Quiz 2

2017-10-06

Last name

First name

Student number

Email ...

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1pt) Find a positive integer n such that $x^{3}-3 x=4$ for some x in the interval $[n, n+1]$.
Solution. Let $f(x)=x^{3}-3 x-4$. We have $f(1)=-6, f(2)=$ $8-6-4=-2, f(3)=27-9-4>0$. By Intermediate Value Theorem, $f(x)=0$ for some $x \in[2,3]$. Take $n=2$.
(b) (1pt) Compute the derivative of $\frac{3 x-2}{2 x+5}$. Simplify your answer.

Solution. We use the quotient rule,

$$
\begin{aligned}
\left(\frac{3 x-2}{2 x+5}\right)^{\prime} & =\frac{3(2 x+5)-(3 x-2) 2}{(2 x+5)^{2}} \\
& =\frac{19}{(2 x+5)^{2}}
\end{aligned}
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Use the definition of continuity to find all values a and b such that

$$
f(x)= \begin{cases}\frac{x^{2}+2 x+a}{x} & x>0 \\ b-3 x & x \leq 0\end{cases}
$$

is continuous everywhere.
Solution. We need

$$
\lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)
$$

We have $\lim _{x \rightarrow 0^{-}} f(x)=f(0)=b$. Hence it suffices to have $\lim _{x \rightarrow 0^{+}} f(x)=$ $\lim _{x \rightarrow 0^{+}} \frac{x^{2}+2 x+a}{x}=b$.
For the fraction $\frac{x^{2}+2 x+a}{x}$, the denominator converges to 0 as $x \rightarrow 0$. Thus we need the numerator also to converge to 0 , i.e., $\lim _{x \rightarrow 0^{+}} x^{2}+$ $2 x+a=0$. So $\mathbf{a}=\mathbf{0}$.
Then we need

$$
b=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+2 x}{x}=\lim _{x \rightarrow 0^{+}} \frac{x(x+2)}{x}=\lim _{x \rightarrow 0^{+}} x+2=2
$$

That is $\mathbf{b}=\mathbf{2}$.
(b) (2pt) Find the x-coordinates of the points on the graph of $y=$ $x^{3}-5 x$ where the tangent line is parallel to $70 x+1$.

Solution. The slope of the tangent is $f^{\prime}(x)=3 x^{2}-5$; so we are asked for this slope to equal 70 (since this means that two lines are parallelthey must have the same slope). We solve and obtain $3 x^{2}-5=70$, i.e., $x^{2}=25$ and therefore $x=-5$ or $x=5$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find all positive real numbers a with the property that the function

$$
f(x)=\left\{\begin{array}{lll}
x^{a}(\cos (1 / x)-2) & \text { if } & x>0 \\
0 & \text { if } & x \leq 0
\end{array}\right.
$$

is differentiable at $x=0$. Justify your answer using the definition of the derivative.
Solution. In order for $f(x)$ be differentiable at $x=0$ we need the following limit to exist:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

Again we need to compute both lateral limits. We get

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{0}{x}=0
$$

where we used the fact that $f(0)=0$. Hence, we need

$$
0=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} x^{a-1}(\cos (1 / x)-2)
$$

If $a>1$, then since $-1-2 \leq \cos (1 / x)-2 \leq 1-2$, we have that when $x \rightarrow 0^{+}$:

$$
-3 x^{a-1} \leq x^{a-1}(\cos (1 / x)-2) \leq-x^{a-1} .
$$

Since $a>1$, both $-3 x^{a-1}$ and $-x^{a-1}$ converge to 0 as $x \rightarrow 0^{+}$. Hence, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0^{+}} x^{a-1}(\cos (1 / x)-2)=0
$$

So when $a>1, f$ is differentiable at $x=0$.
If $a=1$, then $\lim _{x \rightarrow 0^{+}}(\cos (1 / x)-2)$ is undefined because of the oscillating function $\cos (1 / x)$. So when $a=1, f$ is NOT differentiable at $x=0$.
If $a<1$, then $\lim _{x \rightarrow 0^{+}} x^{a-1}(\cos (1 / x)-2)=-\infty$ because

$$
\lim _{x \rightarrow 0^{+}} x^{a-1}=\lim _{x \rightarrow 0^{+}} \frac{1}{x^{1-a}}=\infty
$$

So when $a<1, f$ is NOT differentiable at $x=0$.
Quiz 2
2017-10-06
Last name
First name
Student number
Email ...

