Math 100. Quiz 3. 2017-10-20 (Friday Q3-F-s) Time 25min
Section .......... Instructor name $\qquad$
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Compute $f^{\prime}(t)$ for $f(t)=\left(e^{2 t}+t\right)^{2}$

Solution. Applying the chain rule:

$$
f^{\prime}(t)=2\left(e^{2 t}+t\right)\left(2 \cdot e^{2 t}+1\right)=2\left(e^{2 t}+t\right)\left(2 e^{2 t}+1\right)
$$

(b) (1pt) If $x^{3} y^{2}+y=e^{x}$, compute $\frac{d y}{d x}$ at $(x, y)=(0,1)$.

We compute $\frac{d y}{d x}$ by implicit differentiation. Differentiate both sides of the equation:

$$
\frac{d y}{d x}\left(x^{3} y^{2}+y\right)=\frac{d y}{d x} e^{x}
$$

Then

$$
3 x^{2} y^{2}+x^{3}(2 y) \frac{d y}{d x}+\frac{d y}{d x}=e^{x}
$$

Solving for $\frac{d y}{d x}$ :

$$
\begin{equation*}
\frac{d y}{d x}=\frac{e^{x}-3 x^{2} y^{2}}{2 x^{3} y+1} \tag{1}
\end{equation*}
$$

Note that $(x, y)=(0,1)$ satisfies the equation $x^{3} y^{2}+y=e^{x}$. So we can evaluate the derivative (1) at this point:

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(0,1)}=e^{0}=1 .
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Suppose $f(x)$ is a differentiable function such that $f(1)=1$ and $f^{\prime}(1)=3$. Compute $g^{\prime}(1)$ where

$$
g(x)=f\left((f(x))^{3}\right)
$$

Applying the chain rule:

$$
g^{\prime}(x)=f^{\prime}\left(f(x)^{3}\right)\left(3 f(x)^{2}\right)\left(f^{\prime}(x)\right)
$$

Next we evaluate at $x=1$ :

$$
g^{\prime}(1)=f^{\prime}\left(f(1)^{3}\right)\left(3 f(1)^{2}\right)\left(f^{\prime}(1)\right)=f^{\prime}(1)(3 \cdot 1)\left(f^{\prime}(1)\right)
$$

and hence $g^{\prime}(1)=(3)^{3}=27$
(b) $(2 \mathbf{p t})$ Find all possible values for the constant $C$ such that the tangent line to $y=\arcsin (C x)$ at $x=1$ is parallel to the line $2 y-x=7$.
Solution. First we find the derivative $\frac{d y}{d x}$ by taking the derivative of both sides of the equation:

$$
\frac{d y}{d x}=\frac{d y}{d x} \arcsin (C x)=\frac{C}{\sqrt{1-(C x)^{2}}}
$$

Evaluating at $x=1$ :

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{x=1}=\frac{C}{\sqrt{1-C^{2}}} \tag{2}
\end{equation*}
$$

This is the slope of the tangent line at $x=1$. The slope of the line $2 y-x=7$ is $\frac{1}{2}$. Recall that two lines are parallel if they have the same slope, so we are looking for the solutions to the equation

$$
\begin{equation*}
\frac{C}{\sqrt{1-C^{2}}}=\frac{1}{2} \tag{3}
\end{equation*}
$$

Equation (3) implies $\frac{C^{2}}{1-C^{2}}=\frac{1}{4}$ (it is not equivalent, and the previous posted solution is incorrect). Simplifying, this is $C^{2}=1 / 5$. Therefore $C= \pm \sqrt{1 / 5}$. Between these two values the one that satisfies (3) is $C=\sqrt{1 / 5}$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Consider the following equation

$$
\frac{x}{y-1}=x^{y+1}
$$

Compute $\frac{d y}{d x}$ at the point $(x, y)=(1,2)$.
Solution. In order to compute $y^{\prime}$ we will use logarithmic differentiation.

$$
\log \left(\frac{x}{y-1}\right)=\log \left(x^{y+1}\right)
$$

Simplifying

$$
\log (x)-\log (y-1)=(y+1) \log (x)
$$

Next we differentiate

$$
\frac{d}{d x}(\log (x)-\log (y-1))=\frac{d}{d x}(y+1) \log (x)
$$

Then

$$
\begin{equation*}
\frac{1}{x}-\frac{1}{y-1} \frac{d y}{d x}=\frac{y+1}{x}+\log (x) \frac{d y}{d x} \tag{4}
\end{equation*}
$$

Solving for $\frac{d y}{d x}$ :

$$
\frac{d y}{d x}=\left(\frac{1}{x}-\frac{y+1}{x}\right) /\left(\log (x)+\frac{1}{y-1}\right)
$$

Note that $(x, y)=(1,2)$ satisfies $\frac{x}{y-1}=x^{y+1}$, so we evaluate the derivative at this point:

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(1,2)}=(1-3) /(\log (1)+1)=\frac{1-3}{0+1}=-2
$$

Math 100. Quiz 3. Solutions 2017-10-20 (Friday) Time 25min
Section
Instructor name
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Compute $f^{\prime}(x)$ for $f(x)=\sqrt{1+\cos (2 \pi x)}$

Solution. Applying the chain rule:

$$
f^{\prime}(x)=\frac{-2 \pi \sin (2 \pi x)}{2 \sqrt{1+\cos (2 \pi x)}}=\frac{-\pi \sin (2 \pi x)}{\sqrt{1+\cos (2 \pi x)}}
$$

(b) (1pt) If $x y+y^{2} x+1=x^{2}$, compute $\frac{d y}{d x}$ at $(x, y)=(1,0)$.

