Quiz 5-T

2017 - 11 - 16

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1pt) Find the x-coordinates of the local minimum points of the function f(x) = x³ 3x + 5 defined on the whole real line.
 Solution. We have f'(x) = 3x² 3 = 3(x 1)(x + 1). Hence the critical points are 1 and -1. We also have no singular point. Using the second derivative test, we get: f''(x) = 6x, f''(1) = 6 > 0 and f''(-1) = -6 < 0. Hence x = 1 is the local minimum of f(x).
 - (b) (1pt) Let T₃(x) be the third degree Taylor polynomial about x = 0 of g(x) = x/(1+x). Evaluate T'_3(0).
 Solution. We have T'_3(0) = g'(0) so we just need to compute g'(0). By direct calculations, we get

$$g'(x) = \frac{1}{(1+x)^2}$$

Hence $T'_3(0) = g'(0) = 1$.

- 2. You have to show all your work in order to get credit.
 - (a) (2pt) Find the x-coordinates of the global maximum points of $h(x) = x^5 5x + 5$ on [0, 2].

Solution. By the Extreme Value Theorem, the candidates for the global maxima are:

+ end points: 0 and 2

+ critical points: $h'(c) = 5c^4 - 5 = 0$. Hence $c^4 = 1$ so c = 1 and -1. But -1 is not in the interval [0, 2]. So 1 is the only critical point in this case.

+ singular points: NONE

So we have three candidates for the global maximum: 0, 1 and 2. Also, h(0) = 5; h(1) = 1 and h(2) = 32 - 10 + 5 = 27. Hence the coordinate of the global maximum is (2, 27).

(b) (2pt) Let $T_n(x)$ be the *n*th degree Taylor polynomial about x = 0 for the function $f(x) = \sin(x)$. Determine whether $T_{99}(0.1)$ gives an underestimate or overestimate of $\sin(0.1)$. Justify your answer.

Solution. $T_n(0.1)$ gives an underestimate of $\sin(0.1)$ when $R_n(0.1) = \sin(0.1) - T_n(0.1) > 0$. Similarly, $T_n(0.1)$ gives an overestimate of $\sin(0.1)$ when $R_n(0.1) = \sin(0.1) - T_n(0.1) < 0$.

By the Lagrange Remainder Theorem, we obtain $R_{99}(0.1) = \frac{f^{(100)}(c)}{100!} (0.1)^{100}$ for some c between 0 and 0.1. We have that (note the patterns):

$$f^{(0)}(c) = f^{(4)}(c) = f^{(8)}(c) = \dots = f^{(4j)}(c) = \sin(c)$$

$$f^{(1)}(c) = f^{(5)}(c) = f^{(9)}(c) = \dots = f^{(4j+1)}(c) = \cos(c)$$

$$f^{(2)}(c) = f^{(6)}(c) = f^{(10)}(c) = \dots = f^{(4j+2)}(c) = -\sin(c)$$

$$k^{(3)}(c) = k^{(7)}(c) = f^{(11)}(c) = \dots = f^{(4j+3)}(c) = -\cos(c)$$

for $j = 0, 1, 2, \dots$

Thus $f^{(100)}(c) = f^{(4*25)}(c) = \sin c > 0$ since c is between 0 and 0.1 (which means c is in the first quadrant). Hence $R_{99}(0.1) > 0$ which means that $T_{99}(0.1)$ gives an underestimate of $\sin(0.1)$

- 3. You have to show all your work in order to get credit. Let $\ell(x) = x^4 + 6x^2 + 4x + 2$.
 - (a) (2pt) Prove that $\ell(x)$ has at least one critical point.
 - (b) (2pt) Prove that $\ell(x)$ has at most one critical point.

Solution. $\ell(x) = x^4 + 6x^2 + 4x + 2$ has exactly one critical point means that $f(x) = \ell'(x) = 4x^3 + 12x + 4 = 0$ has exactly one root. Step 1: AT LEAST ONE root using IVT.

We have that the function f(x) is continuous and differentiable everywhere. Also, f(0) = 4 and f(-1) = -12. So by the IVT, f(x) = 0 has at least one root c in [-1, 0].

Step 2: AT MOST ONE root using MVT.

Suppose that there is another root d (that is f(d) = 0). Then by MVT (or Rolle's Theorem), there is some z between c and d such that $f'(z) = \frac{f(d)-f(c)}{d-c} = 0$. Compute $f'(x) = 12x^2 + 12$. Hence $12z^2 + 12 = 0$, that is $z^2 = -1$ which is impossible. So there is no other real root of f(x).