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1pt) Find a positive integer n such that $x^{3}-1=5 x$ for some x in the interval $[n, n+1]$.
Solution. Let $f(x)=x^{3}-5 x-1$. We have $f(1)=1-5-1=-5$, $f(2)=8-10-1=-3, f(3)=27-15-1=11$. By Intermediate Value Theorem, $f(x)=0$ for some $x \in[2,3]$. Take $n=2$.
(b) (1pt) Compute the derivative of $\frac{5 x-4}{3 x+2}$. Simplify your answer.

Solution. We use the quotient rule,

$$
\begin{aligned}
\left(\frac{5 x-4}{3 x+2}\right)^{\prime} & =\frac{5(3 x+2)-(5 x-4) 3}{(3 x+2)^{2}} \\
& =\frac{22}{(3 x+2)^{2}}
\end{aligned}
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2pt) Use the definition of continuity to find all values a and b such that

$$
f(x)= \begin{cases}\frac{x^{2}-a}{x-1} & x>1 \\ b-3 x+x^{2} & x \leq 1\end{cases}
$$

is continuous everywhere.
Solution. We need

$$
\lim _{x \rightarrow 1^{-}} f(x)=f(1)=\lim _{x \rightarrow 1^{+}} f(x)
$$

We have $\lim _{x \rightarrow 1^{-}} f(x)=f(1)=b-3+1=b-2$. Hence it suffices to have $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-a}{x-1}=b-2$.
For the fraction $\frac{x^{2}-a}{x-1}$, the denominator converges to 0 as $x \rightarrow 1$. Thus we need the numerator also to converge to 0 , i.e., $\lim _{x \rightarrow 1^{+}} x^{2}-$ $a=0$. So $1-a=0$, i.e., $\mathbf{a}=\mathbf{1}$.
Then we need
$b-2=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1^{+}} x+1=1+1=2$
That is $\mathrm{b}=4$.
(b) (2pt) Find the x-coordinates of the points on the graph of $y=x^{3}+3$ where the tangent line is parallel to $48 x+48$.

Solution. The slope of the tangent is $f^{\prime}(x)=3 x^{2}$; so we are asked for this slope to equal 48 (since this means that two lines are parallel-they must have the same slope). We solve and obtain $3 x^{2}=48$, i.e., $x^{2}=16$ and therefore $x=-4$ or $x=4$.
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find all positive real numbers a with the property that the function

$$
f(x)= \begin{cases}x^{a}(\sin (1 / x)+2) & \text { if } \\ 0>0 \\ 0 & \text { if } \\ x \leq 0\end{cases}
$$

is differentiable at $x=0$. Justify your answer using the definition of the derivative.
Solution. In order for $f(x)$ be differentiable at $x=0$ we need the following limit to exist:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

Again we need to compute both lateral limits. We get

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{0}{x}=0
$$

where we used the fact that $f(0)=0$. Hence, we need

$$
0=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} x^{a-1}(\sin (1 / x)+2)
$$

If $a>1$, then since $-1+2 \leq \sin (1 / x)+2 \leq 1+2$, we have that when $x \rightarrow 0^{+}$:

$$
x^{a-1} \leq x^{a-1}(\sin (1 / x)+2) \leq 3 x^{a-1}
$$

Since $a>1$, both x^{a-1} and $3 x^{a-1}$ converge to 0 as $x \rightarrow 0^{+}$. Hence, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0^{+}} x^{a-1}(\sin (1 / x)+2)=0
$$

So when $a>1, f$ is differentiable at $x=0$.
If $a=1$, then $\lim _{x \rightarrow 0^{+}}(\sin (1 / x)+2)$ is undefined because of the oscillating function $\sin (1 / x)$. So when $a=1, f$ is NOT differentiable at $x=0$.
If $a<1$, then $\lim _{x \rightarrow 0^{+}} x^{a-1}(\sin (1 / x)+2)=\infty$ because

$$
\lim _{x \rightarrow 0^{+}} x^{a-1}=\lim _{x \rightarrow 0^{+}} \frac{1}{x^{1-a}}=\infty
$$

So when $a<1, f$ is NOT differentiable at $x=0$.

