Invariant ordering of surface groups and 3-manifolds which fibre over S^1

BY BERNARD PERRON

Laboratoire de Topologie, Université de Bourgogne, BP 47870 21078 - Dijon Cedex, France. e-mail: perron@topolog.u-bourgogne.fr

and DALE ROLFSEN

Pacific Institute for the Mathematical Sciences and Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2. e-mail: rolfsen@math.ubc.ca

(Received)

Abstract

It is shown that, if Σ is a closed orientable surface and $\varphi : \Sigma \to \Sigma$ a homeomorphism, then one can find an ordering of $\pi_1(\Sigma)$ which is invariant under left- and rightmultiplication, as well as under $\varphi_*: \pi_1(\Sigma) \to \pi_1(\Sigma)$, provided all the eigenvalues of the map induced by φ on the integral first homology groups of Σ are real and positive. As an application, if M^3 is a closed orientable 3-manifold which fibres over the circle, then its fundamental group is bi-orderable if the associated homology monodromy has all eigenvalues real and positive. This holds, in particular, if the monodromy is in the Torelli subgroup of the mapping class group of Σ .

1. Introduction

It is well-known that the fundamental group $\pi_1(\Sigma)$ of a closed orientable surface is *bi-orderable*, that is, the elements of the group may be given a total linear ordering which is invariant under multiplication on both sides. If $\varphi: \Sigma \to \Sigma$ is an automorphism of the surface, we show that $\pi_1(\Sigma)$ can be given a bi-ordering which is invariant under $\varphi_*: \pi_1(\Sigma) \to \pi_1(\Sigma)$ provided all the eigenvalues of the homology map induced by φ are real and positive. This generalizes a similar result of [**PR**] for free groups to the somewhat more complicated case of surface groups, or more generally to certain one-relator groups. The proof depends crucially on a theorem of Labute [**Lab**].

We apply this result to 3-manifolds M^3 which fibre over the circle as follows. Suppose $M^3 \to S^1$ is a fibration, with fibre a closed oriented surface Σ , and monodromy $\varphi: \Sigma \to \Sigma$. M^3 may be regarded as the mapping torus E_{φ} of φ . From the homotopy exact sequence of the fibration,

$$1 \longrightarrow \pi_1(\Sigma) \longrightarrow \pi_1(M^3) \longrightarrow \pi_1(S^1) \longrightarrow 1$$

Bernard Perron and Dale Rolfsen

and the orderability of $\pi_1(\Sigma)$ and $\pi_1(S^1) = \mathbb{Z}$, one can conclude (for any φ) that $\pi_1(M^3)$ is left-orderable (i.e. has an ordering invariant under left-multiplication). The fundamental group of M^3 is an HNN extension of $\pi_1(\Sigma)$, in other words, it is isomorphic to the group $\pi_1(\Sigma)$, with an extra generator t, subject to the relations $t^{-1} xt = \varphi_*(x)$, for all generators x of $\pi_1(\Sigma)$. To construct a bi-ordering for $\pi_1(M^3)$, one needs a bi-ordering of $\pi_1(\Sigma)$ which is invariant under φ_* . Thus $\pi_1(M^3)$ is bi-orderable if all the eigenvalues of the homology map induced by φ are real and positive.

2. The main result

Let G be a group. Define the descending central series of G by

$$G_1 = G, \quad G_n = [G, G_{n-1}]$$

where $[G, G_{n-1}]$ is the group generated by commutators $[g, h] = ghg^{-1}h^{-1}$, $g \in G$, $h \in G_{n-1}$. We set $L_n(G) = G_n/G_{n+1}$ and $gr(G) = \bigoplus_{n=1}^{\infty} L_n(G)$.

Then $L_n(G)$ are abelian groups and gr(F) has a Lie algebra structure, by defining the Lie product $(u, v) \mapsto [u, v] = uvu^{-1}v^{-1} \in L_{n+m}$, for $u \in L_n(G)$, $v \in L_m(G)$.

Let F be a free group generated by x_1, \dots, x_h and $R \in F$. Let $e(R) = \sup\{n ; R \in F_n\}$. We will assume the following condition:

(*) e(R) > 1 and R is primitive, i.e. R is not a power modulo $F_{e(R)+1}$.

