Q2-T-p

Math 100. Quiz 2. 2017-10-05 Thursday. Time 25min.
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{150}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) For $f(x)=\left(1+x^{2}\right) \sqrt{x}$, compute $f^{\prime}(1)$.
(b) ($1 \mathbf{p t)}$ There is a car on a highway, whose location at time t is given by $y(t)=80 t+30 \cos t$. Find its instantaneous speed at $t=\pi / 2$. (Ignore the units.)
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Find the equation of the tangent line to the graph of $y=\sin x+e^{x}$ at $x=0$.
(b) (2pt) Show that there is a real number x satisfying the equation

$$
x^{2}-1=\tan (x) .
$$

3. This question is worth 4 marks. You have to show all your work in order to get credit.
Use the definition of the derivative to find a and b such that the following function

$$
f(x)= \begin{cases}x^{5}+a x+b & \text { if } x \leq 0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x>0\end{cases}
$$

is differentiable at $x=0$. You must justify your answer.

2 पБா

Math 100. Quiz 2. 2017-10-05 Thursday. Time 25min.
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{150}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) For $f(x)=\frac{1}{1+\sqrt{x}}$, compute $f^{\prime}(1)$.
(b) (1pt) There is a cyclist on 10th Avenue, whose location at time t is given by $y(t)=15 t-5 \sin t$. Find its instantaneous speed at $t=\pi$. (Ignore the units.)
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) ($2 \mathbf{p t}$) Find the equation of the tangent line to the graph of $y=2 e^{x}+\cos x$ at $x=0$.
(b) (2pt) Show that there is a real number x satisfying the equation

$$
2 x^{2}=\tan x+1
$$

3. This question is worth 4 marks. You have to show all your work in order to get credit.
Use the definition of the derivative to find a and b such that the following function

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right)+a & \text { if } x<0 \\ 3 x^{2}+(2+b) x & \text { if } x \geq 0\end{cases}
$$

is differentiable at $x=0$. You must justify your answer.

