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Abstract. Optimal transportation concerns the phenomena when the cost of
matching two mass distributions is minimized. Regarding the regularity of such
optimal transport maps, a new notion of curvature, called MTW curvature,
was found recently by Ma, Trudinger and Wang. In these lectures, we discuss
MTW curvature and regularity of optimal transport, focusing the case when
the transportation cost is given by the Riemannian distance squared.
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1. Introduction

The present article is based on four lectures given in the SMS 2011 Summer
School (50th Edition) “Metric Measure Spaces: Geometric and Analytic Aspects”
June 27 – July 8, 2011, in CRM, Montreal. In these lecture notes, the goal is to
explain the new curvature notion, called Ma-Trudinger-Wang curvature (or simply
MTW curvature) that was discovered by Ma, Trudinger and Wang [MTW], in
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the context of the regularity theory of optimal transportation maps. We study the
geometry and analysis involving this curvature, explaining why this is relevant to
the optimal transportation theory, and giving some key examples, and discussing
how to prove regularity, in particular, Hölder continuity of optimal transportation
maps when we restrict the sign of MTW curvature to be nonnegative. Some of the
topics in these lecture notes overlap with other expository articles and books such
as [FiV,Fi2] (focusing more on geometric implications of conditions on the MTW
curvature), [GlM,V1,V2] (more broader introduction to optimal transportation),
however, in addition to giving different point of view, we focus more on the re-
sults in [Km,KmM1,KmM3,FiKM1]. Our aim is to give some highlights in
the recent developments, so many results/facts are given without detailed proof.
Throughout this article, we assume familiarity with basic Riemannian geometry
such as exponential map, sectional curvature, cut locus, etc (c.f. [ChEb]).

2. The Ma, Trudinger and Wang curvature condition

2.1. Optimal transportation. Throughout the article we let M be a Rie-
mannian manifold, and let Ω, Ω̄ be bounded open subsets in M . We consider two
probability distributions ρ = ρ(x)dx, ρ̄ = ρ̄(x̄)dx̄ with supp ρ ⊂ Ω, supp ρ̄ ⊂ Ω̄.
Here, we assume log ρ, log ρ̄ ∈ L∞, namely, the density functions ρ(x), ρ̄(x̄) satisfy

0 < λ ≤ ρ(x), ρ̄(x̄) ≤ Λ(2.1)

for some positive constant λ, Λ and for x ∈ Ω and x̄ ∈ Ω̄. Consider the transporta-
tion cost function

c(x, x̄) = dist2(x, x̄)/2,

where dist denotes the Riemannian distance function. This function c can be
regarded a canonical cost function associated to a Riemannian manifold since
−Dxc(x, x̄) = exp−1

x x̄, where Dx denotes the gradient in the x variable1 and exp
denotes the exponential map. Even though more general cost functions can be
considered, in this lecture we restrict ourselves to this Riemannian dis-
tance squared cost function for simplicity of discussion. In general, due
to the cut locus, the distance squared function is not smooth. To simplify our dis-
cussion, we assume throughout these lectures that c ∈ C∞(Ω, Ω̄): in other words,
Ω× Ω̄ ⊂M ×M \ Cut, where Cut denotes the cut locus of M .

By the fundamental result of Brenier [B] and later by McCann [Mc], the fol-
lowing holds: There exists a unique optimal map T , namely, a Borel measurable
map that minimizes the transportation cost∫

Ω

c(x, F (x))dρ(x)

among all measurable maps F pushing ρ forward to ρ̄, i.e. F#ρ = ρ̄: here,
F#ρ(B) = ρ(F−1B) for any Boral set B. We can simply denote this as

T = argmin
F#ρ=ρ̄

∫
Ω

c(x, F (x))dρ(x)

This optimal map T is almost everywhere differentiable and it satisfies nice analyt-
ical properties we list below:

1One may consider Dx as the differential producing covectors, but we can use the Riemannian
metric to identify those with tangent vectors and this is the convention we take in these lectures.
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(1) |detDxT (x)| =a.e.
ρ(x)

ρ̄(T (x)) .
(2) There exists a function φ : Ω→ R called c-potential such that T (x) =a.e.

expx(Dxφ(x)), i.e. −Dxc(x, T (x)) =a.e. Dxφ(x). Such a function φ is
c-convex, namely, it has a dual function φc : Ω̄→ R and

φ(x) = sup
x̄∈Ω̄

−c(x, x̄)− φc(x̄);(2.2)

φc(x̄) = sup
x∈Ω
−c(x, x̄)− φ(x).

Due to boundedness of Ω, Ω̄ and local Lipschitzness and semi-convexity
of −dist2, one can verify that φ and φc are Lipschitz and semi-convex:
see Section 2.2.

(3) The condition T#ρ = ρ̄ (see (1)) forces the c-potential φ satisfy the c-
Monge-Ampère equation:

det(D2
xxφ(x) +D2

xxc(x, T (x)) =a.e. |detDxDx̄c(x, T (x))| ρ(x)

ρ̄(T (x)
.

Example 2.1. ForM = Rn, c(x, x̄) = |x− x̄|2/2, the function φ(x)+
|x|2/2 is convex and T (x) = x+∇φ(x), with

det(D2
xxφ(x) + I) =

ρ(x)

ρ̄(∇φ(x) + x)
.

The paper [CoMS] by Cordero-Erausquin, McCann and Schmuckenschlaeger con-
tains many useful results for optimal transport maps on Riemannian manifolds.
See also the book [V2] by Villani.

From the c-Monge-Ampère equation, the question of regularity of its solution
φ naturally arises:

Question 2.2. For log ρ, log ρ̄ ∈ L∞/C∞, is the optimal map T ∈ C0/C∞(Ω)
(i.e. φ ∈ C1/C∞(Ω))?

We discuss below key notions related to this question.

2.2. The subdifferential ∂φ and the c-subdifferential ∂cφ. Under our
assumption that Ω and Ω̄ are bounded, one can show the following fact:

If φ is the c-potential defined in (2.2), then φ is Lipschitz and semi-convex.

A function is called (locally) semi-convex if it becomes convex by adding a quadratic
function (in a local coordinate system). Note that semi-convexity allows the func-
tion not to be differentiable at a point. But, also note that if a semi-convex function
is differentiable at every point, then it is C1, i.e. the derivatives are continuous.
Moreover, it is a well-known fact (due to A.D. Alexandrov, see e.g. [V2]) that for
a (locally) semi-convex function the set of nondifferentiable points has Hausdorfff
dimension less than or equal to dimM − 1. In particular, such set has zero mea-
sure. Example of Lipschitz and semi-convex functions include −dist2 for compact
Riemannian manifolds. Note that dist2 is on the other hand is semi-concave but
not semi-convex (see e.g. [CoMS]).

For semi-convex functions we can define the subdifferential.
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Definition 2.3 (subdifferential). The subdifferntial ∂φ(x) at x ∈ Ω is defined
as the set in the tangent space TxM given by

∂φ(x) = {p ∈ TxM | φ(expx v)− φ(x) ≥ 〈p, v〉+ o(|v|), ∀v ∈ TxM & |v| � 1}

Here, 〈, 〉 and | · | are the Riemannian metric and norm, repectively, and o(|v|)
denotes the usual small ‘o’ error, i.e. lim|v|→0 o(|v|)/|v| = 0.

Notice that ∂φ(x) = {∇φ(x)} (here ∇φ is the gradient) if and only if φ is
differentiable at x. Moreover, one can check that ∂φ(x) is a convex set in the affine
space TxM .

While the subdifferential at a point assigns a function a set of tangent vectors,
the c-subdifferential gives a set of ‘target’ points:

Definition 2.4 (c-subdifferential).

∂cφ(x) = {x̄ ∈ Ω̄ | φ(·) ≥ φ(x)− c(·, x̄) + c(x, x̄) on Ω}

The expression ∂cφ denotes the graph of this multi-valued map, i.e.

∂cφ = {(x, x̄) ∈ Ω× Ω̄ |x̄ ∈ ∂cφ(x)}

To be more precise, one may add subscripts as ∂c
Ω,Ω̄

φ since the c-subdifferential
depends on the source and target domains Ω, Ω̄. Here, the functions of the form
−c(·, x̄) + c(x, x̄) + const are called c-supporting functions.