Suppose $G = F/\langle \langle R \rangle \rangle$ is the corresponding single relator group. We make the following additional hypothesis:

$$(**) \qquad \qquad \bigcap_{n=1}^{\infty} G_n = \{1\}.$$

Let G^{ab} be the abelianization of G. By (*), G^{ab} is free abelian of rank h. More precisely the canonical map $F^{ab} \longrightarrow G^{ab}$ is an isomorphism.

Now let φ be an isomorphism of G, φ_{ab} be the induced isomorphism on G^{ab} . We consider the hypothesis.

(***) φ_{ab} has all its eigenvalues real and positive (possibly with multiplicity).

THEOREM 2.1. Let G be the single relator group $F/\langle \langle R \rangle \rangle$ satisfying hypothesis (*) and (**), and suppose φ is an isomorphism of G satisfying (***). Then there is a bi-ordering of G which is invariant under φ .

This will be proved in Section 5.

COROLLARY 2.2. Assuming the hypotheses of Theorem 2.1, the HNN extension of G by \mathbb{Z} defined by φ is bi-orderable.

Proof If $1 \to A \to B \to C \to 1$ is an exact sequence of groups, with A and C bi-orderable, then B is biorderable provided conjugation of B upon A preserves a bi-ordering of A. The ordering is defined by taking $b_1 < b_2$ in B if either $b_1^{-1}b_2$ lies in A and is greater than the identity there, or else its image is greater than the identity in C.

Remark : Hypotheses (*) and (**) are verified for G the fundamental group of a *closed* orientable surface of genus g. Here h = 2g, $F = \langle x_1, \dots, x_g, y_1, \dots, y_g \rangle$ and $R = [x_1, y_1] \cdots [x_g, y_g]$.

Invariant ordering of surface groups and 3-manifolds which fibre over S^{13}

COROLLARY 2.3. Let Σ_g be a closed oriented surface of genus g, φ a homeomorphism of Σ_g such that the induced isomorphism on $H_1(\Sigma_g; \mathbb{Z})$ has all eigenvalues real and positive. Let E_{φ} be the mapping torus of Σ_g associated to φ (this is a 3-manifold fibering over S^1). Then the fundamental group of E_{φ} is bi-orderable. This is true in particular if φ belongs to the Torelli subgroup of the mapping class group of Σ_g (that is, $\varphi_* = \text{id at}$ the homological level).

COROLLARY 2.4. If M is a 3-manifold which fibres over the circle, with fibre a torus (possibly with punctures), then $\pi_1(M)$ is virtually bi-orderable. In fact, it has a bi-orderable subgroup of index at most six.

Proof The monodromy matrix A is a 2 × 2 matrix with determinant 1 (if the fibre is a punctured torus, the monodromy is the block sum of A with a number of identity matrices). By considering the characteristic polynomial $\chi_A(t) = t^2 - trace(A)t + 1$, we see that the eigenvalues of A are real if |trace(A)| > 2, and otherwise are roots of unity of order 2, 3, 4 or 6. Accordingly the matrix A^p , with p = 1, 2, 3, 4 or 6, will have real positive eigenvalues. This is the monodromy matrix of a p-fold cover of M.

Fig. 1. Curves on a genus 2 surface

Example: Let T_1, \ldots, T_5 denote the Dehn twists along the curves labelled $1, \ldots, 5$ on the genus two surface pictured in Figure 1. Define $\varphi = T_1 T_3 (T_5)^2 T_2^{-1} T_4^{-1}$. According to **[CB]**, p.79, the characteristic polynomial of φ_* is $t^4 - 9t^3 + 21t^2 - 9t + 1$. It is irreducible over \mathbb{Z} and has all it roots real and positive, so φ_* satisfies (***) and the corresponding 3-manifold E_{φ} has bi-orderable fundamental group. Moreover, φ is pseudo-Anosov and therefore E_{φ} is hyperbolic.

Remark: It was mentioned in the introduction that for any homeomorphism $\varphi : \Sigma \to \Sigma$, the fibred manifold E_{φ} has left-orderable fundamental group. We note that if φ is periodic, even at the fundamental group level, then $\pi_1(E_{\varphi})$ cannot be bi-orderable. If there were a bi-ordering on $\pi_1(E_{\varphi})$, which is the HNN extension determined by $\varphi_* : \pi_1(\Sigma) \to \pi_1(\Sigma)$, then the ordering would be invariant under conjugation and therefore φ_* -invariant. However, if $\varphi_* \neq 1$ but $\varphi_*^p = 1$ for some p > 1, we would have an element $x \in \pi_1(\Sigma) \subset \pi_1(E_{\varphi})$ such that $\varphi_*(x) \neq x$ but $\varphi_*^p(x) = x$. Suppose, without loss of generality, $x < \varphi_*(x)$ in the bi-ordering. Then $\varphi_*(x) < \varphi_*^2(x)$, and by induction and transitivity we conclude $x < \varphi_*^p(x) = x$, a contradiction.

