Math 100. Quiz 5 2017-11-17 (Friday) Time 25min

Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Let $f(x)=x^{4}+3 x^{2}+8$, and let $T_{3}(x)$ be its third-degree Taylor polynomial about $x=1$. Find $T_{3}^{\prime \prime}(1)$.
Solution. The third-degree Taylor polynomial about 1 satisfies

$$
T_{3}^{\prime \prime}(1)=f^{\prime \prime}(1) .
$$

We have that $f^{\prime}(x)=4 x^{3}+6 x, f^{\prime \prime}(x)=12 x^{2}+6$, then $T_{3}^{\prime \prime}(1)=18$ and therefore

$$
T_{3}^{\prime \prime}(1)=18 .
$$

(b) (1pt) Find the smallest value for the parameter a such that the function

$$
f(x)=(x+a) e^{x}
$$

is increasing on the interval $(-1, \infty)$.
Solution. The function $f(x)$ is increasing at x if and only if $f^{\prime}(x)>0$. We have

$$
f^{\prime}(x)=(x+a+1) e^{x} .
$$

Note that $e^{x}>0$ for all x, then $f^{\prime}(x)>0$ if and only if $x+a+1>$ 0 . It follows that f is increasing for $x>-a-1$, that is the interval $(-a-1, \infty)$. Now, $a=0$ the smallest value such that f is increasing on $(-1, \infty)$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Find the x-coordinates of the global minimum points for

$$
f(x)=\frac{1}{\sqrt{x}}+\sqrt{x}
$$

on the interval $\left[\frac{1}{4}, 4\right]$.
Solution. The function $f(x)$ is differentiable in $\left(\frac{1}{4}, 4\right)$, so there is no singular point, and we only need to compare the values of $f(x)$ at critical points and endpoints. First we find the critical points:

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}+\frac{1}{2} x^{-\frac{1}{2}},
$$

then $f^{\prime}(x)=0$ when $-x^{-3 / 2}+x^{-\frac{1}{2}}=0$. By multiplying $x^{3 / 2}$ we see that the latter implies $-1+x=0$ and hence $x=1$. Therefore $x=1$ is a critical point. (By plugging-in, we can check $f^{\prime}(1)=0$.) Next, we compare $f(1)$ with the values at the endpoints $x=\frac{1}{4}$ and $x=4$. We have

$$
f\left(\frac{1}{4}\right)=2+\frac{1}{2} \quad f(4)=\frac{1}{2}+2 \quad f(1)=1+1=2 .
$$

Therefore, global minimum is at $x=1$.
(b) ($2 \mathbf{p t}$) Consider the function

$$
f(t)=t^{2}+\cos (t)
$$

defined for all real values t. Prove that it has at most one critical point.
Solution Suppose that there are two critical points t_{0}, t_{1}. Then Rolle's Theorem implies that there exists t_{2} between t_{0} and t_{1} such that $f^{\prime}\left(t_{2}\right)=0$. However we have

$$
f^{\prime \prime}(t)=2-\cos (t)
$$

Since $2-\cos (t)>0$ for all t, then t_{2} and hence two critical points cannot exist.

3. You have to show all your work in order to get credit.

Let $f(x)=\ln (1+3 x)$.
(a) (1pt) Use the 2 nd degree Taylor polynomial to estimate $f(1 / 9)$.
(b) (2pt) Show that the error (in absolute value) of your estimate is smaller than 3^{-4}.
(c) (1pt) Determine whether your estimate is an overestimate or underestimate. You have to justify your answer.

Solution.

Denote by $T_{2}(x)$ the 2 nd degree Taylor polynomial of f about $x=0$ and let $R_{2}(x)$ be the remainder. Compute

$$
f^{\prime}(x)=\frac{3}{1+3 x}, \quad f^{\prime \prime}(x)=-\frac{3^{2}}{(1+3 x)^{2}}, \quad f^{(3)}(x)=\frac{2 \cdot 3^{3}}{(1+3 x)^{3}}
$$

Then $f(0)=0, f^{\prime}(0)=3$ and $f^{\prime \prime}(0)=-9$ so the Taylor polynomial is

$$
T_{2}(x)=3 x-\frac{9}{2} x^{2} .
$$

Then the approximation value is $\underline{T_{2}\left(\frac{1}{9}\right)=\frac{1}{3}-\frac{1}{18}}$.
Write the remainder in terms of the Lagrange remainder formula:

$$
R_{2}(1 / 9)=\frac{f^{(3)}(y)}{3!}(1 / 9)^{3},
$$

for some y between 0 and $1 / 9$. Note that $f^{(3)}(y)=2 \cdot 3^{3} /(1+3 y)^{3}$ is a decreasing function and positive for $y>0$, then

$$
f^{(3)}(y)<f^{(3)}(0)=2 \cdot 3^{3}, \quad \text { for all } 0<y<\frac{1}{9} .
$$

Use this bound for the Lagrange remainder formula above, and we get

$$
0<R_{2}(1 / 9)<\frac{2 \cdot 3^{3}}{3!}\left(\frac{1}{3^{2}}\right)^{3}=\frac{1}{3^{4}}
$$

This shows that the error is less than 3^{-4}. As the remainder $R_{2}(1 / 9)$ is positive, this is an underestimate.

