Math 100. Quiz 3. 2017-10-20 (Friday Q3-F-s) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Compute $f^{\prime}(t)$ for $f(t)=\left(e^{2 t}+t\right)^{2}$
(b) (1pt) If $x^{3} y^{2}+y=e^{x}$, compute $\frac{d y}{d x}$ at $(x, y)=(0,1)$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Suppose $f(x)$ is a differentiable function such that $f(1)=1$ and $f^{\prime}(1)=3$. Compute $g^{\prime}(1)$ where

$$
g(x)=f\left((f(x))^{3}\right)
$$

(b) (2pt) Find all possible values for the constant C such that the tangent line to $y=\arcsin (C x)$ at $x=1$ is parallel to the line $2 y-x=7$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Consider the following equation

$$
\frac{x}{y-1}=x^{y+1}
$$

Compute $\frac{d y}{d x}$ at the point $(x, y)=(1,2)$.

Math 100. Quiz 3. 2017-10-20 (Friday) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Compute $f^{\prime}(x)$ for $f(x)=\sqrt{1+\cos (2 \pi x)}$
(b) (1pt) If $x y+y^{2} x+1=x^{2}$, compute $\frac{d y}{d x}$ at $(x, y)=(1,0)$.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Suppose $f(x)$ is a differentiable function such that $f(1)=1$ and $f^{\prime}(1)=2$. Compute $g^{\prime}(1)$ where

$$
g(x)=f\left(f\left(x^{3}\right)\right)
$$

(b) (2pt) Find all possible values for the constant C such that the tangent line to $y=C \arctan (C x)$ at $x=1$ is parallel to the line $3 y-x=1$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Consider the following equation

$$
4 x y=\left(x^{2}+1\right)^{y+1}
$$

Compute $\frac{d y}{d x}$ at the point $(x, y)=(1,1)$.

