Q2-F-p-solution

Quiz 2

2017 - 10 - 06

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1pt) Find a positive integer n such that $x^3 3x = 4$ for some x in the interval [n, n + 1]. Solution. Let $f(x) = x^3 - 3x - 4$. We have f(1) = -6, f(2) = 8 - 6 - 4 = -2, f(3) = 27 - 9 - 4 > 0. By Intermediate Value Theorem, f(x) = 0 for some $x \in [2, 3]$. Take n = 2.

(b) (1pt) Compute the derivative of $\frac{3x-2}{2x+5}$. Simplify your answer. Solution. We use the quotient rule,

$$\left(\frac{3x-2}{2x+5}\right)' = \frac{3(2x+5) - (3x-2)2}{(2x+5)^2}$$
$$= \frac{19}{(2x+5)^2}$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2pt) Use the definition of continuity to find all values a and b such that

$$f(x) = \begin{cases} \frac{x^2 + 2x + a}{x} & x > 0\\ b - 3x & x \le 0 \end{cases}$$

is continuous everywhere.

Solution. We need

$$\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x).$$

We have $\lim_{x\to 0^-} f(x) = f(0) = b$. Hence it suffices to have $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2 + 2x + a}{x} = b$.

For the fraction $\frac{x^2+2x+a}{x}$, the denominator converges to 0 as $x \to 0$. Thus we need the numerator also to converge to 0, i.e., $\lim_{x\to 0^+} x^2 + 2x + a = 0$. So $\mathbf{a}=\mathbf{0}$.

Then we need

$$b = \lim_{x \to 0^+} \frac{x^2 + 2x}{x} = \lim_{x \to 0^+} \frac{x(x+2)}{x} = \lim_{x \to 0^+} x + 2 = 2$$

That is b=2.

(b) (2pt) Find the x-coordinates of the points on the graph of $y = x^3 - 5x$ where the tangent line is parallel to 70x + 1.

Solution. The slope of the tangent is $f'(x) = 3x^2 - 5$; so we are asked for this slope to equal 70 (since this means that two lines are parallel—they must have the same slope). We solve and obtain $3x^2 - 5 = 70$, i.e., $x^2 = 25$ and therefore x = -5 or x = 5.

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find all positive real numbers a with the property that the function

$$f(x) = \begin{cases} x^{a} (\cos(1/x) - 2) & \text{if } x > 0, \\ 0 & \text{if } x \le 0 \end{cases}$$

is differentiable at x = 0. Justify your answer using the definition of the derivative.

Solution. In order for f(x) be differentiable at x = 0 we need the following limit to exist:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}.$$

Again we need to compute both lateral limits. We get

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{0}{x} = 0,$$

where we used the fact that f(0) = 0. Hence, we need

$$0 = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} x^{a-1} \left(\cos(1/x) - 2 \right).$$

If a > 1, then since $-1 - 2 \le \cos(1/x) - 2 \le 1 - 2$, we have that when $x \to 0^+$:

$$-3x^{a-1} \le x^{a-1} \left(\cos(1/x) - 2 \right) \le -x^{a-1}$$

Since a > 1, both $-3x^{a-1}$ and $-x^{a-1}$ converge to 0 as $x \to 0^+$. Hence, by the Squeeze Theorem,

$$\lim_{x \to 0^+} x^{a-1} \left(\cos(1/x) - 2 \right) = 0.$$

So when a > 1, f is differentiable at x = 0.

If a = 1, then $\lim_{x\to 0^+} (\cos(1/x) - 2)$ is undefined because of the oscillating function $\cos(1/x)$. So when a = 1, f is NOT differentiable at x = 0.

If a < 1, then $\lim_{x \to 0^+} x^{a-1} (\cos(1/x) - 2) = -\infty$ because

$$\lim_{x \to 0^+} x^{a-1} = \lim_{x \to 0^+} \frac{1}{x^{1-a}} = \infty.$$

So when a < 1, f is NOT differentiable at x = 0.