Regarding an optimal map T and its c-potential φ, we have inclusions between
the graphs of T , ∂cφ and the multi-valued map exp ∂φ given by composing the
subdifferential ∂φ with the exponential map, whose graph is defined (by abusing
the notation) as

exp ∂φ = {(x, x̄) ∈ Ω× Ω̄ | x̄ ∈ expx ∂φ(x)}.

Fact 2.1.

graphT ⊂ ∂cφ ⊂ exp ∂φ

Since T is defined a.e., the first inclusion should be understood in the a.e. sense.
One observes that if φ ∈ C1, then ∂cφ = exp∇φ = exp ∂φ. Regarding the

equality between ∂cφ and exp ∂φ we define Loeper’s maximum principle [Lo1], a
principal notion in these lectures:

Definition 2.5 (Loeper’s maximum principle). We say Loeper’s maximum
principle (LMP) holds if for any c-convex function φ,

∂cφ = exp ∂φ.

The reason why this is called a maximum principle will be obvious from its another
formulation (2.3) given in a later section.

We now state the first main theorem of these lectures, which is due to Loeper
[Lo1] (such a result was also hinted by Ma, Trudinger and Wang [MTW, Sections
7.3 and 7.5]:

Theorem 2.6 (continuity of OT⇒ LMP). Suppose that for each log ρ, log ρ̄ ∈
L∞, the corresponding optimal map T is continuous. Then, Loeper’s maximum
principle holds.

In the following subsection we explain the reason why this theorem should hold.
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2.3. Loeper’s Maximum Principle (LMP). In this section, we explain
(not a proof) why Loeper’s maximum principle (LMP) is a necessary condition
to ensure continuity of optimal maps for each log ρ, log ρ̄ ∈ L∞. This will be
done by considering the following important example, which shows that if for each
log ρ, log ρ̄ ∈ L∞ the corresponding optimal map is continuous, then Loeper’s Max-
imum Principle (LMP) should hold.

Example 2.7 (Heuristic explanation why (continuity of OT ⇒ LMP)). (See
[Lo1, Proposition 4.4] and also [MTW, Section 7.3] for a similar example) Fix a
point x ∈ Ω and two points x̄0, x̄1 ∈ Ω̄. Let

mi(·) = −c(·, x̄i) + c(x, x̄i), i = 0, 1

φ(·) = max[m0,m1]

as functions on Ω. Notice that the c-subdifferential ∂cφ pushes forward the uniform
measure 1Ω to the sum of two Dirac measures, ρ̄0 := c0δx̄0 + c1δx̄1 , where c0, c1 ∈ R
are some appropriate constants. We write this as

(∂cφ)#1Ω = ρ̄0.

We consider a smooth target probability density ρ̄ε ∈ C∞(Ω̄) which is positive on
Ω̄ and converges (weakly as measure) to the measure ρ̄0 as ε→ 0. Between 1Ω and
ρ̄ε, consider the corresponding optimal map with potential φε. Namely,

(∂cφε)#1Ω = ρ̄ε

Suppose “continuity of optimal transport”, namely, for every log ρ, log ρ̄ ∈ L∞
the corresponding optimal map is continuous. We will see that LMP is a conse-
quence of this assumption, thus a necessary condition. From this assumption we
see that φε ∈ C1, since the ensities 1Ω and ρ̄ε are bounded from above and below.
Now, because φε ∈ C1, it immediately holds

∂cφε = exp∇φε = exp ∂φε

Then, one can show (see Loeper [Lo1])) by taking limit ε→ 0, that

∂cφ = exp ∂φ

The last equality is what is required by Loeper’s maximum principle (LMP) for
the c-convex function φ. One can in fact show that this special case implies LMP
for general c-convex functions (see Loeper [Lo1])).

2.4. Geometric interpretation of Loeper’s Maximum Principle (LMP).
To understand a more geometric meaning of LMP, we first need a notion called
c-segment that extends the notion of geodesic. (This definition is due to Ma,
Trudinger and Wang [MTW].)

Definition 2.8 (c-segment). Fix x ∈ Ω. Let p : t ∈ [0, 1] → p(t) ∈ TxM be a
line segment, i.e. p′′(t) = 0. Then, the curve x̄(t) = expx p(t) is called a c-segment
with respect to x. As a special case, if the line segment p(t) passes through the
origin in TxM , the corresponding c-segment is a geodesic passing through x.

One can define similarly a c-segment x(t) with respect to x̄ ∈ Ω̄.

Definition 2.9 (sliding mountain). Let x̄(t) be a c-segment. Let x̄i = x̄(i),
i = 0, 1. Define the function

mt(·) = −c(·, x̄(t)) + c(x, x̄(t))
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We can call this type of functions a sliding mountain.

One sees that

{∇mt(x)}0≤t≤1 =
(
∂max[m0,m1]

)
(x).

Now, Loeper’s maximum principle (LMP) can be stated as the following: For all
x ∈ Ω and for any c-segment {x̄(t)}0≤t≤1 with respect to x,

LMP: mt ≤ max[m0,m1] ∀ 0 ≤ t ≤ 1 on Ω;(2.3)
local LMP: mt ≤ max[m0,m1] ∀ 0 ≤ t ≤ 1 on a neighborhood of x.

Thus, LMP prevents the function mt(z) : [0, 1] → R (for fixed z ∈ Ω) from
having (in fact, local) maximum in the interior of the interval [0, 1].

2.5. Ma-Trudinger-Wang curvature condition and examples. There is
an infinitesimal version of Loeper’s maximum principle, called the Ma-Trudinger-
Wang curvature condition [MTW]. As we will see in Section 3.1, this condi-
tion strengthens the sectional curvature nonnegativity condition. Recall c(x, x̄) =
dist2(x, x̄)/2.

Consider a pair (x, x̄) 6∈ Cut, i.e. c is C∞ near (x, x̄). Consider two curves
{x(s)}s∈[−1,1] ∈ Ω, {x̄(t)}t∈[−1,1] ∈ Ω̄ where either of them is a c-segment with
respect to x̄, x, respectively. Let x(0) = x and x̄(0) = x̄. Let us use the
terminology MTW-curvature to describe the tensor quantity of Ma, Trudinger
and Wang [MTW] called c-curvature by Loeper [Lo1], or called cross-curvature
in [KmM3, Definition 1.1] [KmM1, (2.2) and Lemma 4.5].

Definition 2.10 (MTW-curvature). Let (p, p̄) ∈ TxM ⊕ Tx̄M .

MTW(x,x̄)(p, p̄) = − d4

ds2dt2

∣∣∣
(s,t)=(0,0)

c(x(s), x̄(t))

Remark 2.11. The MTW-curvature is indeed a curvature since it is induced
by the Riemannian curvature tensor of a pseudo-metric defined on the product
space Ω × Ω̄ as found by McCann and the author [KmM1]. Furthermore, with
Warren [KmMW] they extended this result to define another pseudo-metric (a
conformal perturbation of the one in [KmM1]) and showed that the graph of the
optimal map T in the product space Ω × Ω̄ gives a volume maximizing special
Lagrangian submanifold, thus finding a connection to symplectic geometry.

Definition 2.12 (MTW condition). We say that MTW condition is satisfied
if for all (x, x̄) 6∈ Cut,

MTW(x,x̄)(p, p̄) ≥ 0, ∀ 〈p, (D expx)−1p̄〉 = 0.

Here, the last inner product is with respect to the Riemannian metric and can also
be written as piDxiDx̄jc p̄

j = 0.
We say that MTW+ is satisfied if MTW is satisfied and if p = 0 or p̄ = 0 in

case of equality in the inequality in Definition 2.12.
TheseMTW,MTW+ conditions were originally calledA3w,A3, respectively

by Ma, Trudinger and Wang [MTW,TW1].
We say that NNCC (nonnegative cross curvature) is satisfied if for all (x, x̄) 6∈

Cut,

MTW(x,x̄)(p, p̄) ≥ 0.
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Notice that MTW+ =⇒MTW and NNCC =⇒MTW, but neither MTW+ or
NNCC implies the other.

