$
\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x) .
$$

For the fraction $\frac{x^{2}+a x-4}{x+2}$, the denominator converges to 0 as $x \rightarrow-2$, then we need the numerator also to converge to 0 , i.e., $\lim _{x \rightarrow-2^{-}} x^{2}+a x-4=0$ and so, $(-2)^{2}-2 a-4=0$, i.e., $\underline{a=0}$. With this value $a=0$, we have

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} f(x) \\
& =\lim _{x \rightarrow-2^{-}} \frac{x^{2}+a x-2^{2}}{x+2}=\lim _{x \rightarrow-2^{-}} \frac{x^{2}-2^{2}}{x+2} \\
& =\lim _{x \rightarrow-2^{-}} \frac{(x+2)(x-2)}{x+2}=\lim _{x \rightarrow-2^{-}} x-2=-2-2=-4 .
\end{aligned}
$$

So, we require $\lim _{x \rightarrow-2^{+}} f(x)=-4$. Then, we see

$$
\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}}-x^{2}+b x=-4-2 b
$$

Therefore $\underline{b=0}$.

1. Each part of this question is worth 1 mark.
(a) (1 pt) Compute

$$
\lim _{x \rightarrow 2} \frac{x^{2}-10}{|x-5|}
$$

Solution. As $x \rightarrow 2$, the numerator converges to $(2)^{2}-10=-6$, while the denominator converges to $|2-5|=|-3|=3$. So, the limit equals -2 .
(b) (1 pt) Compute

$$
\lim _{x \rightarrow+\infty} \frac{2 x^{2}-5}{3 x^{2}-3 x-2}
$$

Solution. We compute
$\lim _{x \rightarrow+\infty} \frac{2 x^{2}-5}{3 x^{2}-3 x-2}=\lim _{x \rightarrow+\infty} \frac{\frac{2 x^{2}-5}{x^{2}}}{\frac{3 x^{2}-3 x-2}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{2-\frac{5}{x^{2}}}{3-\frac{3}{x}-\frac{2}{x^{2}}}=\frac{2}{3}$
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2 pt) Compute

$$
\lim _{x \rightarrow-2^{-}} \frac{\sqrt{(x+2)^{2}}}{x^{2}-4}
$$

Solution. As $x \rightarrow-2^{-}$, we have that $x+2$ is negative and so, $\sqrt{(x+2)^{2}}=\sqrt{(-x-2)^{2}}=-x-2$. Thus we get

$$
\lim _{x \rightarrow-2^{-}} \frac{\sqrt{(x+2)^{2}}}{x^{2}-4}=\lim _{x \rightarrow-2^{-}} \frac{-x-2}{(x+2)(x-2)}=\lim _{x \rightarrow-2^{-}} \frac{-1}{x-2}=\frac{1}{4}
$$

(b) (2 pt) Compute

$$
\lim _{x \rightarrow-\infty} 2 x-\sqrt{x^{2}-3 x}
$$

Solution. As $x \rightarrow-\infty$, we have a limit type of " $-\infty-\infty$ "; so, the above limit does not exist since it diverges to $-\infty$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the two real numbers a and b such that $\lim _{x \rightarrow 1} f(x)$ exists for

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x^{2}-a x-6}{x-1} & \text { if } & x<1 \\
3+b x & \text { if } & x>1
\end{array}\right.
$$

Solution.

First of all, the limit exists if

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)
$$

Since the denominator converges to 0 as $x \rightarrow 1$, then we need the numerator also to converge to 0 , i.e., $\lim _{x \rightarrow 1^{-}} x^{2}-a x-6=0$ and so, $1-a-6=0$, i.e., $a=-5$. With this value $a=-5$, we have

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x) \\
& =\lim _{x \rightarrow 1^{-}} \frac{x^{2}+5 x-6}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{(x+6)(x-1)}{x-1}=\lim _{x \rightarrow 1^{-}}(x+6)=7 .
\end{aligned}
$$

So, we require $\lim _{x \rightarrow 1^{+}} f(x)=7$. Then, we see

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 3+b x=3+b
$$

Thus, $3+b=7$, therefore $\underline{b=4}$.

