Math 100. Quiz 5 2017-11-17 (Friday) Time 25min

Section	Instructor name
Your email	

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}$, \sqrt{e} or $\ln(4)$ rather than decimals.

- 1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
 - (a) (1pt) Let $f(x) = x^4 + 3x^2 + 8$, and let $T_3(x)$ be its third-degree Taylor polynomial about x = 1. Evaluate $T''_3(1)$.

(b) (1pt) Find the smallest value for the parameter a such that the function

 $f(x) = (x+a)e^x$

is increasing on the interval $(-1, \infty)$.

2. You have to show all your work in order to get credit.

(a) (2pt) Find the x-coordinates of the global minimum points for $f(x) = \frac{1}{\sqrt{x}} + \sqrt{x}$ on the interval $[\frac{1}{4}, 4]$.

(b) (2pt) Consider the function $f(t) = t^2 + \cos(t)$ defined for all real values t. Prove that it has at most one critical point.

- 3. You have to show all your work in order to get credit. Let $f(x) = \ln(1+3x)$.
 - (a) (1pt) Use the 2nd degree Taylor polynomial to estimate f(1/9).
 - (b) (2pt) Show that the error (in absolute value) of your estimate is smaller than 3^{-4} .
 - (c) (1pt) Determine whether your estimate is an overestimate or underestimate. You have to justify your answer.

Math 100. Quiz 5 2017-11-17 (Friday-p) Time 25min

Section	Instructor name	 •••••	
Your email		 	

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}$, \sqrt{e} or $\ln(4)$ rather than decimals.

- 1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
 - (a) (1pt) Let $f(x) = x^4 4x^2 + x + 2$, and let $T_3(x)$ be its third-degree Taylor polynomial about x = 1. Evaluate $T''_3(1)$.

(b) (1pt) Find the largest value for the parameter a such that the function

$$f(x) = (x-a)e^{-x}$$

is decreasing on the interval $(-1, \infty)$.

2. You have to show all your work in order to get credit.

(a) (2pt) Find the x-coordinates of the global minimum points for $f(x) = \frac{2x}{1+x^2}$ on the interval [-2, 2].

(b) (2pt) Consider the function $f(t) = \cos(t) - t^2 + 1$ defined for all real values t. Prove that it has at most one critical point.

- 3. You have to show all your work in order to get credit. Let $f(x) = \ln(1+2x)$.
 - (a) (1pt) Use the 2nd degree Taylor polynomial to estimate f(1/8).
 - (b) (2pt) Show that the error (in absolute value) of your estimate is smaller than $\frac{1}{3(2)^6}$.
 - (c) (1pt) Determine whether your estimate is an overestimate or underestimate. You have to justify your answer.