3. Review of some basic facts on Lie algebras

Let F be a free group. By ([Fox], section 4.5), $z \in F_n$ if and only if $z - 1 \in I^n$ where I is the augmentation ideal of $\mathbb{Z}[F]$ ($I = \text{Ker } \mathbb{Z}F \xrightarrow{\varepsilon} \mathbb{Z}$). The map $\pi(z) = z - 1$ gives an injective homomorphism:

(1)
$$L_n(F) = F_n/F_{n+1} \xrightarrow{\pi} I^n/I^{n+1}.$$

In fact if $x, y \in F_n$, then

$$\pi(xy) = xy - 1 = (x - 1) + (y - 1) + (x - 1)(y - 1) \equiv (x - 1) + (y - 1) \mod I^{n+1}.$$

LEMMA 3.1. π induces an injective homomorphism of Lie algebras:

(2)
$$\pi: L(F) = \bigoplus_{n=1}^{\infty} L_n(F) \longrightarrow \mathcal{I} = \bigoplus_{n=1}^{\infty} I^n / I^{n+1}$$

where the Lie product on \mathcal{I} is defined by $[\alpha, \beta] = \alpha\beta - \beta\alpha$.

Proof For $x \in F_n$, $y \in F_m$ we have

$$\pi[x, y] = xyx^{-1}y^{-1} - 1$$

= $(xy - yx)x^{-1}y^{-1}$
= $(xy - yx) + (xy - yx)(x^{-1}y^{-1} - 1)$
 $\equiv [(x - 1)(y - 1) - (y - 1)(x - 1)] \mod I^{n+m+1}$
 $\equiv \pi(x)\pi(y) - \pi(y)\pi(x).$

Let $H^{\otimes n} = H \otimes \cdots \otimes H$ (*n* times) where $H = F_{ab}$ and let $\mathcal{H} = \bigoplus_{n=1}^{\infty} H^{\otimes n}$.

LEMMA 3.2. a. For any positive integer n, the map

(3)
$$\psi_n: I^n/I^{n+1} \longrightarrow H^{\otimes n}$$

given by $(x_{i_1} - 1) \cdots (x_{i_n} - 1) \longrightarrow a_{i_1} \otimes \cdots \otimes a_{i_n}$ is a homomorphism of abelian groups, where x_i is a generator of F and a_i is the canonical image of x_i in $H = F_{ab}$.

b. The map $\psi = \oplus \psi_n : \mathcal{I} = \oplus I^n / I^{n+1} \longrightarrow \mathcal{H} = \oplus H^{\otimes n}$ is an isomorphism of Lie algebras, where the Lie structure of \mathcal{H} is given by $[\alpha, \beta] = \alpha \otimes \beta - \beta \otimes \alpha$, for $\alpha \in H^{\otimes n}$, $\beta \in H^{\otimes m}$.

Proof The proof is routine (see [**PR**]).

4. Review of some results of Labute

Let $R \in F = \langle x_1, \dots, x_h \rangle$, $e = \sup\{n \in N ; R \in F_n\}$. We suppose e > 1 and R primitive. Let $G = F/\langle \langle R \rangle \rangle$ and \overline{R} be the class of R in $F_e/F_{e+1} \subset gr(F)$. We of course have a natural map $gr(F) \longrightarrow gr(G)$. Let $I(\overline{R})$ be the ideal generated by \overline{R} in the Lie algebra $gr(F) = \oplus F_n/F_{n+1}$.

That is, $I(\bar{R}) = \{\lambda \cdot \bar{R} + n\bar{R} ; \lambda \in gr(F), n \in \mathbb{Z}\}$ where $\lambda = \lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_p \oplus \cdots$, $\lambda_i \in L_i(F)$ and $\lambda \cdot \bar{R} = \bigoplus_i [\lambda_i, R].$ Invariant ordering of surface groups and 3-manifolds which fibre over $S^{1}5$

THEOREM 4.1 (Labute [Lab]). With the above hypothesis on R, 1. $L_n(G) = G_n/G_{n+1}$ is a free \mathbb{Z} -module of finite rank, for any positive integer n. 2. $gr(G) \cong gr(F)/I(\overline{R})$.

