Quiz 2
2017-10-05
Last name ...
First name ...
Student number
Email ..

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1pt) For $f(x)=\left(1+x^{2}\right) \sqrt{x}$, compute $f^{\prime}(1)$.

Solution. The derivative of $f(x)$ is

$$
f^{\prime}(x)=(2 x) \sqrt{x}+\left(1+x^{2}\right)\left(\frac{1}{2 \sqrt{x}}\right)
$$

then $f^{\prime}(1)=2+(2)(1 / 2)=2+1=3$.
(b) (1pt) There is a car on a highway, whose location at time t is given by $y(t)=80 t+30 \cos t$. Find its instantaneous speed at $t=\pi / 2$. (Ignore the units.)
Solution. The derivative of $y(t)$ is $y^{\prime}(t)=80-30 \sin t$. The instantaneous speed at $t=\pi / 2$ is

$$
y^{\prime}(\pi)=80-30 \sin (\pi / 2)=80-30=50
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Find the equation of the tangent line to the graph of $y=$ $\sin x+e^{x} \quad$ at $x=0$.
Solution. The derivative of $y=\sin x+e^{x}$ is $y^{\prime}=\cos x+e^{x}$, and so the slope of the tangent line at $x=0$ is $\cos 0+e^{0}=2$. The equation of the tangent line is $y=\left(\sin 0+e^{0}\right)+2 x$, i.e., $y=1+2 x$.
(b) (2pt) Show that there is a real number x such that $x^{2}-1=\tan (x)$. Solution. We let $f(x)=x^{2}-1-\tan (x)$. This is a continuous function on $[-\pi / 4,0]$. We compute

$$
f(-\pi / 4)=\pi^{2} / 16-1-(-1)=\pi^{2} / 16>0
$$

and

$$
f(0)=0-1-0=-1<0
$$

Therefore, by the Intermediate Value Theorem, there exists $x \in$ $(-\pi / 4,0)$ such that $f(x)=0$, as desired.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Use the definition of the derivative to find a and b such that the following function

$$
f(x)= \begin{cases}x^{5}+a x+b & \text { if } \quad x \leq 0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { if } \quad x>0\end{cases}
$$

is differentiable at $x=0$. You must justify your answer.
Solution. If $f(x)$ is differentiable at $x=0$, then $f(x)$ is continuous at $x=0$ and so,

$$
\lim _{x \rightarrow 0} f(x)=f(0)
$$

We compute $f(0)=b$, while $\lim _{x \rightarrow 0} f(x)$ is computed using both lateral limits:

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{5}+a x+b=b
$$

while $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2} \sin (1 / x)=0$ by Squeeze Theorem. Indeed, $-1 \leq \sin (1 / x) \leq 1$ and so, $-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2}$ and so, as $x \rightarrow 0^{+}$, we get that $x^{2} \sin (1 / x) \rightarrow 0$, as claimed. So, $f(x)$ is continuous at $x=0$ if $b=0$. In particular, this means that $f(0)=b=0$.
Now, in order for $f(x)$ be differentiable at $x=0$ we need the following limit to exist:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)-0}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

Again we need to compute both lateral limits. We get

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \sin (1 / x)}{x}=\lim _{x \rightarrow 0^{+}} x \sin (1 / x)=0
$$

by Squeeze Theorem, again. Indeed, $-x \leq x \sin (1 / x) \leq x$ for $x \rightarrow 0^{+}$ and so, the Squeeze Theorem yields that $\lim _{x \rightarrow 0^{+}} x \sin (1 / x)=0$ since $\lim _{x \rightarrow 0^{+}} x=\lim _{x \rightarrow 0^{+}}-x=0$.
We also compute

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{x^{5}+a x}{x}=\lim _{x \rightarrow 0^{-}} x^{4}+a=a
$$

Therefore, $f(x)$ is differentiable at $x=0$ if $a=0$.

Q2-t-s-solution

Math 100. Quiz 2. 2017-10-05 Thursday. Time 25min.
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{150}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) For $f(x)=\frac{1}{\sqrt{x}+1}$, compute $f^{\prime}(1)$.