Remark 2.13. • The MTW+ condition was introduced in [MTW]
to get a priori estimates for Monge-Ampère type equations for optimal
transport problems, and the method goes back to the work of Wang on
reflector antenna problems [Wn1,Wn2]. Loeper [Lo2] verified MTW+

for the cost function arising in the far-field reflector antenna problem
and then showed regularity of the solution (see also a previous work of
Caffarelli, Gutierrez and Huang [CaGH] for a different approach). More
recently, there is a work by Karakhanyan and Wang [KaW] that uses a
variant of MTW+ condition to give a rather complete solution to the
regularity of the general (near-field) reflector antenna problem.
• It is a folk-lore conjecture among experts that for c = dist2 /2 on Rie-

mannian manifold, MTW implies NNCC.
• The condition NNCC has an unexpected application to principal-agent

problem in microeconomics theory [FiKM3] (see also [GlM] for an ex-
position). On the other hand, Sei [S] found applications to statistical
problems. In both applications, it was used that under NNCC, the set
of c-convex functions is convex, that is, if φ0 and φ1 are c-convex then
(1− t)φ0 + tφ1 is c-convex, too [FiKM3,S].

It is immediate to see that for the Euclidean space (Rn, g0), the MTW-curvature
completely vanishes: MTW ≡ 0.

Loeper [Lo1] found a connection of MTW-curvature to the Riemannian curva-
ture.

Theorem 2.14 (Loeper [Lo1,Lo2]). (1) For x = x̄, MTW(x,x)(p, p̄) =
4
3K(p ∧ p̄), where K denotes the Riemannian sectional curvature. In
particular, MTW implies nonnegative sectional curvature.

(2) MTW ⇐⇒ local LMP (see [KmM1] for an elementary geometric
proof for ⇒.)

(3) If the sectional curvature K is negative somewhere on Ω, then there ex-
ists a discontinuous optimal map T : Ω→ Ω̄, with smooth densities ρ, ρ̄.
(Here, the domains Ω, Ω̄ can have any nice properties (smoothness, con-
vexity, etc).

(4) The round sphere (Sn, g0) satisfiesMTW+ and LMP (see also [KmM1,
KmM2]).

Remark 2.15. Villani [V3] showed that the MTW condition is stable un-
der Gromo-Hausdorff convergence, under suitable additional assumptions that give
an equivalence between MTW and LMP. Note that LMP is more suitable for
synthetic formulation than the MTW involving fourth order derivatives.

The statement (3) in this theorem is basically due to (1) and (2) and the fact
that LMP is a necessary condition for regularity of optimal maps. In fact, one can
also show that even positive curvature restriction is not enough for MTW, so for
the regularity of optimal maps.

Theorem 2.16 ( [Km]). There are positively curved manifolds that do not
satisfy MTW.
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This is the first result showing theMTW condition is stronger than the positive
curvature. Since then, there appeared other examples in this spirit [LoV, Appendix
D] [FiRV2]. Especially, in [FiRV2], it is shown that two dimensional ellipsoid
surfaces in R3, when they are thin enough in one direction, do not satisfy MTW
condition.

Regarding (4) in Theorem 2.14, in fact, a stronger result holds, from which we
can produce a lot of NNCC (thus MTW) examples of Riemannian manifolds:

Theorem 2.17 (see [KmM3]). (1) The round sphere (Sn, g0) satisfies
NNCC.

(2) For the Riemannian submersion π : M → B, if M satisfies MTW,
MTW+, NNCC, LMP, respectively, then B satisfies the corresponding
conditions, respectively. In particular, the complex projective space CPn

with Fubini-Study metric satisfies all these conditions (because (S2n+1, g0)
does).

(3) Let Mi, i = 1, 2 satisfy NNCC then the Riemannian product M1 ×M2

satisfies NNCC.

Remark 2.18. • For example, Sn1(r1)× · · · × Snj (rj)×CPl1 × · · · ×
CPlk × Rm satisfies NNCC. It is shown that [KmM1,KmM3] this
example satisfies LMP. (See also [LoV] [V2, Ch. 12] [FiRV1] where
they extended the method in [KmM1] for deriving LMP to handle more
general cases.)

• In [KmM3], an O’Neill type inequality, which says Riemannian submer-
sions increase curvature (see [ChEb]), is obtained regarding the MTW-
curvature (Definition 2.10), and this yields the statement (2) for MTW,
MTW+ and NNCC in Theorem 2.17.

• Regarding the statement (2) in Theorem 2.17, there are examples of
MTW+ obtained by perturbing the round sphere as shown by Delanoë-
Ge [DG1], Figalli, Rifford and Villani [FiR,FiRV1,FiRV3]. In par-
ticular, Delanoë and Ge showed that small perturbations of the two di-
mensional round sphere are NNCC [DG2]: this is not known in higher
dimensions.

• Regarding the statement (3) in Theorem 2.17, the same result does not
hold for MTW: see [KmM3].

• There are examples of costs satisfying MTW condition, originated from mechan-
ical action, found by Lee and McCann [LeM], and also from a modified distance
function on the hyperbolic space found by Lee and Li [LeLi ].

3. Geometry of MTW curvature condition

The goal of this section is twofold: first, we will explain the result in The-
orem 2.16, second, we will explain a quantitative version of LMP for MTW+

(which is due to Loeper [Lo1]), and as an application will show continuity of opti-
mal maps on the round sphere. The latter result was actually shown with Hölder
continuity [Lo1].

3.1. MTW is finer than positive sectional curvature. In this subsection,
we explain why Theorem 2.16 holds: see [Km] for more details.

Consider a surface M such that in a small neighbourhood, say N , of a point
x0 ∈ M , the sectional curvature K is positive and outside the neighbourhood,
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K = 0. Here the curvature is bounded to be sufficiently small. One can construct
such a surface by rounding about the vertex of a sufficiently thin cone. We will show
that such surface does not satisfy local LMP, thus notMTW (see Theorem 2.14).
Of course, this surface is not positively curved, but one can slightly perturb the
surface to get a positively curved example that does not satisfy MTW.

Fix a point x ∈M outside N . Consider the exponential map expx : TxM →M .
For simplicity we assume that expx is injective everywhere, but in general, under the
sufficiently small bound on the curvature, one can find a neighbourhood such that
all relevant points in the following discussion are within the injectivity radius (see
[Km]). Find a line segment {p̄t}0≤t≤1in TxM such that (i) the curve x̄(t) = expx p̄t
contains x0, i.e. there is t0 ∈ (0, 1) such that x0 = x̄(t0), (ii) moreover, its two end
points x̄(0) an x̄(1) are outsideN , and (iii) there exists a geodesic segment γ outside
N passing through the points x and x̄(0) such that it is orthogonal to the segment
{x̄(t)}0≤t≤1 at the point x̄(0). Let y denote a point in γ close to x but farther
from x̄(0) than x. Let p ∈ TxM such that expx p = y. We are now ready for the
following argument: Define f(t), f̃(t) as

f(t) = − dist2(y, x̄(t)) + dist2(x, x̄(t))

f̃(t) = −|p− p̄t|2 + |p̄t|2

We will violate local LMP (see (2.3)) by showing that f(t0) > max[f(0), f(1)].

This will be done by comparing the two functions f(t) and f̃(t). Notice that
f(0) = f̃(0) and f(1) = f̃(1). Moreover, f̃(t) ≡ f̃(0) = f̃(1) for all t ∈ [0, 1].
(This is due to the orthogonality of γ and {x̄(t)} at x̄(0).) Now, use the well-known
Toponogov theorem (see Cheeger and Ebin [ChEb]),

Theorem 3.1. (Toponogov’s comparison theorem) Let M be a complete
Riemannian manifold with sectional curvature KM ≥ H, and let MH be the simply
connected 2-dimensional space of constant curvature H. Let γi : [0, 1]→M and γ̄i :
[0, 1] → MH , i = 1, 2, be minimal geodesic segments, i.e. they are unique geodesic
segments connecting their end points. Suppose that γ1(0) = γ2(0), γ̄1(0) = γ̄2(0);
](γ̇1(0), γ̇2(0)) = ]( ˙̄γ1(0), ˙̄γ2(0)) < π, where ] denotes the angle between tangent
vectors. Assume L[γi] = L[γ̄i], i = 1, 2, where L denotes arc-length. Then

dist(γ1(1), γ2(1)) ≤ dist(γ̄1(1), γ̄2(1)),(3.1)

where dist denotes the Riemannian distance. Moreover, if there exists a point z on
γ1 ∪ γ2 ⊂M such that KM (z) > H, then the inequality (3.1) is strict.

