Math 100. Quiz 5. 2017-11-16 (Thursday) Time 25min

Section	Instructor name
Your email	

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}$, \sqrt{e} or $\ln(4)$ rather than decimals.

- 1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
 - (a) Find the x-coordinates of the **local minimum** points of the function $f(x) = x^3 - 3x + 5$ defined on the whole real line.

(b) (1pt) Let $T_3(x)$ be the third degree Taylor polynomial about x = 0 of $g(x) = \frac{x}{1+x}$. Evaluate $T'_3(0)$.

2. You have to show all your work in order to get credit.

(a) (2pt) Find the x-coordinates of the global maximum points of $h(x) = x^5 - 5x + 5$ on [0, 2].

(b) (2pt) Let $T_n(x)$ be the *n*th degree Taylor polynomial about x = 0 for the function $f(x) = \sin(x)$. Determine whether $T_{99}(0.1)$ gives an underestimate or overestimate of $\sin(0.1)$. Justify your answer.

- 3. You have to show all your work in order to get credit. Let $\ell(x) = x^4 + 6x^2 + 4x + 2$.
 - (a) (2pt) Prove that $\ell(x)$ has at least one critical point.
 - (b) (2pt) Prove that $\ell(x)$ has at most one critical point.

Math 100. Quiz 5. 2017-11-16 (Thursday-p) Time 25min

Section	Instructor name
Your email	

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}$, \sqrt{e} or $\ln(4)$ rather than decimals.

- 1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
 - (a) Find the x-coordinates of the **local maximum** points of the function $f(x) = x^3 12x 1$ defined on the whole real line.

(b) (1pt) Let $T_3(x)$ be the third degree Taylor polynomial about x = 1 of $g(x) = x^2 e^x$. Evaluate $T'_3(1)$.

2. You have to show all your work in order to get credit.

(a) (2pt) Find the x-coordinates of the global minimum points of $h(x) = 3x^4 - 8x^3 + 6x^2 + 1$ on [-1, 1].

(b) (2pt) Let $T_n(x)$ be the *n*th degree Taylor polynomial about x = 0 for the function $f(x) = \sin(x)$. Determine whether $T_{101}(0.1)$ gives an underestimate or overestimate of $\sin(0.1)$. Justify your answer.

- 3. You have to show all your work in order to get credit. Let $\ell(x) = x^6 + 4x^2 + x + 2$.
 - (a) (2pt) Prove that $\ell(x)$ has at least one critical point.
 - (b) (2pt) Prove that $\ell(x)$ has at most one critical point.