Solution. The derivative of $f(x)$ is

$$
f^{\prime}(x)=-\frac{1}{2 \sqrt{x}} \frac{1}{(\sqrt{x}+1)^{2}}
$$

then $f^{\prime}(1)=-\left(\frac{1}{2}\right)\left(\frac{1}{2^{2}}\right)=-\frac{1}{8}$.
(b) ($\mathbf{1} \mathbf{p t)}$ There is a cyclist on 10th Avenue, whose location at time t is given by $y(t)=15 t-5 \sin t$. Find its instantaneous speed at $t=\pi$. (Ignore the units.)
Solution. The derivative of $y(t)$ is $y^{\prime}(t)=15-5 \cos t$. The instantaneous speed at $t=\pi$ is

$$
y^{\prime}(\pi)=15-5 \cos (\pi)=15+5=20 .
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) $(2 \mathrm{pt})$ Find the equation of the tangent line to the graph of $y=$ $2 e^{x}+\cos x$ at $x=0$.
Solution. The derivative of $y=2 e^{x}+\cos x$ is $y^{\prime}=2 e^{x}-\sin x$, and so the slope of the tangent line at $x=0$ is $y^{\prime}(0)=2$. The equation of the tangent line is $y=\left(2 e^{0}+\cos (0)\right)+2(x-0)$, i.e. $y=3+2 x$.
(b) (2pt) Show that there is a real number x satisfying the equation

$$
2 x^{2}=\tan (x)+1
$$

Solution. We let $f(x)=2 x^{2}-\tan (x)-1$. This is a continuous function on $[-\pi / 4,0]$. We compute

$$
f(-\pi / 4)=2 \pi^{2} / 16-1-(-1)=\pi^{2} / 8>0
$$

and

$$
f(0)=0-1-0=-1<0 .
$$

Therefore, by the Intermediate Value Theorem, there exists $x \in$ $(-\pi / 4,0)$ such that $f(x)=0$, as desired.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Use the definition of the derivative to find a and b such that the following function

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right)+a & \text { if } x<0 \\ 3 x^{2}+(2+b) x & \text { if } x \geq 0\end{cases}
$$

is differentiable at $x=0$. You must justify your answer.
Solution. If $f(x)$ is differentiable at $x=0$, then $f(x)$ is continuous at $x=0$ and so,

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x)=f(0)=0 \tag{1}
\end{equation*}
$$

We compute $\lim _{x \rightarrow 0} f(x)$ using both lateral limits. The right-hand limit is $\lim _{x \rightarrow 0^{+}} 3 x^{2}+(2+b) x=0$, as desired. The left-hand limit exists by the Squeeze Theorem: Indeed, since $-1 \leq \sin (1 / x) \leq 1$ and so, $-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2}$, we have $\lim _{x \rightarrow 0^{-}} x^{2} \sin \left(\frac{1}{x}\right)=0$. Therefore

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2} \sin \left(\frac{1}{x}\right)+a=a
$$

In order to satisfy equality (1) above we need $a=0$, and hence $f(x)$ is continuous at $x=0$.

Now, in order for $f(x)$ be differentiable at $x=0$ we need the following limit to exist:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)-0}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x} .
$$

Again we need to compute both lateral limits. We get

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{x^{2} \sin (1 / x)}{x}=\lim _{x \rightarrow 0^{-}} x \sin (1 / x)=0
$$

by Squeeze Theorem again. Indeed, $-x \leq x \sin (1 / x) \leq x$ for $x \rightarrow 0^{+}$ and so, the Squeeze Theorem yields that $\lim _{x \rightarrow 0^{-}} x \sin (1 / x)=0$ since $\lim _{x \rightarrow 0^{-}} x=\lim _{x \rightarrow 0^{-}} x=0$.
We also compute

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{3 x^{2}+(2+b) x}{x}=\lim _{x \rightarrow 0^{+}} 3 x+(2+b)=2+b .
$$

Since $f(x)$ is differentaible at $x=0$ if

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x},
$$

we need $2+b=0$ and therefore $b=-2$.

