Quiz 3-T-p
2017-10-19

Last name

First name

Student number

Email ..

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1pt) Suppose $f(x)$ and $g(x)$ are differentiable functions such that $f(1)=3, f^{\prime}(1)=-1, g(1)=1$ and $g^{\prime}(1)=-2$. If $h(x)$ is defined by

$$
h(x)=\sqrt{f(x)+g(x)}
$$

compute $h^{\prime}(1)$.
Solution. We have $h^{\prime}(x)=\frac{f^{\prime}(x)+g^{\prime}(x)}{2 \sqrt{f(x)+g(x)}}$. Hence

$$
h^{\prime}(1)=\frac{f^{\prime}(1)+g^{\prime}(1)}{2 \sqrt{f(1)+g(1)}}=\frac{-1-2}{2 \sqrt{3+1}}=-\frac{3}{4}
$$

(b) (1pt) Find all values α such that $f^{\prime}(0)=2$ where $f(x)=\arccos (\alpha x)$. Solution. We have $f^{\prime}(x)=-\frac{\alpha}{\sqrt{1-(\alpha x)^{2}}}$. Thus $f^{\prime}(0)=-\alpha$. Hence $f^{\prime}(0)=2$ if and only if $\alpha=-2$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Let $f(x)$ be a differentiable function such that $f(1)=-3$ and $f^{\prime}(1)=5$. Evaluate the limit by identifying it as a derivative

$$
\lim _{x \rightarrow 1} \frac{x(f(x))^{2}-9}{x-1}
$$

Solution. Let $g(x)=x(f(x))^{2}$. We note that $g(1)=(-3)^{2}=9$. Hence

$$
\lim _{x \rightarrow 1} \frac{x(f(x))^{2}-9}{x-1}=\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}=g^{\prime}(1)
$$

We have $g^{\prime}(x)=(f(x))^{2}+2 x f(x) f^{\prime}(x)$. Hence

$$
g^{\prime}(1)=(f(1))^{2}+2 f(1) f^{\prime}(1)=(-3)^{2}+2(-3) 5=-21
$$

Thus,

$$
\lim _{x \rightarrow 1} \frac{x(f(x))^{2}-9}{x-1}=-21
$$

(b) (2pt) Given the equation

$$
\cos (x y)+\arctan (y)=2 y+x
$$

compute $\frac{d y}{d x}$ at the point $(x, y)=(1,0)$.
Solution. Using implicit differentiation, we have

$$
-\sin (x y)\left(y+x y^{\prime}\right)+\frac{y^{\prime}}{1+y^{2}}=2 y^{\prime}+1
$$

At the point $(x, y)=(1,0)$, we obtain $0+y^{\prime}=2 y^{\prime}+1$. That is $y^{\prime}=-1$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the equation of the tangent line to the graph

$$
y=\frac{1}{2} x^{x^{2}}\left(1+x^{2}\right)^{x}
$$

at the point $(x, y)=(1,1)$.
Solution. The slope of the tangent line is y^{\prime}. In order to compute y^{\prime}, we will use logarithmic differentiation.

$$
\ln y=\ln \frac{1}{2} x^{x^{2}}\left(1+x^{2}\right)^{x}=\ln \frac{1}{2}+x^{2} \ln x+x \ln \left(1+x^{2}\right)
$$

Hence,

$$
\frac{y^{\prime}}{y}=2 x \ln x+x+\ln \left(1+x^{2}\right)+\frac{2 x^{2}}{1+x^{2}}
$$

At the point $(x, y)=(1,1)$, we obtain

$$
y^{\prime}=2 \ln 1+1+\ln 2+1=2+\ln 2
$$

Hence, the equation of the tangent line is $y-1=(2+\ln 2)(x-1)$ or $y=(2+\ln 2)(x-1)+1$.

Quiz 3-T-n
2017-10-19

Last name

First name

Student number

Email ...

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1pt) Suppose $f(x)$ and $g(x)$ are differentiable functions such that $f(1)=3, f^{\prime}(1)=-1, g(1)=1$ and $g^{\prime}(1)=-2$. If $h(x)$ is defined by

$$
h(x)=(f(x)+g(x))^{2}
$$

compute $h^{\prime}(1)$.
Solution. We have $h^{\prime}(x)=2\left(f^{\prime}(x)+g^{\prime}(x)\right)(f(x)+g(x))$. Hence $h^{\prime}(1)=2\left(f^{\prime}(1)+g^{\prime}(1)\right)(f(1)+g(1))=2(-1-2)(3+1)=-24$
(b) (1pt) Find all values α such that $f^{\prime}(0)=-3$ where $f(x)=\arcsin (\alpha x)$. Solution. We have $f^{\prime}(x)=\frac{\alpha}{\sqrt{1-(\alpha x)^{2}}}$. Thus $f^{\prime}(0)=\alpha$. Hence $f^{\prime}(0)=-3$ if and only if $\alpha=-3$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Let $f(x)$ be a differentiable function such that $f(1)=4$ and $f^{\prime}(1)=4$. Evaluate the limit by identifying it as a derivative

$$
\lim _{x \rightarrow 1} \frac{x \sqrt{f(x)}-2}{x-1}
$$

Solution. Let $g(x)=x \sqrt{f(x)}$. We note that $g(1)=\sqrt{4}=2$. Hence

$$
\lim _{x \rightarrow 1} \frac{x \sqrt{f(x)}-2}{x-1}=\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}=g^{\prime}(1)
$$

We have $g^{\prime}(x)=\sqrt{f(x)}+x \frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$. Hence

$$
g^{\prime}(1)=\sqrt{f(1)}+\frac{f^{\prime}(1)}{2 \sqrt{f(1)}}=\sqrt{4}+\frac{4}{2 \sqrt{4}}=3
$$

Thus,

$$
\lim _{x \rightarrow 1} \frac{x \sqrt{f(x)}-2}{x-1}=3
$$

(b) (2pt) Given the equation

$$
\sin (x y)+\arccos (y)-\frac{\pi}{2}=2 y+x^{2}-1
$$

compute $\frac{d y}{d x}$ at the point $(x, y)=(1,0)$.
Solution. Using implicit differentiation, we have

$$
\cos (x y)\left(y+x y^{\prime}\right)-\frac{y^{\prime}}{\sqrt{1-y^{2}}}=2 y^{\prime}+2 x
$$

At the point $(x, y)=(1,0)$, we obtain $0+y^{\prime}-y^{\prime}=2 y^{\prime}+2$. That is $y^{\prime}=-1$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the equation of the tangent line to the graph

$$
y=\frac{(1+x)^{x^{2}}}{2 x^{x}}
$$

at the point $(x, y)=(1,1)$.
Solution. The slope of the tangent line is y^{\prime}. In order to compute y^{\prime}, we will use logarithmic differentiation.

$$
\ln y=\ln \frac{(1+x)^{x^{2}}}{2 x^{x}}=x^{2} \ln (1+x)-\ln 2-x \ln x
$$

Hence,

$$
\frac{y^{\prime}}{y}=2 x \ln (1+x)+\frac{x^{2}}{1+x}-\ln x-x \frac{1}{x}
$$

At the point $(x, y)=(1,1)$, we obtain

$$
y^{\prime}=2 \ln 2+\frac{1}{2}-\ln 1-1=2 \ln 2-\frac{1}{2}
$$

Hence, the equation of the tangent line is $y-1=\left(2 \ln 2-\frac{1}{2}\right)(x-1)$ or $y=\left(2 \ln 2-\frac{1}{2}\right)(x-1)+1$.