Remark: Condition 2. means the following: $L_n(G)$ is the quotient of $L_n(F)$ by the equivalence relation \sim_n defined as follows. Let $x, y \in F_n$, \bar{x}, \bar{y} their classes in F_n/F_{n+1} . Then $\bar{x} \sim_n \bar{y}$ if and only if $\bar{x} * \bar{y}^{-1} \in I(\bar{R})$ (* is the abelian law in F_n/F_{n+1}). That is $\bar{x} * \bar{y}^{-1} = \lambda \cdot \bar{R} + p\bar{R}$, for some $\lambda \in gr(F)$, and $p \in \mathbb{Z}$. Since $\bar{x} * \bar{y}^{-1}$ has degree n in gr(F), and \bar{R} has degree e this means:

- (i) for n < e, $L_n(G) = L_n(F)$.
- (ii) for n = e, $L_e(G) = L_e(F)/\langle \bar{R} \rangle$, where $\langle \bar{R} \rangle$ is the subgroup generated by \bar{R} .
- (iii) for n > e, $\bar{x} \sim \bar{y}$ if and only if $\bar{x}\bar{y}^{-1} = [\lambda_{n-e}, \bar{R}]$ for some $\lambda_{n-e} \in L_{n-e}(F)$.

Recall the following homomorphisms:

$$L_n(F) \xrightarrow{\pi_n} I^n / I^{n+1} \xrightarrow{\psi_n} H^{\otimes n}$$
$$L(F) \xrightarrow{\pi} \mathcal{I} = \oplus I^n / I^{n+1} \xrightarrow{\psi} \mathcal{H} = \oplus H^{\otimes n}$$

Denote by ρ_0 the image of \overline{R} in $H^{\otimes e}$ by $\psi_e \circ \pi_e$.

Denote by $J(\rho_0)$ the image in \mathcal{H} of the ideal $I(\overline{R})$ by $\psi \circ \pi$.

So $J(\rho_0) = \{\lambda \cdot \rho_0 + n\rho_0 ; \lambda \in Im(\psi \circ \pi), n \in \mathbb{Z}\}$ is an additive subgroup of \mathcal{H} , but no longer an ideal of \mathcal{H} since $\psi \circ \pi$ is not surjective. The reason for considering $J(\rho_0)$ instead of the ideal of \mathcal{H} generated by ρ_0 is that the induced map

(4)
$$L(F)/I(\bar{R}) \xrightarrow{\psi \circ \pi} \mathcal{H}/J(\rho_0)$$

continues to be injective. Of course $\mathcal{H}/J(\rho_0)$ is no longer a Lie algebra. It induces an injective homomorphism (of abelian groups)

(5)
$$L_n(G) = L_n(F) / \sim_n \hookrightarrow H^{\otimes n} / \sim_n$$

where $H^{\otimes n}/\sim_n$ has the following meaning. This is the quotient of $H^{\otimes n}$ by the relation: for $x, y \in H^{\otimes n}, x \sim_n y$ if and only if $x - y = \lambda \cdot \rho_0 + p\rho_0 = \lambda \otimes \rho_0 - \rho_0 \otimes \lambda + p\rho_0$ for $\lambda \in \operatorname{Im}(\psi \circ \pi), p \in \mathbb{Z}$.

So if n < e, $H^{\otimes n} / \sim_n = H^{\otimes n}$, If n = e, $H^{\otimes e} / \sim_e = H^{\otimes e} / \langle \rho_0 \rangle$,

If n > e, $x \sim_n y$ if and only if $x - y = \lambda \otimes \rho_0 - \rho_0 \otimes \lambda$ for some $\lambda \in \text{Im}(\psi_{n-e} \circ \pi_{n-e})$. Now let φ be an isomorphism of G and φ_{ab} the induced isomorphism of $H = G_{ab} \simeq F_{ab}$. Let $\tilde{\varphi} : F \longrightarrow F$ be any homomorphism of the free group such that the following diagram commutes:

$$\begin{array}{cccc} F & \stackrel{\varphi}{\longrightarrow} & F \\ \downarrow & & \downarrow \\ G & \stackrel{\varphi}{\longrightarrow} & G \end{array}$$

