Math 100. Quiz 5. 2017-11-16 (Thursday) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) Find the x-coordinates of the local minimum points of the function $f(x)=x^{3}-3 x+5$ defined on the whole real line.
(b) ($\mathbf{1} \mathbf{p} \mathbf{t})$ Let $T_{3}(x)$ be the third degree Taylor polynomial about $x=0$ of $g(x)=\frac{x}{1+x}$. Evaluate $T_{3}^{\prime}(0)$.

2. You have to show all your work in order to get credit.

(a) (2pt) Find the x-coordinates of the global maximum points of $h(x)=x^{5}-5 x+5$ on $[0,2]$.
(b) (2pt) Let $T_{n}(x)$ be the nth degree Taylor polynomial about $x=0$ for the function $f(x)=\sin (x)$. Determine whether $T_{99}(0.1)$ gives an underestimate or overestimate of $\sin (0.1)$. Justify your answer.
3. You have to show all your work in order to get credit. Let $\ell(x)=x^{4}+6 x^{2}+4 x+2$.
(a) (2pt) Prove that $\ell(x)$ has at least one critical point.
(b) (2pt) Prove that $\ell(x)$ has at most one critical point.

Math 100. Quiz 5. 2017-11-16 (Thursday-p) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) Find the x-coordinates of the local maximum points of the function $f(x)=x^{3}-12 x-1$ defined on the whole real line.
(b) ($\mathbf{1} \mathbf{p} \mathbf{t})$ Let $T_{3}(x)$ be the third degree Taylor polynomial about $x=1$ of $g(x)=x^{2} e^{x}$. Evaluate $T_{3}^{\prime}(1)$.
2. You have to show all your work in order to get credit.
(a) (2pt) Find the x-coordinates of the global minimum points of $h(x)=3 x^{4}-8 x^{3}+6 x^{2}+1$ on $[-1,1]$.
(b) (2pt) Let $T_{n}(x)$ be the nth degree Taylor polynomial about $x=0$ for the function $f(x)=\sin (x)$. Determine whether $T_{101}(0.1)$ gives an underestimate or overestimate of $\sin (0.1)$. Justify your answer.
3. You have to show all your work in order to get credit. Let $\ell(x)=x^{6}+4 x^{2}+x+2$.
(a) (2pt) Prove that $\ell(x)$ has at least one critical point.
(b) (2pt) Prove that $\ell(x)$ has at most one critical point.