Applying this theorem, we see that

|p̄t0 − p| > dist(y, x̄(t0))

because the sectional curvature of M , K ≥ 0. Here, the strict inequality is due
to the condition K(x̄(t0)) > 0. Therefore, we see f(t0) > f̃(t0) = f(0) = f(1),
and this violates local LMP, thus MTW. Thus, the surface M does not satisfy
MTW. This finishes the discussion of this subsection.

3.2. An open question. The result in the previous subsection motivates us
to consider finer relation between the sectional curvature and the MTW curvature.
Regarding this, the following question is raised by Trudinger:

Question 3.2. Do there exist appropriate norms ‖ ·‖1, ‖ ·‖2 and an ε > 0 such
that ‖∇R‖1 ≤ ε‖R‖2 implies MTW?
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Here, R denotes the Riemannian curvature tensor, and ∇R is its covariant
derivative (thus a tensor itself). See [FiR,DG1] for partial results in this direction,
in the case of perturbations of the round sphere. Answers to Question 3.2 are
useful to obtain a robust method of finding Riemannian manifolds that satisfy
MTW, especially since it is very hard to verify the MTW condition in general.
Note that there are a few works for finding effective criteria of MTW condition
(see [FiRV2,Le]). Also, there is a relation between the MTW condition and the
convexity of tangential injectivity domains [LoV,FiR,FiRV1,FiRV3].

3.3. Loeper’s quantitative maximum principle (LQMP) under MTW+.
We now state a quantitative version of Loeper’s maximum principle and its appli-
cations to the continuity of optimal maps. The original results in this subsection
are due to Loeper [Lo1].

Theorem 3.3 (LQMP). Assume that the cost c satisfies MTW+. Namely,
MTW(p, p̄) ≥ K0|p|2|p̄|2 for 〈p,D exp−1 p̄〉 = 0. Let x̄(t) be a c-segment with respect
to x. Define

mt(·) = −c(·, x̄(t)) + c(x, x̄(t)).

Then, there exist r0 and K1 (both depending on the cost function c, especially on
K0) such that ∀0 < r ≤ r0 and ∀z ∈ Br(x), ∀0 ≤ t ≤ 1,

mt(z) ≤ max[m0(z),m1(z)]

−K1t(1− t) dist2(z, x) dist2(x̄(0), x̄(1)) + ‖c‖C3 dist3(z, x).

This theorem was originally proved in [Lo1]: see [KmM3, Appendix] for a
different proof. Also, see [LoV] and [FiRV1] for an improved version of this result.

Loeper’s quantitative maximum principle (LQMP) shows that the gap be-
tween the double mountain like function max[m0,m1] and the sliding mountain
like function mt, is quadratic in the distance near the point x along where they
coincide. To have this estimate turns out to be very useful for showing regularity
(continuity) of optimal maps as we see below.

3.3.1. Application of Loeper’s quantitative maximum principle (LQMP). Loeper’s
quantitative maximum principle is a powerful tool for proving regularity of optimal
maps on positively curved domains with MTW+. In particular, one can show
Hölder continuity of optimal maps on Sn [Lo1,Lo2], CPn [KmM3], and pertur-
bations of Sn [LoV,FiR,FiRV1] for source and target measures bounded from
above and below, i.e. log ρ, log ρ̄ ∈ L∞.

We show the following, originally due to Loeper, as an example.

Theorem 3.4 ( [Lo1,Lo2] (see also [KmM2])). Let Ω = Ω̄ = Sn, the round
sphere. Assume that the source and target measures satisfy 0 < λ ≤ ρ, ρ̄ ≤ Λ where
λ,Λ are constants. Let T be the optimal map T#ρ = ρ̄. Then, T ∈ C0(Ω) (in fact
T ∈ Cα(Ω) for some 0 < α < 1, depending on the dimension n).

We note here that a sharp Hölder exponent α = n+1
2n2+n−1 is obtained by Liu

[Li]. Also, if further ρ, ρ̄ ∈ C∞, then by applying [MTW], T ∈ C∞ as in [Lo2].
The continuity method of [MTW] also applies to get smooth optimal maps on
perturbations of the round sphere [DG1].
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Proof of Theorem 3.4. In this proof, we ignore the technical problem that
the cost fucntion dist2 is not smooth for antipodal pairs in Sn: these points where
dist2 fails to be smooth is called cut-locus: we discuss this issue in Section 7.

Recall that the round sphere satisfies MTW+, thus both LMP and LQMP.
The following argument can be called “Sausage-Meat Ball Argument".

Let φ be the c-potential function for the optimal map T , i.e. graphT ⊂ ∂cφ.
Suppose by contradiction that T 6∈ C0. Then there exists a point x such that the
c-subdifferential ∂cφ(x) has two distinct points x̄0, x̄1 (x̄0 6= x̄1). Let x̄(t) be a
c-segment between x̄0 = x̄(0) and x̄1 = x̄(1) with respect to x. Define for each
δ > 0, a tubular neighborhood

Nδ = {z̄ | dist(z, x̄(t)) ≤ δ, 1

3
≤ t ≤ 2

3
}.

We will use the following result which we will show later:

Claim 3.5. Recall r0 from LQMP (Theorem 3.3). There exists C1 > 0 (de-
pending only on the cost c and dist(x̄(0), x̄(1))) small enough such that for all
r < r0, if δ = C1r, then Nδ ⊂ ∂φ(Br(x)).

Choose r and δ as in this claim. Now, observe that

ρ̄(∂cφ(Br(x)) = ρ̄(T (Br(x)) = ρ(Br(x))

Use Claim 3.5 and λ ≤ ρ, ρ̄ ≤ Λ, to see that

ρ̄(∂cφ(Br(x)) ≥ ρ̄(Nδ) & δ
n−1 ∼ rn−1.

But, on the other hand, ρ(Br(x)) ∼ rn. Thus, comparing these, we have rn & rn−1.
Letting r → 0, we get a contradiction. This shows Theorem 3.4 �

Proof of Claim 3.5. Recall mt(·) = −c(·, x̄(t)) + c(x, x̄(t)). Define

mz̄(·) = −c(·, z̄) + c(x, z̄).

The following simple estimates will be useful:

mz̄(z)−mt(z) ≤‖DxDx̄c‖ dist(z, x) dist(z̄, x̄(t))(3.2)

+ higher order terms of dist2(z, x), etc.

We will show that there exists C1 > 0 that for each r ≤ r0, δ = C1r, z̄ ∈ Nδ,

mz̄(z) ≤ φ(z) ∀z ∈ ∂Br(x).(3.3)

This then will imply, by comparison principle and the definition of ∂cφ, that z̄ ∈
∂cφ(Br), completing the proof. Now it remains to show (3.3). Notice that φ(·) ≥
max[m0(·),m1(·)]. Let z ∈ Br(x), r ≤ r0. Then, by (3.2) and LQMP,

mz̄(z) ≤ mt(z) + ‖DxDx̄c‖ dist(z, x) dist(z̄, x̄(t))

≤ max[m0(z),m1(z)]−K1t(1− t)r2 dist2(x̄(0), x̄(1)) + ‖c‖C2C1r
2 + higher order in r.

By choosing C1 small enough, we see that for 1/3 ≤ t ≤ 2/3, the last line is bounded
above by max[m0(z),m1(z)], thus by φ(z). We showed (3.3). �
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4. Hölder continuity of optimal transport maps under MTW without
LQMP.

Under only MTW (without MTW+), the Loeper’s quantitative maximum
principle (LQMP) is not available anymore, making the analysis of optimal maps
more difficult. Nevertheless, we can show (interior) regularity of optimal maps in
this case [FiKM1]. Notice that the special case c(x, x̄) = −x · x̄ (equivalently
c(x, x̄) = 1

2 |x − x̄|2) in Rn, is addressed in the pioneering work of Delanoë [D],
Urbas [U] and Caffarelli [Ca1,Ca2,Ca3,Ca4,Ca5] on the regularity of Monge-
Ampère equation. Especially, in this case, Caffarelli has obtained Hölder continuity
of optimal maps with measurable data, namely, assuming only L∞ (upper and
lower) bounds (2.1) on the source and target densities ρ, ρ̄. One can view the
results below (Theorem 4.3) as an extension of Caffarelli’s methods and results to
more general cost functions. One of the novelties here is that one now can handle
domains in Riemannian manifolds: e.g. products of round spheres [FiKM2]. We
remark that Liu, Trudinger and Wang have obtained higher regularity results with
more regular data, using continuity methods [TW1,LTW] (see also [LiT]). Such
continuity method is not available for merely measurable data, and we need more
geometric arguments for the analysis.