Q2-F-n-solution

Quiz 2

2017 - 10 - 06

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- 1. Each part of this question is worth 1 mark.
 - (a) (1pt) Find a positive integer n such that $x^3 1 = 5x$ for some x in the interval [n, n + 1]. Solution. Let $f(x) = x^3 - 5x - 1$. We have f(1) = 1 - 5 - 1 = -5, f(2) = 8 - 10 - 1 = -3, f(2) = 27 - 15 - 1 = 11. By Intermediate

f(2) = 8 - 10 - 1 = -3, f(3) = 27 - 15 - 1 = 11. By Intermediate Value Theorem, f(x) = 0 for some $x \in [2,3]$. Take n = 2.

(b) (1pt) Compute the derivative of $\frac{5x-4}{3x+2}$. Simplify your answer. Solution. We use the quotient rule,

$$\left(\frac{5x-4}{3x+2}\right)' = \frac{5(3x+2) - (5x-4)3}{(3x+2)^2}$$
$$= \frac{22}{(3x+2)^2}$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2pt) Use the definition of continuity to find all values a and b such that

$$f(x) = \begin{cases} \frac{x^2 - a}{x - 1} & x > 1\\ b - 3x + x^2 & x \le 1 \end{cases}$$

is continuous everywhere.

Solution. We need

$$\lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x).$$

We have $\lim_{x\to 1^-} f(x) = f(1) = b - 3 + 1 = b - 2$. Hence it suffices to have $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \frac{x^2 - a}{x-1} = b - 2$. For the fraction $\frac{x^2 - a}{x-1}$, the denominator converges to 0 as $x \to 1$.

Thus we need the numerator also to converge to 0, i.e., $\lim_{x\to 1^+} x^2 - x^2 = 1$ a = 0. So 1 - a = 0, i.e., **a=1**.

Then we need

~

$$b-2 = \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1^+} x + 1 = 1 + 1 = 2$$

That is b=4.

(b) (2pt) Find the x-coordinates of the points on the graph of $y = x^3 + 3$ where the tangent line is parallel to 48x + 48.

Solution. The slope of the tangent is $f'(x) = 3x^2$; so we are asked for this slope to equal 48 (since this means that two lines are parallel—they must have the same slope). We solve and obtain $3x^2 = 48$, i.e., $x^2 = 16$ and therefore x = -4 or x = 4.

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find all positive real numbers *a* with the property that the function

$$f(x) = \begin{cases} x^{a} (\sin(1/x) + 2) & \text{if } x > 0, \\ 0 & \text{if } x \le 0 \end{cases}$$

is differentiable at x = 0. Justify your answer using the definition of the derivative.

Solution. In order for f(x) be differentiable at x = 0 we need the following limit to exist:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}.$$

Again we need to compute both lateral limits. We get

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{0}{x} = 0,$$

where we used the fact that f(0) = 0. Hence, we need

$$0 = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} x^{a-1} \left(\sin(1/x) + 2 \right).$$

If a > 1, then since $-1 + 2 \le \sin(1/x) + 2 \le 1 + 2$, we have that when $x \to 0^+$:

$$x^{a-1} \le x^{a-1} \left(\sin(1/x) + 2 \right) \le 3x^{a-1}$$

Since a > 1, both x^{a-1} and $3x^{a-1}$ converge to 0 as $x \to 0^+$. Hence, by the Squeeze Theorem,

$$\lim_{x \to 0^+} x^{a-1} \left(\sin(1/x) + 2 \right) = 0.$$

So when a > 1, f is differentiable at x = 0.

If a = 1, then $\lim_{x\to 0^+} (\sin(1/x) + 2)$ is undefined because of the oscillating function $\sin(1/x)$. So when a = 1, f is NOT differentiable at x = 0.

If a < 1, then $\lim_{x\to 0^+} x^{a-1} \left(\sin(1/x) + 2 \right) = \infty$ because

$$\lim_{x \to 0^+} x^{a-1} = \lim_{x \to 0^+} \frac{1}{x^{1-a}} = \infty.$$

So when a < 1, f is NOT differentiable at x = 0.