Q2-F-p

Math 100. Quiz 2. 2017-10-06 (Friday) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Find a positive integer n such that the equation

$$
x^{3}-3 x=4
$$

has a solution in the interval $[n, n+1]$.
(b) (1pt) Compute the derivative of the function

$$
f(x)=\frac{3 x-2}{2 x+5}
$$

You must simplify your answer.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Use the definition of continuity to find all values a and b such that

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}+2 x+a}{x} & \text { for } x>0 \\
b-3 x & \text { for } x \leq 0
\end{array}\right.
$$

is continuous everywhere.
(b) (2pt) Find the x-coordinates of the points on the graph of $y=x^{3}-5 x$ where the tangent line is parallel to the line $y=70 x+1$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find all positive real numbers a with the property that the function

$$
g(x)= \begin{cases}x^{a}(\cos (1 / x)-2) & \text { if } x>0 \\ 0 & \text { if } \quad x \leq 0\end{cases}
$$

is differentiable at $x=0$. Justify your answer using the definition of the derivative.

Math 100. Quiz 2. 2017-10-06 (Friday) Time 25min
Section Instructor name \qquad
Your email

- For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as $\frac{1}{100}, \sqrt{e}$ or $\ln (4)$ rather than decimals.

1. Each part of this question is worth 1 mark, and the correct answer will get the full mark.
(a) (1pt) Find a positive integer n such that the equation

$$
x^{3}-1=5 x
$$

has a solution in the interval $[n, n+1]$.
(b) (1pt) Compute the derivative of the function

$$
f(x)=\frac{5 x-4}{3 x+2}
$$

You must simplify your answer.
2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Use the definition of continuity to find all values a and b such that

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-a}{x-1} & \text { for } x>1 \\
b-3 x+x^{2} & \text { for } x \leq 1
\end{array}\right.
$$

is continuous everywhere.
(b) (2pt) Find the x-coordinates of the points on the graph of $y=x^{3}+3$ where the tangent line is parallel to the line $y=48 x+48$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find all positive real numbers a with the property that the function

$$
f(x)= \begin{cases}x^{a}(\sin (1 / x)+2) & \text { if } x>0 \\ 0 & \text { if } \quad x \leq 0\end{cases}
$$

is differentiable at $x=0$. Justify your answer using the definition of the derivative.

