Math 100. Quiz 5 2017-11-17 (Friday) Time 25min

Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Let $f(x)=x^{4}+3 x^{2}+8$, and let $T_{3}(x)$ be its third-degree Taylor polynomial about $x=1$. Evaluate $T_{3}^{\prime \prime}(1)$.
(b) (1pt) Find the smallest value for the parameter a such that the function

$$
f(x)=(x+a) e^{x}
$$

is increasing on the interval $(-1, \infty)$.
2. You have to show all your work in order to get credit.
(a) (2pt) Find the x-coordinates of the global minimum points for $f(x)=\frac{1}{\sqrt{x}}+\sqrt{x}$ on the interval $\left[\frac{1}{4}, 4\right]$.
(b) (2pt) Consider the function $f(t)=t^{2}+\cos (t)$ defined for all real values t. Prove that it has at most one critical point.
3. You have to show all your work in order to get credit. Let $f(x)=\ln (1+3 x)$.
(a) (1pt) Use the 2 nd degree Taylor polynomial to estimate $f(1 / 9)$.
(b) ($2 \mathbf{p t}$) Show that the error (in absolute value) of your estimate is smaller than 3^{-4}.
(c) (1pt) Determine whether your estimate is an overestimate or underestimate. You have to justify your answer.

Math 100. Quiz 5 2017-11-17 (Friday-p) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Let $f(x)=x^{4}-4 x^{2}+x+2$, and let $T_{3}(x)$ be its third-degree Taylor polynomial about $x=1$. Evaluate $T_{3}^{\prime \prime}(1)$.
(b) (1pt) Find the largest value for the parameter a such that the function

$$
f(x)=(x-a) e^{-x}
$$

is decreasing on the interval $(-1, \infty)$.
2. You have to show all your work in order to get credit.
(a) (2pt) Find the x-coordinates of the global minimum points for $f(x)=\frac{2 x}{1+x^{2}}$ on the interval $[-2,2]$.
(b) (2pt) Consider the function $f(t)=\cos (t)-t^{2}+1$ defined for all real values t. Prove that it has at most one critical point.
3. You have to show all your work in order to get credit. Let $f(x)=\ln (1+2 x)$.
(a) ($\mathbf{1} \mathbf{p} \mathbf{t}$) Use the 2 nd degree Taylor polynomial to estimate $f(1 / 8)$.
(b) (2pt) Show that the error (in absolute value) of your estimate is smaller than $\frac{1}{3(2)^{6}}$.
(c) (1pt) Determine whether your estimate is an overestimate or underestimate. You have to justify your answer.

