Quiz 5-T

2017-11-16

Last name

First name

Student number

Email ...

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1pt) Find the x-coordinates of the local minimum points of the function $f(x)=x^{3}-3 x+5$ defined on the whole real line.
Solution. We have $f^{\prime}(x)=3 x^{2}-3=3(x-1)(x+1)$. Hence the critical points are 1 and -1 . We also have no singular point. Using the second derivative test, we get: $f^{\prime \prime}(x)=6 x, f^{\prime \prime}(1)=6>0$ and $f^{\prime \prime}(-1)=-6<0$. Hence $x=1$ is the local minimum of $f(x)$.
(b) (1pt) Let $T_{3}(x)$ be the third degree Taylor polynomial about $x=0$ of $g(x)=\frac{x}{1+x}$. Evaluate $T_{3}^{\prime}(0)$.
Solution. We have $T_{3}^{\prime}(0)=g^{\prime}(0)$ so we just need to compute $g^{\prime}(0)$. By direct calculations, we get

$$
g^{\prime}(x)=\frac{1}{(1+x)^{2}}
$$

Hence $T_{3}^{\prime}(0)=g^{\prime}(0)=1$.

2. You have to show all your work in order to get credit.

(a) (2pt) Find the x-coordinates of the global maximum points of $h(x)=x^{5}-5 x+5$ on $[0,2]$.
Solution. By the Extreme Value Theorem, the candidates for the global maxima are:

+ end points: 0 and 2
+ critical points: $h^{\prime}(c)=5 c^{4}-5=0$. Hence $c^{4}=1$ so $c=1$ and -1 . But -1 is not in the interval $[0,2]$. So 1 is the only critical point in this case.
+ singular points: NONE
So we have three candidates for the global maximum: 0,1 and 2 . Also, $h(0)=5 ; h(1)=1$ and $h(2)=32-10+5=27$. Hence the coordinate of the global maximum is $(2,27)$.
(b) (2pt) Let $T_{n}(x)$ be the nth degree Taylor polynomial about $x=0$ for the function $f(x)=\sin (x)$. Determine whether $T_{99}(0.1)$ gives an underestimate or overestimate of $\sin (0.1)$. Justify your answer.

Solution. $T_{n}(0.1)$ gives an underestimate of $\sin (0.1)$ when $R_{n}(0.1)=$ $\sin (0.1)-T_{n}(0.1)>0$. Similarly, $T_{n}(0.1)$ gives an overestimate of $\sin (0.1)$ when $R_{n}(0.1)=\sin (0.1)-T_{n}(0.1)<0$.
By the Lagrange Remainder Theorem, we obtain $R_{99}(0.1)=\frac{f^{(100)}(c)}{100!}(0.1)^{100}$ for some c between 0 and 0.1.
We have that (note the patterns):

$$
\begin{gathered}
f^{(0)}(c)=f^{(4)}(c)=f^{(8)}(c)=\ldots=f^{(4 j)}(c)=\sin (c) \\
f^{(1)}(c)=f^{(5)}(c)=f^{(9)}(c)=\ldots=f^{(4 j+1)}(c)=\cos (c) \\
f^{(2)}(c)=f^{(6)}(c)=f^{(10)}(c)=\ldots=f^{(4 j+2)}(c)=-\sin (c) \\
k^{(3)}(c)=k^{(7)}(c)=f^{(11)}(c)=\ldots=f^{(4 j+3)}(c)=-\cos (c)
\end{gathered}
$$

for $j=0,1,2, \ldots$.
Thus $f^{(100)}(c)=f^{(4 * 25)}(c)=\sin c>0$ since c is between 0 and 0.1 (which means c is in the first quadrant). Hence $R_{99}(0.1)>0$ which means that $T_{99}(0.1)$ gives an underestimate of $\sin (0.1)$
3. You have to show all your work in order to get credit.

Let $\ell(x)=x^{4}+6 x^{2}+4 x+2$.
(a) (2pt) Prove that $\ell(x)$ has at least one critical point.
(b) (2pt) Prove that $\ell(x)$ has at most one critical point.

Solution. $\ell(x)=x^{4}+6 x^{2}+4 x+2$ has exactly one critical point means that $f(x)=\ell^{\prime}(x)=4 x^{3}+12 x+4=0$ has exactly one root.
Step 1: AT LEAST ONE root using IVT.
We have that the function $f(x)$ is continuous and differentiable everywhere. Also, $f(0)=4$ and $f(-1)=-12$. So by the IVT, $f(x)=0$ has at least one root c in $[-1,0]$.

Step 2: AT MOST ONE root using MVT.
Suppose that there is another root d (that is $f(d)=0$). Then by MVT (or Rolle's Theorem), there is some z between c and d such that $f^{\prime}(z)=$ $\frac{f(d)-f(c)}{d-c}=0$. Compute $f^{\prime}(x)=12 x^{2}+12$. Hence $12 z^{2}+12=0$, that is $z^{2}=-1$ which is impossible. So there is no other real root of $f(x)$.

