Quiz 3-T-p

2017 - 10 - 19

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1pt) Suppose f(x) and g(x) are differentiable functions such that f(1) = 3, f'(1) = -1, g(1) = 1 and g'(1) = -2. If h(x) is defined by

$$h(x) = \sqrt{f(x) + g(x)}$$

compute h'(1).

Solution. We have $h'(x) = \frac{f'(x)+g'(x)}{2\sqrt{f(x)+g(x)}}$. Hence

$$h'(1) = \frac{f'(1) + g'(1)}{2\sqrt{f(1) + g(1)}} = \frac{-1 - 2}{2\sqrt{3} + 1} = -\frac{3}{4}$$

(b) (1pt) Find all values α such that f'(0) = 2 where $f(x) = \arccos(\alpha x)$. Solution. We have $f'(x) = -\frac{\alpha}{\sqrt{1-(\alpha x)^2}}$. Thus $f'(0) = -\alpha$. Hence f'(0) = 2 if and only if $\alpha = -2$.

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2pt) Let f(x) be a differentiable function such that f(1) = -3 and f'(1) = 5. Evaluate the limit by identifying it as a derivative

$$\lim_{x \to 1} \frac{x(f(x))^2 - 9}{x - 1}$$

Solution. Let $g(x) = x(f(x))^2$. We note that $g(1) = (-3)^2 = 9$. Hence $x(f(x))^2 = 0$ g(x) = g(1)

$$\lim_{x \to 1} \frac{x(f(x))^2 - 9}{x - 1} = \lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = g'(1).$$

We have $g'(x) = (f(x))^2 + 2xf(x)f'(x)$. Hence

$$g'(1) = (f(1))^2 + 2f(1)f'(1) = (-3)^2 + 2(-3)5 = -21.$$

Thus,

$$\lim_{x \to 1} \frac{x(f(x))^2 - 9}{x - 1} = -21.$$

(b) (2pt) Given the equation

$$\cos(xy) + \arctan(y) = 2y + x$$

compute $\frac{dy}{dx}$ at the point (x, y) = (1, 0).

Solution. Using implicit differentiation, we have

$$-\sin(xy)(y+xy') + \frac{y'}{1+y^2} = 2y' + 1.$$

At the point (x, y) = (1, 0), we obtain 0 + y' = 2y' + 1. That is y' = -1.

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the equation of the tangent line to the graph

$$y = \frac{1}{2}x^{x^2}(1+x^2)^x$$

at the point (x, y) = (1, 1).

Solution. The slope of the tangent line is y'. In order to compute y', we will use logarithmic differentiation.

$$\ln y = \ln \frac{1}{2}x^{x^2}(1+x^2)^x = \ln \frac{1}{2} + x^2 \ln x + x \ln(1+x^2).$$

Hence,

$$\frac{y'}{y} = 2x\ln x + x + \ln(1+x^2) + \frac{2x^2}{1+x^2}.$$

At the point (x, y) = (1, 1), we obtain

$$y' = 2\ln 1 + 1 + \ln 2 + 1 = 2 + \ln 2.$$

Hence, the equation of the tangent line is $y - 1 = (2 + \ln 2)(x - 1)$ or $y = (2 + \ln 2)(x - 1) + 1$.

Quiz 3-T-n

2017 - 10 - 19

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1pt) Suppose f(x) and g(x) are differentiable functions such that f(1) = 3, f'(1) = -1, g(1) = 1 and g'(1) = -2. If h(x) is defined by 2

$$h(x) = (f(x) + g(x))^{\frac{1}{2}}$$

compute h'(1). **Solution.** We have h'(x) = 2(f'(x) + g'(x))(f(x) + g(x)). Hence h'(1) = 2(f'(1) + g'(1))(f(1) + g(1)) = 2(-1 - 2)(3 + 1) = -24

(b) (1pt) Find all values α such that f'(0) = -3 where $f(x) = \arcsin(\alpha x)$. **Solution.** We have $f'(x) = \frac{\alpha}{\sqrt{1-(\alpha x)^2}}$. Thus $f'(0) = \alpha$. Hence f'(0) = -3 if and only if $\alpha = -3$.

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2pt) Let f(x) be a differentiable function such that f(1) = 4 and f'(1) = 4. Evaluate the limit by identifying it as a derivative

$$\lim_{x \to 1} \frac{x\sqrt{f(x)} - 2}{x - 1}$$

Solution. Let $g(x) = x\sqrt{f(x)}$. We note that $g(1) = \sqrt{4} = 2$. Hence $x \cdot \sqrt{f(x)} = 2$ a(x) = a(1)

$$\lim_{x \to 1} \frac{x \sqrt{f(x) - 2}}{x - 1} = \lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = g'(1).$$

We have $g'(x) = \sqrt{f(x)} + x \frac{f'(x)}{2\sqrt{f(x)}}$. Hence

$$g'(1) = \sqrt{f(1)} + \frac{f'(1)}{2\sqrt{f(1)}} = \sqrt{4} + \frac{4}{2\sqrt{4}} = 3.$$

Thus,

$$\lim_{x \to 1} \frac{x\sqrt{f(x)} - 2}{x - 1} = 3.$$

(b) (2pt) Given the equation

$$\sin(xy) + \arccos(y) - \frac{\pi}{2} = 2y + x^2 - 1$$

compute $\frac{dy}{dx}$ at the point (x, y) = (1, 0).

Solution. Using implicit differentiation, we have

$$\cos(xy)(y + xy') - \frac{y'}{\sqrt{1 - y^2}} = 2y' + 2x.$$

At the point (x, y) = (1, 0), we obtain 0 + y' - y' = 2y' + 2. That is y' = -1.

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the equation of the tangent line to the graph

$$y = \frac{(1+x)^{x^2}}{2x^x}$$

at the point (x, y) = (1, 1).

Solution. The slope of the tangent line is y'. In order to compute y', we will use logarithmic differentiation.

$$\ln y = \ln \frac{(1+x)^{x^2}}{2x^x} = x^2 \ln(1+x) - \ln 2 - x \ln x.$$

Hence,

$$\frac{y'}{y} = 2x\ln(1+x) + \frac{x^2}{1+x} - \ln x - x\frac{1}{x}.$$

At the point (x, y) = (1, 1), we obtain

$$y' = 2\ln 2 + \frac{1}{2} - \ln 1 - 1 = 2\ln 2 - \frac{1}{2}.$$

Hence, the equation of the tangent line is $y - 1 = (2 \ln 2 - \frac{1}{2})(x - 1)$ or $y = (2 \ln 2 - \frac{1}{2})(x - 1) + 1$.