Solution. We compute $\frac{d y}{d x}$ by implicit differentiation. Differentiate both sides of the equation:

$$
\frac{d}{d x}\left(x y+y^{2} x+1\right)=\frac{d}{d x} x^{2}
$$

Then

$$
y+x \frac{d y}{d x}+y^{2}+x(2 y) \frac{d y}{d x}=2 x
$$

Solving for $\frac{d y}{d x}$ :

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2 x-y^{2}-y}{x+2 x y} \tag{1}
\end{equation*}
$$

Note that $(x, y)=(1,0)$ satisfies the equation $x y+y^{2} x+1=x^{2}$. So we can evaluate the derivative (1) at this point:

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(1,0)}=2
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Suppose $f(x)$ is a differentiable function such that $f(1)=1$ and $f^{\prime}(1)=2$. Compute $g^{\prime}(1)$ where

$$
g(x)=f\left(f\left(x^{3}\right)\right)
$$

Solution. Applying the chain rule:

$$
g^{\prime}(x)=f^{\prime}\left(f\left(x^{3}\right)\right) f^{\prime}\left(x^{3}\right)\left(3 x^{2}\right)
$$

Next we evaluate at $x=1$ :

$$
g^{\prime}(1)=f^{\prime}\left(f\left(1^{3}\right)\right) f^{\prime}\left(1^{3}\right)\left(3 \cdot 1^{2}\right)=f^{\prime}(f(1)) f^{\prime}(1)(3)
$$

and hence $g^{\prime}(x)=f^{\prime}(1) f^{\prime}(1)(3)=12$
(b) ( $2 \mathbf{p t}$ ) Find all possible values for the constant $C$ such that the tangent line to $y=C \arctan (C x)$ at $x=1$ is parallel to the line $3 y-x=1$.
Solution. First we find the derivative $\frac{d y}{d x}$ by taking the derivative of both sides of the equation:

$$
\frac{d y}{d x}=\frac{d y}{d x} C \arctan (C x)=C \frac{d y}{d x} \arctan (C x)=\frac{C^{2}}{1+(C x)^{2}}
$$

Evaluating at $x=1$ :

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{x=1}=\frac{C^{2}}{1+C^{2}} \tag{2}
\end{equation*}
$$

This is the slope of the tangent line at $x=1$. The slope of the line $3 y-x=1$ is $\frac{1}{3}$. Recall that two lines are parallel if they have the same slope, so we are looking for the solutions to the equation

$$
\begin{equation*}
\frac{C^{2}}{1+C^{2}}=\frac{1}{3} \tag{3}
\end{equation*}
$$

Equation (3) is equivalent to $3 C^{2}=1+C^{2}$. Simplifying, this is $C^{2}=1 / 2$. Therefore $C= \pm \sqrt{1 / 2}$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Consider the following equation

$$
4 x y=\left(x^{2}+1\right)^{y+1}
$$

Compute $\frac{d y}{d x}$ at the point $(x, y)=(1,1)$.
Solution. In order to compute $y^{\prime}$ we will use logarithmic differentiation.

$$
\log (4 x y)=\log \left(\left(x^{2}+1\right)^{y+1}\right)
$$

Simplifying

$$
\log (4)+\log (x)+\log (y)=(y+1) \log \left(x^{2}+1\right)
$$

Next we differentiate

$$
\frac{d}{d x}(\log (4)+\log (x)+\log (y))=\frac{d}{d x}(y+1) \log \left(x^{2}+1\right)
$$

Then

$$
\begin{equation*}
\frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=(y+1) \frac{2 x}{x^{2}+1}+\log \left(x^{2}+1\right) \frac{d y}{d x} \tag{4}
\end{equation*}
$$

Solving for $\frac{d y}{d x}$ :

$$
\frac{d y}{d x}=\left(\frac{2 x(y+1)}{x^{2}+1}-\frac{1}{x}\right) /\left(\frac{1}{y}-\log \left(x^{2}+1\right)\right)
$$

Note that $(x, y)=(1,1)$ satisfies $4 x y=\left(x^{2}+1\right)^{y+1}$, so we evaluate the derivative at this point:

$$
\left.\left.\frac{d y}{d x}\right|_{(x, y)=(1,1)}=\left(\frac{2 \cdot 2}{2}-1\right) /(1-\log 2)\right)=\frac{1}{1-\log 2}
$$