4.1. (Interior) Hölder continuity of optimal transport maps. Through-
out this section we consider domains Ω′, Ω̄ in an n-dimensional Riemannian man-
ifold M with (Ω′ × Ω̄) ∩ Cut = ∅ so that the cost function c(x, y) = dist2(x, y)/2
is smooth on Ω′ × Ω̄. Here, the domain Ω′ is an open set containing the source
domain Ω of the optimal transportation.

Definition 4.1 ((strong) c-convexity of Ω̄ with respect to Ω′ [MTW]). We
say that Ω̄ is (strongly) c-convex with respect to Ω′, if for all x ∈ Ω′, the inverse
image exp−1

x Ω̄ is (strongly) convex as a subset in the tangent space TxΩ: use the
Riemannian metric in TxΩ to measure how strong the set is convex. Recall that a
set in Rn is strongly convex if the set is an intersection of balls of uniformly upper
bounded radius. The smaller this bound, the stronger the convexity.

Similary, we define (strong) c-convexity of Ω′ with respect to Ω̄.

Remark 4.2. The c-convexity on the domain Ω̄ is a necessary condition for
regularity theory of optimal maps. For instance, for the case c(x, x̄) = −x · x̄,
Caffarelli showed a counterexample [Ca3] to regularity (in fact, continuity) where
the target domain is not convex (thus not c-convex). Ma, Trudinger and Wang
[MTW][Section 7.3] showed similar example for more general cost functions.

We now state the main theorem of this section:

Theorem 4.3. ( [FiKM1, Theorem 2.1]) Assume that
• Ω′, Ω̄ are strongly c-convex with respect to each other;
• log ρ̄ ∈ L∞(Ω̄), log ρ ∈ L∞(Ω), Ω ⊂ Ω′ is an open set. The set Ω is not
necessarily c-convex;

• T is an optimal map with T#ρ = ρ̄;
• the cost c = dist2 /2 satisfies MTW.

Then,
(1) T ∈ Cαloc(Ω).
(2) the restriction T

∣∣
Ω
of T to Ω, is one-to-one.
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Remark 4.4. • In two dimensions, Figalli and Loeper [FiL] obtained conti-
nuity of optimal maps without assuming that the source measure ρ is bounded
from below. Their method goes back to the classical work of Alexandrov [A].

• The Hölder exponent α depends only on the dimension n and the upper and
lower bounds of ρ and ρ̄, in particular not on the specific cost c: see [FiKM1,
Section 9].

• When ρ, ρ̄ ∈ C∞, one can apply the above injectivity (Theorem 4.3 (2)) to the
result of [LTW] (see also [LiT]) to get T ∈ C∞(Ω).

4.2. Tools for regularity of optimal transport maps. In this subsection,
we explain a few tools for the regularity of optimal maps as in Theorem 4.3, which
are available without the MTW assumption.

4.2.1. (weak) c-Monge-Ampère equation. Let T#ρ = ρ̄ be the optimal map
push-forwarding ρ onto ρ̄ with the corresponding c-potential φ. Assume that ρ, ρ̄
are bounded away from zero and infinity, namely, log ρ ∈ L∞(Ω) and log ρ̄ ∈ L∞(Ω̄).
Then, it is well-known that φ satisfies the following weak form of the c-Monge-
Ampère equation: see for example, [FiKM1, Lemma 3.1 (e)]. Namely, there exists
a constant λ > 0 such that

(MAλ) · · · · · ·λ|B| ≤ |∂cφ(B)| ≤ 1

λ
|B| ∀ Borel susbset B ⊂ Ω

Here, ∂cφ(B) = ∪x∈B∂cφ(x) and |B| =
∫
B
d vol.

The above condition MAλ can be denoted simply as |∂cφ| ∼ 1Ω, since it says
the c-Monge-Ampère measure |∂cφ|, defined as |∂cφ|(B) = |∂cφ(B)|, is equivalent
to the uniform measure on Ω.

Example 4.5. Let φ be the c-cone on Rn (with c(x, y) = |x− y|2/2),

φ(x) = sup
y∈B1(0)

−|x− y|2 + |y|2

Then, one can see that |∂cφ| ∼ δ0, the Dirac-delta measure at 0, because ∂cφ(B) =
B1(0) for any B containing 0. Thus φ does not satisfy the above c-Monge-Ampère
equation MAλ.

4.2.2. Interior-not-to-boundary result for optimal maps. Another important tool
is a lemma that assures that the optimal transport map does not mix the interior
points with the boundary, at least if the domains satisfy appropriate convexity
conditions. More precisely,

Theorem 4.6 (Interior-not-to-boundary). (See [FiKM1, Theorem 5.1]) As-
sume that
• (Ω′ × Ω̄) ∩ Cut = ∅.
• Ω′, Ω̄ strongly c-convex with respect to each other;
• Ω ⊂ Ω′;
• ∂cφ(Ω) ⊂ Ω̄;
• |∂cφ| ∼ 1Ω.

Then,
(1) ∂cφ(intΩ) ∩ ∂Ω̄ = ∅;
(2) ∂cφ(∂Ω′) ∩ int Ω̄ = ∅

Remark 4.7. • Notice that the MTW condition is not assumed in this
theorem.
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• This theorem was a necessary ingredient in the paper of Figall and Loeper [FiL]
where they showed the same result in the two dimensions without the lower
bound of the source measure ρ.

For the proof of the above theorem, we recall the c-monotonicity of ∂cφ. When
c(x, y) = −x · y on Rn where ∂cφ = ∂φ (the subdifferential) and c-convex functions
are nothing but convex functions, it reads as

(x, x̄), (z, z̄) ∈ ∂φ =⇒ 〈z − x, z̄ − x̄〉 ≥ 0.

For more general case, it reads as

(x, x̄), (z, z̄) ∈ ∂cφ =⇒ −c(z, z̄) + c(x, z̄) + c(z, x̄)− c(x, x̄) ≥ 0.

The c-monotonicity roughly says that infinitesimally, the (multi-valued) map ∂cφ
is irrotational.

Idea of proof of Theorem 4.6. We will only show the assertion (1). This
is enough for showing the idea. For simplicity, we present only the case when
M = R2 and c(x, y) = −x · y. Then, the function φ is convex (thus ∂cφ = ∂φ) and
Ω̄ is a strongly convex set.

Suppose by contradiction that there is a pair (x, x̄) with x ∈ intΩ and x̄ ∈
∂φ(x)∩∂Ω̄. Find a vector v such that the normal plane Nv(x̄) = {z | 〈z− x̄, v〉 = 0}
at x̄ has the unique intersection x̄ with Ω̄. Moreover, by the strong convexity of Ω̄,
the boundary ∂Ω̄ looks like the graph of a quadradic function over Nv(x̄): we can
give coordinates (x̄1, x̄2) ∈ Nv(x̄)×R, such that Ω̄ is above the graph of the function
x̄2 = C|x̄1|2, and that v = (0,−1). Now, consider for θ, ε > 0 small enough, the
conical set Eθ,ε ⊂ Ω defined as

Eθ,ε = {z | 〈z − x, v〉 ≥ cos θ|z − x||v| & |z − x| ≤ ε}

Note that |Eθ,ε| ∼ θε2. Define

Ēθ =
{
z̄ | 〈z̄ − x̄, v〉 ≥ cos

(π
2

+ θ
)}
∩ Ω̄

}
.

One can compute using the quadratic function x̄2 = C|x̄1|2 as above, that |Ēθ| . θ3.
But, by monotonicity, ∂φ(Eθ,ε) ⊂ Ēθ. Thus, the desired contradiction follows

by comparing volumes:

θε2 ∼ |Eθ,ε| ∼ |∂φ(Eθ,ε)| (by |∂cφ| ∼ 1Ω)

≤ |Ēθ| . θ3.

Let θ → 0 while fixing ε, then we get a contradiction. This finishes the proof. �

4.3. Why is MTW good for regularity of optimal transport maps?
Appeared convexity! To see how the MTW condition affects the geometry of
c-convex functions, we consider the following transformation of the coordinates and
the functions.