Quiz 5-T-p
2017-11-16

Last name

First name

Student number

Email ..

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1pt) Find the x-coordinates of the local maximum points of the function $f(x)=x^{3}-12 x-1$ defined on the whole real line.

Solution. We have $f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)=3(x-2)(x+2)$. Hence the critical points are 2 and -2 . We also have no singular point. Using the second derivative test, we get: $f^{\prime \prime}(x)=6 x$, $f^{\prime \prime}(2)=12>0$ and $f^{\prime \prime}(-2)=-12<0$. Hence $x=-2$ is the x-coordinate of the local maximum of $f(x)$.
(b) (1pt) Let $T_{3}(x)$ be the third degree Taylor polynomial about $x=1$ of $g(x)=x^{2} e^{x}$. Evaluate $T_{3}^{\prime}(1)$.

Solution. We have $T_{3}^{\prime}(1)=g^{\prime}(1)$ so we just need to compute $g^{\prime}(1)$. By direct calculations, we get

$$
g^{\prime}(x)=2 x e^{x}+x^{2} e^{x}
$$

Hence $T_{3}^{\prime}(1)=g^{\prime}(1)=3 e$.

2. You have to show all your work in order to get credit.

(a) (2pt) Find the x-coordinates of the global minimum points of $h(x)=3 x^{4}-8 x^{3}+6 x^{2}+1$ on $[-1,1]$.

Solution. By the Extreme Value Theorem, the candidates for the global minima are:

+ end points: -1 and 1
+ critical points: $h^{\prime}(c)=12 c^{3}-24 c^{2}+12 c=12 c(c-1)^{2}=0$. Hence $c=0$ and $c=1$ (already an endpoint).
+ singular points: NONE
We have three candidates for the global maximum: $-1,0$ and 1 . Compute, $h(-1)=18, h(0)=1$ and $h(1)=2$. The x-coordinate of the global minimum is $x=0$.
(b) (2pt) Let $T_{n}(x)$ be the nth degree Taylor polynomial about $x=0$ for the function $f(x)=\sin (x)$. Determine whether $T_{101}(0.1)$ gives an underestimate or overestimate of $\sin (0.1)$. Justify your answer.

Solution. $T_{n}(0.1)$ gives an underestimate of $\sin (0.1)$ when

$$
R_{n}(0.1)=\sin (0.1)-T_{n}(0.1)>0
$$

Similarly, $T_{n}(0.1)$ gives an overestimate of $\sin (0.1)$ when

$$
R_{n}(0.1)=\sin (0.1)-T_{n}(0.1)<0
$$

By the Lagrange Remainder Theorem, we obtain

$$
R_{101}(0.1)=\frac{f^{(102)}(c)}{102!}(0.1)^{102}
$$

for some c between 0 and 0.1 . Compute:

$$
\begin{gathered}
f^{(0)}(c)=f^{(4)}(c)=f^{(8)}(c)=\ldots=f^{(4 j)}(c)=\sin (c) \\
f^{(1)}(c)=f^{(5)}(c)=f^{(9)}(c)=\ldots=f^{(4 j+1)}(c)=\cos (c) \\
f^{(2)}(c)=f^{(6)}(c)=f^{(10)}(c)=\ldots=f^{(4 j+2)}(c)=-\sin (c) \\
f^{(3)}(c)=f^{(7)}(c)=f^{(11)}(c)=\ldots=f^{(4 j+3)}(c)=-\cos (c)
\end{gathered}
$$

for $j=0,1,2, \ldots$.
Thus $f^{(102)}(c)=f^{(4 * 25+2)}(c)=-\sin c<0$ since c is between 0 and 0.1 (which means c is in the first quadrant). Hence $R_{101}(0.1)<0$ which means that $T_{101}(0.1)$ gives an overestimate of $\sin (0.1)$.
3. You have to show all your work in order to get credit.

Let $\ell(x)=x^{6}+4 x^{2}+x+2$.
(a) (2pt) Prove that $\ell(x)$ has at least one critical point.
(b) (2pt) Prove that $\ell(x)$ has at most one critical point.

Solution. $\ell(x)=x^{6}+4 x^{2}+x+2$ has exactly one critical point means that $f(x)=\ell^{\prime}(x)=6 x^{5}+8 x+1=0$ has exactly one root.
Step 1: AT LEAST ONE root using IVT.
We have that the function $f(x)$ is continuous and differentiable everywhere. Also, $f(0)=1$ and $f(-1)=-13$. So by the IVT, $f(x)=0$ has at least one root c in $[-1,0]$.

Step 2: AT MOST ONE root using MVT.
Suppose that there is another root d (that is $f(d)=0$). Then by MVT (or Rolle's Theorem), there is some z between c and d such that $f^{\prime}(z)=$ $\frac{f(d)-f(c)}{d-c}=0$. Compute $f^{\prime}(x)=30 x^{4}+8$. Since $x^{4} \geq 0, f^{\prime}(x)>0$ for all x. There is no other real root of $f(x)$.