Then $\widetilde{\varphi}_{ab} = \varphi_{ab}$. Denote by $\widetilde{\varphi_n}$ the induced homomorphism

$$\widetilde{\varphi_n}: F_n/F_{n+1} \longrightarrow F_n/F_{n+1}$$

In **[PR]** we proved that the following diagram is commutative:

LEMMA 4.2. $\varphi_{ab}^{\otimes e}(\rho_0) = \pm \rho_0.$

Proof Because of the commutativity of diagram (6), $\tilde{\varphi}(R) \in \langle \langle R \rangle \rangle$, where $\langle \langle R \rangle \rangle$ denotes the normal subgroup of F generated by R.

So $\tilde{\varphi}(R) = \prod_{i=1}^{p} y_i R^{\varepsilon_i} y_i^{-1} = \prod_{i=1}^{p} [y_i, R^{\varepsilon_i}] R^{\varepsilon_i} \equiv \prod_{i=1}^{p} R^{\varepsilon_i} = R^{(\Sigma \varepsilon_i)} \mod F_{e+1}$. By commutativity of diagram (7) : $\varphi_{ab}^{\otimes e}$ (ρ_0) = $\rho_0^{\Sigma \varepsilon_i}$. Since $\varphi_{ab}^{\otimes e}$ is an isomorphism of free abelian groups then $\Sigma \varepsilon_i = \pm 1$.

 $\text{COROLLARY 4.3. } \varphi_{ab}^{\otimes n} \ : \ H^{\otimes n} \longmapsto H^{\otimes n} \text{ induces a map on the quotient } H^{\otimes n} / \sim_n .$

Proof From the definition of \sim_n (see (5)) it is sufficient to prove that $\varphi_{ab}^{\otimes n}$ $(\lambda_{n-e} \cdot \rho_0) \in J(\rho_0)$ for $\lambda_{n-e} \in \text{Im}(\psi \circ \pi)$:

$$\varphi_{ab}^{\otimes n} (\lambda_{n-e} \cdot \rho_0) = \varphi_{ab}^{\otimes} (\lambda_{n-e} \otimes \rho_0 - \rho_0 \otimes \lambda_{n-e}) = \varphi_{ab}^{\otimes} (\lambda_{n-e}) \otimes (\pm \rho_0) - (\pm \rho_0) \otimes \varphi_{ab}^{\otimes} (\lambda_{n-e}).$$

By the commutativity of diagram (7), $\varphi_{ab}^{\otimes}(\lambda_{n-e}) \in \text{Im } (\psi \circ \pi).$

So diagram (7) gives rise to a commutative diagram:

(8)
$$G_n/G_{n+1} \hookrightarrow H^{\otimes n}/\sim_n$$
$$\varphi_n \downarrow \qquad \qquad \downarrow \varphi_{ab}^{\otimes n}$$

$$G_n/G_{n+1} \quad \hookrightarrow \quad H^{\otimes n}/\sim_n$$

where the vertical arrows are isomorphisms and horizontal ones are injective.

Tensoring diagram (8) by \mathbb{R} , we get a commutative diagram

(9)

$$(G_n/G_{n+1}) \otimes \mathbb{R} \hookrightarrow (H^{\otimes n}/\sim_n) \otimes \mathbb{R}$$

$$\varphi_n \otimes id_{\mathbb{R}} \downarrow \qquad \qquad \downarrow \varphi_{ab}^{\otimes n} \otimes id_{\mathbb{R}}$$

$$(G_n/G_{n+1}) \otimes \mathbb{R} \hookrightarrow (H^{\otimes n}/\sim_n) \otimes \mathbb{R}$$

where the horizontal arrows are still injective.

Denote by V_n (resp. $\hat{\varphi}_n$) the \mathbb{R} -vector space $(H^{\otimes n}/\sim_n) \otimes \mathbb{R}$ (resp. $\varphi_{ab}^{\otimes n} \otimes id_{\mathbb{R}}$). Since G_n/G_{n+1} is torsion-free, by Labute's theorem we get a commutative diagram, where the horizontal arrows are injective:

(10)
$$\begin{array}{cccc} G_n/G_{n+1} & \hookrightarrow & V_n \\ \varphi_n \downarrow & & \downarrow \hat{\varphi}_n \\ G_n/G_{n+1} & \hookrightarrow & V_n \end{array}$$

Invariant ordering of surface groups and 3-manifolds which fibre over S^{17}

LEMMA 4.4. If $\varphi_{ab} : H \longrightarrow H$ has only real positive eigenvalues, the same holds for $\hat{\varphi}_n$ for any n.