We first assume that all relevant points are outside the cut-locus so that the
cost function is smooth, and moreover the exponential map is invertible on such
points.

Fix x̄0 ∈M . Give correspondence between q ∈ Tx̄0
M and x ∈M as

x(q) = expx̄0
q, q(x) = exp−1

x̄0
x.
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Now modify the cost function and a c-convex function φ in the q variable as

c̃(q, x̄) := c(x(q), x̄)− c(x(q), x̄0),

φ̃(q) := φ(x(q)) + c(x(q), x̄0)

Notice that φ̃ is c̃-convex and if B = expx̄0
B̃ then ∂cφ(B) = ∂ c̃φ̃(B̃), namely the

image of c-subdifferential is not changed under this transformation of c and φ.
This transformation is very useful under the MTW condition because of the

following result [FiKM1,Li]:

Theorem 4.8 (appeared convexity). Assume Ω, Ω̄ be c-convex with respect to
each other. Let φ be c-convex in the variable x ∈ Ω.
(1) If MTW holds for c, then φ̃ is level set convex in the variable q ∈ exp−1

x̄0
Ω.

(2) If NNCC holds for c, then φ̃ is convex in the variable q ∈ exp−1
x̄0

Ω.
Here, level-set convexity means that each sub-level set {φ̃ ≤ k}, k ∈ R, is a convex
set.

Remark 4.9. Notice that the above statement (1) is a direct consequence of
Loeper’s maximum principle LMP 2.3.

Example 4.10. , Recall that in Rn with the quadratic cost (̧x, x̄) = |x− x̄|2/2
, the cross curvature in 2.10 vanishes identically, thus NNCC holds. In this special
case, the exponential map x(q) = expx̄0

q = q + x̄0, thus, the above transform
becomes

c̃(q, x̄) =
1

2
|q + x̄0 − x̄|2 −

1

2
|q|2

= −q · (x̄− x̄0) +
1

2
|x̄− x̄0|2,

which is linear (thus convex) in q. Note that in this case c-convex functions are not
convex; for example, consider the c-convex function φ(x) = max[− 1

2 |x−x̄1|2,− 1
2 |x−

x̄2|2] for two fixed x̄0 6= x̄1 ∈ Rn. However, the transformed function φ̃(q) =
φ(x(q)) + 1

2 |x(q), x̄0|2 is convex, for example,

max[−1

2
|x− x̄1|2,−

1

2
|x− x̄2|2] +

1

2
|x(q)− x̄0|2

= max
[
− q · (x̄1 − x̄0)− 1

2
|x̄1 − x̄0|2, q · (x̄2 − x̄0)− 1

2
|x̄1 − x̄0|2

]
.

5. Alexandrov type estimates

The appeared convexity (see Theorem 4.8) tells us that under the MTW con-
dition c-convex functions can be transformed to level-set convex functions in ap-
propriate exponential coordinates. For this observation to be useful in applications,
we extend the Alexandrov estimates well-known for convex functions, to level-set
convex c-convex functions.

First consider a basic tool in convex analysis, the so-called Fritz John’s ellipsoid
lemma:

Theorem 5.1 (John’s ellipsoid lemma [J]). Let Z ⊂ Rn be an open bounded
convex set. Then, there exists an ellipsoid E, such that

E ⊂ Z ⊂ nE(5.1)



16 YOUNG-HEON KIM

where nE is the dilation of E with respect to its centre. Equivalently, there exists
an invertible affine map L : Rn → Rn such that

B1(0) ⊂ L−1(Z) ⊂ Bn(0),

for the balls B1(0), Bn(0) centred at the origin with radius 1 and n, respectively.

The following theorem in [FiKM1] extends the classical Alexandrov estimates
for convex functions to the c-convex functions under the MTW condition.

Theorem 5.2 (Alexandrov upper and lower bound [FiKM1]). Use the nota-
tion in the previous section and Theorem 4.8. Assume that
• the functioin −c̃ is level set convex (which holds under MTW);
• φ̃ is c̃-convex (thus it is also level-set convex since −c̃ is level set convex);
• 1

λ ≥ |∂
c̃φ̃| ≥ λ > 0;

• the set Z := {z ∈ exp−1
x̄0

Ω | φ̃ < 0} ⊂⊂ exp−1
x̄0

Ω.
Then, we have the following:
(1) (Alexandrov lower bound) There exists a constant C(n, λ) > 0 such that

|Z|2 ≤ C(n, λ)
(

sup
Z
|φ̃|
)n
.(5.2)

(2) (Alexandrov upper bound) If diamZ � 1 and Z is sufficiently far from ∂ exp−1
x̄0

Ω,
then

|φ̃(qt)|n . (1− t)
1

2n−1 |Z|2(5.3)

where qt ∈ t∂Z, for 0 < t < 1. Here, t∂Z is the dilation of ∂Z by the factor t
with respect to the centre of the ellipsoid for the convex set Z as in the John’s
lemma (Theorem 5.1).

An important idea behind Alexadrov type estimates is that convex functions
behaves like quadratic functions, and for quadratic functions such estimates are
straightforward:

Example 5.3. For x = (x1, x2) ∈ R2, let φ̃(x) = a1x
2+a2x

2
2−b for 0 < a, b ∈ R.

Assume |detD2φ̃| ∼ 1, i.e. a1a2 ∼ 1.
Now, for Z = {x | φ̃(x) ≤ 0},

|Z|2 ∼ b2

a1a2
∼ b2 (since |detD2φ̃| ∼ 1)

= sup
Z
|φ̃|2.

This gives the Alexandrov lower bound.
On the other hand we see for qt ∈ t∂Z,

|φ̃(qt)|2 = |t2b− b|2 = (1− t)2(1 + t)2|b|2 ∼ (1− t)2|Z|2

which gives the Alexandrov upper bound.

The point is that the estimates (5.2) (5.3) hold regardless the shape of the
convex set Z, i.e. it can be very thin. This latter case is unavoidable, since if φ̃ is
merely C1,α (which is the optimal regularity for potentials of optimal maps with
merely measurable source and target densities), there is no control on how thin the
section can be. Of course, for C2 (uniformly) convex functions, there is a uniform
control on the shape of the sections.
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5.1. Alexandrov lower bound. Let us first discuss the proof of the Alexan-
drov lower bound (5.2). Instead of giving the full proof of (5.2), we show the
well-known special case c̃(x, y) = −x · y and for convex φ̃ so that ∂ c̃φ̃ = ∂φ̃. We
will then discuss the more general case.

5.1.1. Proof of the Alexandrov lower bound (5.2) for the case c̃(x, y) = −x · y
and φ̃ is convex. This is a standard proof and one can find it elsewhere (for example,
in the book of Gutierrez [Gt]). We give the proof here for user’s convenience and
also for discussion of the more general case.

We first renormalize the set Z. Find an affine map L : Rn → Rn such that the
set Z∗ := L−1Z is comparable to B1(0) i.e. B1(0) ⊂ Z∗ ⊂ Bn(0) and |Z| ∼ |detL|.
Let

φ̃∗(z∗) :=
1

(detL)2/n
φ̃(Lz∗).

Then, for all Borel set B,∣∣∂φ̃∗(L−1(B)
∣∣ =

1

|detL|
|∂φ(B)|.

We also see that

|∂φ̃| ∼ 1⇐⇒ |∂φ̃∗| ∼ 1.

Pick any p ∈ ∂φ̃∗( 1
2Z
∗), where the set 1

2Z
∗ is the dilation of the set Z∗ by

factor 1
2 with respect to the origin 0. Then, we see by convexity of φ̃∗ and the fact

that Z∗ is in shape comparable to the unit ball,

|p| . h∗

where h∗ := supZ∗ |φ̃∗|. This shows that

∂φ̃∗(
1

2
Z∗) ⊂ BCh∗(0) for some constant C > 0,

and thus,

|∂φ̃∗(1

2
Z∗)| . |h∗|n.

Now the lefthand side is the same as
1

|detL|
∣∣∂φ̃(

1

2
Z)
∣∣

&
1

|detL|
|Z| (since |∂φ̃| & λ > 0)

∼ 1

|Z|
|Z| = 1. (since |Z| ∼ |detL|).

