Math 100. Quiz 3. 2017-10-19 (Thursday) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) Suppose $f(x)$ and $g(x)$ are differentiable functions such that $f(1)=$ $3, f^{\prime}(1)=-1, g(1)=1$ and $g^{\prime}(1)=-2$. If $h(x)$ is defined by

$$
h(x)=\sqrt{f(x)+g(x)}
$$

compute $h^{\prime}(1)$.
(b) Find all values α such that $f^{\prime}(0)=2$ where $f(x)=\arccos (\alpha x)$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Let $f(x)$ be a differentiable function such that $f(1)=-3$ and $f^{\prime}(1)=5$. Evaluate the limit by identifying it as a derivative

$$
\lim _{x \rightarrow 1} \frac{x(f(x))^{2}-9}{x-1}
$$

(b) ($2 \mathbf{p t}$) Given the equation

$$
\cos (x y)+\arctan (y)=2 y+x
$$

compute $\frac{d y}{d x}$ at the point $(x, y)=(1,0)$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the equation of the tangent line to the graph

$$
y=\frac{1}{2} x^{x^{2}}\left(1+x^{2}\right)^{x}
$$

at the point $(x, y)=(1,1)$.

Math 100. Quiz 3. 2017-10-19 (Thursday Q3-T-n) Time 25min
Section Instructor name
..
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) Suppose $f(x)$ and $g(x)$ are differentiable functions such that $f(1)=$ $3, f^{\prime}(1)=-1, g(1)=1$ and $g^{\prime}(1)=-2$. If $h(x)$ is defined by

$$
h(x)=(f(x)+g(x))^{2}
$$

compute $h^{\prime}(1)$.
(b) Find all values α such that $f^{\prime}(0)=-3$ where $f(x)=\arcsin (\alpha x)$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Let $f(x)$ be a differentiable function such that $f(1)=4$ and $f^{\prime}(1)=4$. Evaluate the limit by identifying it as a derivative

$$
\lim _{x \rightarrow 1} \frac{x \sqrt{f(x)}-2}{x-1}
$$

(b) (2pt) Given the equation

$$
\sin (x y)+\arccos (y)-\frac{\pi}{2}=2 y+x^{2}-1
$$

compute $\frac{d y}{d x}$ at the point $(x, y)=(1,0)$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the equation of the tangent line to the graph

$$
y=\frac{(1+x)^{x^{2}}}{2 x^{x}}
$$

at the point $(x, y)=(1,1)$.