Math 100. Quiz 5 2017-11-17 (Friday-p) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Let $f(x)=x^{4}-4 x^{2}+x+2$, and let $T_{3}(x)$ be its third-degree Taylor polynomial about $x=1$. Evaluate $T_{3}^{\prime \prime}(1)$.

Solution. The third-degree Taylor polynomial about 1 satisfies

$$
T_{3}^{\prime \prime}(1)=f^{\prime \prime}(1)
$$

We have that $f^{\prime}(x)=4 x^{3}-8 x+1, f^{\prime \prime}(x)=12 x-8$, then $T_{3}^{\prime \prime}(1)=4$.
(b) ($\mathbf{1 p t}$) Find the largest value for the parameter a such that the function

$$
f(x)=(x-a) e^{-x}
$$

is decreasing on the interval $(-1, \infty)$.

Solution. The function $f(x)$ is decreasing at x if and only if $f^{\prime}(x)<0$. We have

$$
f^{\prime}(x)=e^{-x}-(x-a) e^{-x}=e^{-x}(1-x+a) .
$$

Note that $e^{-x}>0$ for all x, then $f^{\prime}(x)<0$ if and only if $1-x+a<0$. It follows that $f(x)$ is decreasing for $1+a<x$, that is the interval $(1+a, \infty)$. Therefore $a=-2$ is the largest value such that $f(x)$ is decreasing on $(-1, \infty)$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Find the x-coordinates of the global minimum points for $f(x)=\frac{2 x}{1+x^{2}}$ on the interval $[-2,2]$.

Solution. Compute the derivative:

$$
f^{\prime}(x)=\frac{\left(1+x^{2}\right)(2)-2 x(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}
$$

Note that $f^{\prime}(x)$ is defined everywhere therefore there are no singular points. Then $f^{\prime}(x)=0$ when $1-x^{2}=0$ and so $x= \pm 1$. Therefore $x=1,-1$ are critical points in $[-2,2]$.

Compare values at critical points and end points:

$$
f(-2)=-\frac{4}{5} \quad f(-1)=-1 \quad f(1)=1 \quad f(2)=\frac{4}{5} .
$$

Therefore, global minimum is at $x=-1$.
(b) (2pt) Consider the function $f(t)=\cos (t)-t^{2}+1$ defined for all real values t. Prove that it has at most one critical point.

Solution Suppose that there are two critical points t_{0}, t_{1}, ie. $f^{\prime}\left(t_{0}\right)=$ $f^{\prime}\left(t_{1}\right)=0$. Rolle's Theorem implies that there exists t_{2} between t_{0} and t_{1} such that $f^{\prime \prime}\left(t_{2}\right)=0$. However we have

$$
f^{\prime \prime}(t)=-\cos (t)-2
$$

Since $-\cos (t)-2<0$ for all t, then t_{2} and hence two critical points cannot exist.

3. You have to show all your work in order to get credit.

Let $f(x)=\ln (1+2 x)$.
(a) ($\mathbf{1} \mathbf{p} \mathbf{t})$ Use the 2 nd degree Taylor polynomial to estimate $f(1 / 8)$.
(b) (2 pt) Show that the error (in absolute value) of your estimate is smaller than $\frac{1}{3(2)^{6}}$.
(c) (1pt) Determine whether your estimate is an overestimate or underestimate. You have to justify your answer.

Solution. Denote by $T_{2}(x)$ the 2 nd degree Taylor polynomial of f about $x=0$ and let $R_{2}(x)$ be the remainder. Compute

$$
f^{\prime}(x)=\frac{2}{1+2 x}, \quad f^{\prime \prime}(x)=-\frac{2^{2}}{(1+2 x)^{2}}, \quad f^{(3)}(x)=\frac{2^{4}}{(1+2 x)^{3}} .
$$

Then $f(0)=0, f^{\prime}(0)=2$ and $f^{\prime \prime}(0)=-4$ so the Taylor polynomial is

$$
T_{2}(x)=2 x-2 x^{2} .
$$

Then the approximation value is $T_{2}\left(\frac{1}{8}\right)=\frac{1}{4}-\frac{1}{32}=\frac{7}{32}$. Write the remainder in terms of the Lagrange remainder formula:

$$
R_{2}(1 / 8)=\frac{f^{(3)}(c)}{3!}(1 / 8)^{3},
$$

for some c between 0 and $1 / 8$. Note that $f^{(3)}(c)=2^{4} /(1+2 c)^{3}$ is a decreasing function and positive for $c>0$, then

$$
f^{(3)}(c)<f^{(3)}(0)=2^{4}, \quad \text { for all } 0<c<\frac{1}{8} .
$$

Use this bound for the Lagrange remainder formula above, and we get

$$
0<R_{2}(1 / 8)<\frac{2^{4}}{3!}\left(\frac{1}{8}\right)^{3}=\frac{1}{3 \cdot 2^{6}}
$$

This shows that the error is less than $\frac{1}{3 \cdot 2^{6}}$. As the remainder $R_{2}(1 / 8)$ is positive, this is an underestimate.