On the other hand, the righthand side is

1

(detL)2
(sup
Z
|φ̃|)n ∼ (supZ |φ̃|)n

|Z|2

Comparing these, we see

|Z|2 ≤ (sup
Z
|φ̃|)n

as desired.
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5.1.2. Discussion for more general case. Let us discuss the more general case.
Under NNCC condition, the corresponding inequality reduces to the case

c̃(x, y) = −x · y, mainly because of the two reasons below:
• φ̃ is convex (due to Theorem 4.8 (2)) ;
• |∂cφ̃| . |∂φ̃|.

The second assertion holds since (ignoring differentiability),

|det Jac∂ c̃φ̃| = |det(DxDx̄c̃)|−1 det(D2
xxφ̃+D2

xxc̃)

. |detD2
xxφ| = |det Jac∂φ|

where the inequality holds because det(DxDx̄c̃) is bounded and NNCC condition
implies D2

xxc̃ ≤ 0 thus D2
xxφ̃+D2

xxc̃ ≤ D2
xxφ̃ as matrices.

On the other hand, the MTW case is much more difficult, because both of
above key properties under NNCC do not hold anymore.

One may argue that a renormalization method as in the proof for the classical
affine cost case c̃(x, y) = −x · y, would work, especially letting the relevant set
smaller and smaller so to make the cost function more close to the affine cost (when x
and y are close any smooth cost looks like an affine cost asymptotically). But, there
is a serious difficulty in this argument. Namely, for more general cost function c̃, the
term Dx̄D

2
xxc̃ (which measures how much the local behaviour of the cost function

differs from that of the affine cost) may blow-up under the renormalization, if the
set Z before normalization is very thin.

Thus, it does not seem reasonable to use the renormalization method to treat
general MTW case. But, by the appeared convexity (Theorem 4.8 (1)) we can
still use John’s ellipsoid lemma (Theorem 5.1) to treat a convex body geometrically
as an ellipsoid. The actual proof is not so simple, and we refer the reader to the
paper [FiKM1].

5.2. Alexandrov upper bound. We now discuss the proof of the Alexan-
drov upper bound (5.3). As an auxiliary result, the following lemma is proved
in [FiKM1, Lemma 6.10], whose proof manipulates the fact that the cost c̃ is close
to the linear cost in small scale.

Lemma 5.4 (see [FiKM1]). Use the same assumption and notation as in Theo-
rem 5.2. Let Π+,Π− be two parallel hyperplanes contained in Tx̄0M\Z and touching
∂Z from two opposite sides. If diamZ � 1 and Z is sufficiently far from ∂ exp−1

x̄0
Ω,

then

|φ̃(q̃)|n . min{dist(q̃,Π+),dist(q̃,Π−)}
`Π+

|∂ c̃φ̃|(Z)L n(Z),

where `Π+ denotes the maximal length among all the segments obtained by inter-
secting Z with a line orthogonal to Π+.

This lemma is enough to show the injectivity and continuity of T [FiKM1,
Seciton 7 & 8]. But, for this to be applicable to the Hölder continuity of T
[FiKM1][Seciton 9] (this section uses the method of Gutierrez and Huang [GH]
and Forzani and Maldonado [FoM]), it is important to know that for any Z as in
the Lemma 5.4, one can choose parallel hyperplanes Π+,Π− in such way that the
ratio min{dist(q̃,Π+),dist(q̃,Π−)}

`Π+
→ 0 gets close to zero as q is close to the boundary

∂Z, in a ‘uniform’ way independent of the particular shape of Z. In other words,
we need an estimate which quantifies the dimensional dependence of the claim
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that corresponding to any (interior) point near the boundary of a convex set, is a
supporting hyperplane much closer than the thickness of the set in the orthogonal
direction. Such estimate is obtained in the following new result in convex geometry,
whose proof is elementary but quite nontrivial:

Theorem 5.5 (Convex bodies and supporting hyperplanes [FiKM4]). Let
Q̃ ⊂ Rn be a convex body (with nonempty interior) such that (5.1) holds for some
ellipsoid E centered at the origin. Fix 0 ≤ s ≤ 1

2n . To each y ∈ (1 − s)∂Q̃ corre-
sponds at least one line ` through the origin and hyperplane Π supporting Q̃ such
that: Π is orthogonal to ` and

(5.4) dist(y,Π) ≤ c(n)s1/2n−1

diam(` ∩ Q̃).

Here, c(n) is a constant depending only on n.

We refer the reader to the paper [FiKM4] for more discussions about this
estimate and its proof.

Lemma 5.4 and Theorem 5.5 implies (5.3).

6. How to prove injectivity of optimal transport maps under MTW

To illustrate how the previous results are used, we explain as an example, how
to show injectivity of the optimal map T under theMTW condition and conditions
on the source and the target domains. (A similar method can be used to show the
continuity of T .) Here, we use the same assumptions as given in Theorem 4.3.

Definition 6.1 (Contact set). For each x̄ ∈ Ω̄ = intΩ̄, the contact set S(x̄)
for x̄ is the set

S(x̄) = {x ∈ Ω | ∂cφ(x) = x̄}.

The injectivity of T is equivalent to that S(x̄) is singleton for all x̄ ∈ Ω̄.
Let us briefly explain the idea how to show S(x̄) is singleton under some techni-

cal conditions. For simplicity of exposition, let us consider the case c(x, x̄) = −x · x̄,
which is due to Cafferelli: [Ca1,Ca3,Ca5]. The more general case as in Theorem 4.3
is a bit more complicated: see [FiKM1]. We emphasize here that the reason why
we can carry out Caffarelli’s idea is because we now have
• MTW, in particular, Appeared convexity (Theorem 4.8 ),
• Interior-not-to-boundary (Theorem 4.6 ),
• Alexandrov type estimates (Theorem 5.2 ).
Now, let us explain Caffarelli’s localization argument in [Ca1]: the expository

article [Ca5] is very useful. We include it here to demonstrate how the previous
results in Sections 4 and 5 are used. In the case c(x, x̄) = −x · x̄, the c-potential
function φ is convex on Rn, the c-convex domains Ω, Ω̄ are convex in Rn, and the
strong c-convexity of Ω̄ implies strong convexity. We assume the Monge-Ampère
equation |∂φ| ∼ 1. (Of course, for more general cost functions, this is replaced by
|∂cφ| ∼ 1.)

Now, let us show the injectivity of T , i.e. #S(x̄0) = 1 for each x̄ ∈ Ω̄. Suppose
#S(x̄0) > 1 for some x̄0 ∈ Ω̄. The goal is to contradict this.
Step 1: By Theorem 4.6 (Interior-not-to-boundary), we see

S(x̄0) ⊂ intΩ, since ∂cφ(∂Ω) ∩ intΩ̄ = ∅.
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Remark 6.2. In fact, for c(x, x̄) = −x · x̄, this inteor-not-to-boundary result is
not necessary, since in this case one can extend the convex function φ to the whole
Rn. Here, the case to exclude is when the contact set contains an infinite line. If this
occurs, then as pointed out in [Ca3] the convex function has zero Monge-Ampère
measure, i.e. |∂φ(B)| = 0 for any Borel set B, thus this case is excluded by our
assumption |∂φ| ∼ 1.

Step 2: Now, by appeared convexity (Theorem 4.8), if we let S = exp−1
x̄0

(S(x̄0)) ⊂
Tx̄0

Ω̄, then

S is convex and bounded.

Of course, in the current special case, this convexity immediately follows from the
convexity of φ.
Step 3: We now find an exposed point, say xe of S. Exposed point is by definition,
such a point where a hyperplane touches the convex set only at that point.
Step 4: For a family x̄θ ∈ Ω̄, 0 ≤ θ ≤ 1, (thus x̄θ = x̄0 for θ = 0) and a point x0,
define.

mθ(·) := −c(·, x̄θ) + c(x0, x̄θ)

Let φθ := φ − mθ and let Zθ := {z | φθ < 0}. Since xe is an exposed point of
S = {z |∂cφ(z) = x̄0}, we can choose the point x0 ∈ S, nearby xe, and the family
x̄θ ∈ Ω̄, so that

Zθ → S and dist(xe, ∂Zθ)→ 0, as θ → 0

Step 5: One can also show that for θ � 1,

inf
Zθ
|φθ| ∼ φθ(xe).

