Q2-T-p

Math 100. Quiz 2. 2017-10-05 Thursday. Time 25min.

Section	Instructor na	ame	 ••••••	
Your email			 	

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{150}$, \sqrt{e} or $\ln(4)$ rather than decimals.

- 1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
 - (a) (1pt) For $f(x) = (1 + x^2)\sqrt{x}$, compute f'(1).

(b) (1pt) There is a car on a highway, whose location at time t is given by $y(t) = 80t + 30 \cos t$. Find its instantaneous speed at $t = \pi/2$. (Ignore the units.)

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2pt) Find the equation of the tangent line to the graph of $y = \sin x + e^x$ at x = 0.

(b) (2pt) Show that there is a real number x satisfying the equation

$$x^2 - 1 = \tan(x).$$

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Use the definition of the derivative to find a and b such that the following function

$$f(x) = \begin{cases} x^5 + ax + b & \text{if } x \le 0\\ x^2 \sin\left(\frac{1}{x}\right) & \text{if } x > 0 \end{cases}$$

is differentiable at x = 0. You must justify your answer.

CŠŽFŽe

Math 100. Quiz 2. 2017-10-05 Thursday. Time 25min.

Section	. Instructor	name	 	 	
Your email			 	 	

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{150}$, \sqrt{e} or $\ln(4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.

(a) **(1pt)** For
$$f(x) = \frac{1}{1 + \sqrt{x}}$$
, compute $f'(1)$.

(b) (1pt) There is a cyclist on 10th Avenue, whose location at time t is given by $y(t) = 15t - 5 \sin t$. Find its instantaneous speed at $t = \pi$. (Ignore the units.)

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2pt) Find the equation of the tangent line to the graph of $y = 2e^x + \cos x$ at x = 0.

(b) (2pt) Show that there is a real number x satisfying the equation

$$2x^2 = \tan x + 1.$$

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Use the definition of the derivative to find a and b such that the following function

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) + a & \text{if } x < 0\\ 3x^2 + (2+b)x & \text{if } x \ge 0. \end{cases}$$

is differentiable at x = 0. You must justify your answer.