Quiz 5-T-p

2017 - 11 - 16

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1pt) Find the x-coordinates of the local maximum points of the function $f(x) = x^3 12x 1$ defined on the whole real line.

Solution. We have $f'(x) = 3x^2 - 12 = 3(x^2 - 4) = 3(x - 2)(x + 2)$. Hence the critical points are 2 and -2. We also have no singular point. Using the second derivative test, we get: f''(x) = 6x, f''(2) = 12 > 0 and f''(-2) = -12 < 0. Hence x = -2 is the *x*-coordinate of the local maximum of f(x).

(b) (1pt) Let $T_3(x)$ be the third degree Taylor polynomial about x = 1 of $g(x) = x^2 e^x$. Evaluate $T'_3(1)$.

Solution. We have $T'_3(1) = g'(1)$ so we just need to compute g'(1). By direct calculations, we get

$$g'(x) = 2xe^x + x^2e^x$$

Hence $T'_3(1) = g'(1) = 3e$.

- 2. You have to show all your work in order to get credit.
 - (a) (2pt) Find the x-coordinates of the global minimum points of $h(x) = 3x^4 - 8x^3 + 6x^2 + 1$ on [-1, 1].

Solution. By the Extreme Value Theorem, the candidates for the global minima are:

+ end points: -1 and 1 + critical points: $h'(c) = 12c^3 - 24c^2 + 12c = 12c(c-1)^2 = 0$. Hence c = 0 and c = 1 (already an endpoint). + singular points: NONE

We have three candidates for the global maximum: -1, 0 and 1. Compute, h(-1) = 18, h(0) = 1 and h(1) = 2. The x-coordinate of the global minimum is x = 0.

(b) (2pt) Let $T_n(x)$ be the *n*th degree Taylor polynomial about x = 0for the function $f(x) = \sin(x)$. Determine whether $T_{101}(0.1)$ gives an underestimate or overestimate of $\sin(0.1)$. Justify your answer.

Solution. $T_n(0.1)$ gives an **underestimate** of $\sin(0.1)$ when

$$R_n(0.1) = \sin(0.1) - T_n(0.1) > 0$$

Similarly, $T_n(0.1)$ gives an overestimate of $\sin(0.1)$ when

$$R_n(0.1) = \sin(0.1) - T_n(0.1) < 0$$

By the Lagrange Remainder Theorem, we obtain

$$R_{101}(0.1) = \frac{f^{(102)}(c)}{102!} (0.1)^{102}$$

for some c between 0 and 0.1. Compute:

$$\begin{aligned} f^{(0)}(c) &= f^{(4)}(c) = f^{(8)}(c) = \dots = f^{(4j)}(c) = \sin(c) \\ f^{(1)}(c) &= f^{(5)}(c) = f^{(9)}(c) = \dots = f^{(4j+1)}(c) = \cos(c) \\ f^{(2)}(c) &= f^{(6)}(c) = f^{(10)}(c) = \dots = f^{(4j+2)}(c) = -\sin(c) \\ f^{(3)}(c) &= f^{(7)}(c) = f^{(11)}(c) = \dots = f^{(4j+3)}(c) = -\cos(c) \end{aligned}$$

for $j=0,1,2,\ldots$ Thus $f^{(102)}(c)=f^{(4*25+2)}(c)=-\sin c<0$ since c is between 0 and 0.1 (which means c is in the first quadrant). Hence $R_{101}(0.1) < 0$ which means that $T_{101}(0.1)$ gives an overestimate of $\sin(0.1)$.

- 3. You have to show all your work in order to get credit. Let $\ell(x) = x^6 + 4x^2 + x + 2$.
 - (a) (2pt) Prove that $\ell(x)$ has at least one critical point.
 - (b) (2pt) Prove that $\ell(x)$ has at most one critical point.

Solution. $\ell(x) = x^6 + 4x^2 + x + 2$ has exactly one critical point means that $f(x) = \ell'(x) = 6x^5 + 8x + 1 = 0$ has exactly one root. Step 1: AT LEAST ONE root using IVT.

We have that the function f(x) is continuous and differentiable everywhere. Also, f(0) = 1 and f(-1) = -13. So by the IVT, f(x) = 0 has at least one root c in [-1, 0].

Step 2: AT MOST ONE root using MVT.

Suppose that there is another root d (that is f(d) = 0). Then by MVT (or Rolle's Theorem), there is some z between c and d such that $f'(z) = \frac{f(d) - f(c)}{d - c} = 0$. Compute $f'(x) = 30x^4 + 8$. Since $x^4 \ge 0$, f'(x) > 0 for all x. There is no other real root of f(x).