Step 6: From the assumption |∂φ| ∼ 1, we can apply the Alexandrov estimates (see
Theorem 5.2).

|Zθ|2 .(inf
Zθ
|φθ|)n

|φθ(xe)|n . η(θ)|Zθ|2 (some function η(θ) such that limθ→0+ η(θ) = 0)

Step 7: Now apply θ → 0 in Step 6 and Step 5, and we get a contradiction 1 . 0.
This shows that #S(x̄0) = 1 for each x̄ ∈ Ω̄, thus, the injectivity of T .

7. Regularity of optimal maps on global domains

We now give a few remarks on regularity of optimal transportation on global
domains. Here, by a global domain, we mean a closed manifold M , Ω = Ω̄ = M ,
with log ρ, log ρ̄ ∈ L∞(M). Loeper gave the first such regularity result (T ∈ Cα/C∞
for log ρ, log ρ̄ ∈ L∞(M)/C∞(M)) by showing it on the round sphere Sn [Lo2]. It
was then followed by work of many researchers including the author.

First, as a necessary condition for regularity of optimal maps, Loeper’s maxi-
mum principle LMP needs to be verified. It was first shown by Loeper [Lo1] on
domains in Rn (for cost functions satisfying theMTW condition) using the regular-
ity results of Trudinger and Wang [TW1]. To treat more global manifold domains
(e.g. products of round spheres), an elementary method for deriving LMP from
MTW and appropriate geometric conditions, was introduced by McCann and the
author [KmM1] (see the work of Trudinger and Wang [TW2] for other approach,
obtained independently from [KmM1]), which later was strengthened by Loeper,
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Figalli, Rifford and Villani [LoV,FiR,FiRV1,V2]. Up to now, the examples of
domains with LMP includes Riemannian distance squared costs on the products
Sn1(r1)×· · ·×Snj (rj)×CPl1×· · ·×CPlk×Rm of Euclidean spaces, round spheres,
complex projective spaces, and their appropriate quotient spaces (this product ex-
ample trivially includes flat tori) [KmM3], as well as perturbations of the round
sphere and its discrete quotients [LoV,FiRV1]. See e.g. [FiRV3] for more detailed
list.

As we mentioned before, for manifold domains, a problem arises due to nons-
moothness of the cost function dist2 along the cut-locus. So, a key step is to show
that the optimal map T stays away from the cut locus, so that one can assume that
the cost function is smooth. Namely,

Question 7.1 (Stay Away from Cut-locus). Fix a Riemannian manifold M .
Suppose log ρ, log ρ̄ ∈ L∞(M). Is

T (x) ∩ cut(x) = ∅ for each x ∈M and its cut-locus cut(x)?(7.1)

The property (7.1) is a necessary condition for higher regularity (e.g. C1,
C∞) of optimal maps. Such stay-away result was obtained affirmatively for the
case of the round sphere Sn by Delanoë and Loeper [DL], its perturbation by
Delanoë and Ge [DG1] (but with further restriction on ρ, ρ̄ depending on the per-
turbation), and the product of round spheres Sn1(r1)× · · · × Snk(rk) (of arbitrary
dimensions and size) by Figalli, McCann and the author [FiKM2]. The latter re-
sult [FiKM2] gives the first regularity result for optimal transport (T ∈ Cα/C∞
for log ρ, log ρ̄ ∈ L∞(M)/C∞(M)) on global domains that are not positively curved
and not totally flat. This case differs significantly from the known regularity results
on positivley curved domains, e.g. CPn [KmM3], RPn and its perturbation [LoV],
perturbations of the round sphere and their discrete quotients [DG1] [FiR,FiRV1],
where Loeper’s quantified maximum principle LQMP (or a strong a priopri esti-
mates of Ma, Trudinger and Wang [MTW]) can be applied. Note that on the
flat tori, Cordero-Erausquiun [Co] showed regularity of the optimal map T by lift-
ing the situation to the universal covering space Rn, where Caffarelli’s regularity
theory [Ca1,Ca2,Ca3,Ca4,Ca5] applies.

This stay-away-from-cut-locus problem is not well understood. For example,
we do not yet have such result (for ρ, ρ̄ independent on the perturbation) for the
perturbation of the round sphere. Note that even without such stay-away-from-
singularity it is still possible to show that T is continuous on the perturbation of
the sphere as in [FiR] [FiRV3]. However, the stay-away result will, if it holds,
show Hölder continuity and higher regularity.2

8. Additional remarks on the literature

We close these lectures with a few remarks on the literature about some direc-
tions involving the Ma-Trudinger-Wang curvature which are not mentioned in the
above discussion.

2Notice that Delanoë and Ge [DG1] showed smoothness of optimal maps on perturbations
of the round sphere, however, their perturbation of the domain is restricted by the source and
target measures ρ, ρ̄, or in other words, ρ and ρ̄ has to be chosen appropriately depending on the
perturbation. Higher regularity of optimal maps on a fixed small perturbation of the sphere, but
with arbitrary smooth ρ, ρ̄, is still an open problem.



22 YOUNG-HEON KIM

8.1. Parabolic optimal transport. The parabolic problem of optimal trans-
portation theory is considered by Street, Warren and the author [KmSW] under
MTW+ condition on manifold domains (e.g Sn,CPn) and Kitagawa [Kt] under
MTW condition on domains in Rn with appropriate geometric assumptions. They
considered the parabolic Monge-Ampère type equation
∂u

∂t
= ln det(D2

xxu+D2
xxc(x, T (x)))− ln ρ(x) + ln ρ̄(T (x))− ln det |D2

xx̄c(x, T (x))|,

and have obtained long-time existence results and convergence (exponential conver-
gence under MTW+ [KmSW]) to the solution to optimal transportation problem.
This parabolic approach, in particular, gives a natural algorithm for finding optimal
maps.

8.2. Multivalued optimal maps. In general, optimal transportation be-
tween two measures gives not a single-valued map but a multivalued map. The
analysis of such multivalued maps is not well understood, though there are results
by Gangbo and McCann [GaM] and McCann and Sosio [McS] who considered the
multivalued (bivalent) optimal maps for the cost given by the Euclidian distance
sqaured restricted to the round sphere Sn−1 ⊂ Rn. McCann and Sosio used tech-
niques involving Loeper’s quantitative maximum principle LQMP (see Section 3.3)
to study Hölder continuity of such bivalent maps. Note that however, even in this
case, if the source and target measure ρ, ρ̄ are sufficiently close to constant densities,
Kitagawa and Warren [KtWr] showed that the optimal transportation is given by
a single-valued map and smooth.

8.3. Regularity/partial regularity without MTW or convexity as-
sumptions on the domain. As we have discussed in these lecture notes, we
now have counterexamples to continuity of optimal maps when either MTW [Lo1]
(see Theorem 2.6) or appropriate convexity assumptions [Ca3,MTW] are not sat-
isfied. Notice that the known necessary (sometimes sufficient) conditions do not
involve other key players in the transportation problem, namely the source and tar-
get distributions ρ and ρ̄. In particular, there still is a possibility to have regularity
of the optimal map T without MTW condition by imposing further restrictions on
ρ, ρ̄. For example, it is obvious that if ρ = ρ̄ or if ρ̄ is a Dirac-delta measure, then,
T is the identity map or a trivial map, respectively, thus C∞ on the support of ρ.
In this spirit, Warren [Wr] obtained regularity of optimal maps between narrow
enough Gaussian measures, regardless of MTW condition. It is an important wide
open question to find a necessary and sufficient condition for regularity of optimal
transport, which contains all the relevant data ρ,ρ̄, the cost function c, and the
geometry of source and target domains. A guess is that one may try to find some
curvature condition for the pseudometric in [KmMW].

A related outstanding open problem is to get partial regularity of optimal
maps without MTW or appropriate convexity assumptions on the domains. It
is well-known that the singular set (the set of discontinuity) of the optimal map
(for cost = dist2 /2) has Hausdorff dimension less than or equal to n − 1 in n-
dimensional domain. So, the point is to get a sharper description of the singular
set. No such result has been known regarding the violation of MTW condition,
however, for the Euclidean distance squared (cross ≡ 0, thus MTW), a partial
regularity is known by Figalli and the author [FiK] when the convexity assumption
on the domains is violated, extending the two dimensional results of Yu [Y] and
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Figalli [Fi1]. In [FiK], the singular set is shown to be contained in a measure zero
closed set, thus for example, excluding the case it to be dense. However, this result
lacks of the more precise description on the structure of the singular set as given
in two dimensions in [Y,Fi1].
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