Proof Tensoring the following diagram by \mathbb{R} :

$$\begin{array}{cccc} H^{\otimes n} & \longrightarrow & H^{\otimes n}/\sim_n \\ \downarrow \varphi_{ab}^{\otimes n} & \qquad \downarrow \varphi_{ab}^{\otimes n} \\ H^{\otimes n} & \longrightarrow & H^{\otimes n}/\sim_n \end{array}$$

we get a commutative diagram of vector spaces with exact rows, where E denotes the kernel, and the map $E \to E$ is the restriction of $\varphi_{ab}^{\otimes n} \otimes \mathbb{R}$:

The matrix of $\varphi_{ab}^{\otimes n} \otimes \mathbb{R}$ has the following form in a suitable basis :

$$\left(\begin{array}{c|c} \alpha & ? \\ \hline 0 & \beta \end{array}\right)$$

where α is the matrix of $\varphi_{ab}^{\otimes n} \otimes \mathbb{R}$ restricted to E and β the matrix of $\hat{\varphi}_n$. The eigenvalues of $\varphi_{ab}^{\otimes n} \otimes \mathbb{R}$ are products of the eigenvalues of $\varphi_{ab} \otimes \mathbb{R}$ and therefore all real and positive. So β has only real positive eigenvalues.

5. Proof of Theorem $2 \cdot 1$

Assuming that G and $\varphi: G \to G$ satisfy the hypotheses of Theorem 2.1, we need to construct an ordering of the elements of G which is invariant under multiplication on both sides, and also invariant under the map φ . We may proceed exactly as in section 4 of **[PR]**, which we outline here for the reader's convenience.

Go back to diagram (10), where the vector space isomorphism $\hat{\varphi}_n$ has all its eigenvalues real and positive. By standard linear algebra, there exists a basis v_1, \dots, v_k for V_n with respect to which the matrix for $\hat{\varphi}$ is upper triangular and has its (positive) eigenvalues $\lambda_1, \dots, \lambda_k$ on the diagonal. We order the vectors in V_n by reverse lexicographical ordering, using their coordinates relative to the basis v_1, \dots, v_k . Thus if $x = x_1v_1 + \dots + x_kv_k$ and $y = y_1v_1 + \dots + y_kv_k$ are distinct vectors in V_n , we define x < y if and only $x_i < y_i$ (in the usual ordering of \mathbb{R}), at the last *i* for which the coordinates differ. It is routine to check that this ordering of V_n is invariant under vector addition and also that x < y if and only if $\hat{\varphi}(x) < \hat{\varphi}(y)$. Restricting this ordering to the abelian group G_n/G_{n+1} defines an ordering which is invariant under the isomorphism φ_n .

We now have φ_n -invariant orderings of the lower central quotients G_n/G_{n+1} , for each $n \in \mathbb{Z}$, and use this to define a φ -invariant bi-order on G using a well-known technique for ordering groups which are residually nilpotent and have torsion-free lower central quotients. Namely, let $g, h \in G$ and consider n = n(g,h) = n(h,g) to be the greatest integer such that $g^{-1}h$ belongs to G_n . Then define g < h if the coset of $g^{-1}h$ is greater than the identity in the ordering of G_n/G_{n+1} and h < g otherwise. It is routine to check

Bernard Perron and Dale Rolfsen

that this defines a bi-ordering of G, and it is invariant under φ because the orderings of G_n/G_{n+1} are invariant under φ_n .

REFERENCES

- [CB] A. Casson, S. Bleiler : Automorphisms of surfaces after Nielsen and Thurston. London Math. Soc. Student Texts 9 (1988).
- [Fox] R. H. Fox, Free differential calculus I. Annals of Math 57 (1953), 547–560.
- [Lab] J.-P. Labute, On the descending central series of groups with a single defining relation. Journal of Algebra 14 (1970), 16–20.
- [PR] B. Perron, D. Rolfsen, On orderability of fibred knot groups, Math. Proc. Camb. Phil. Soc. 135(2003), 135–147.