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Abstract

This paper is a study of the subgroups of mapping class groups of Riemann
surfaces, called “geometric” subgroups, corresponding to the inclusion of subsur-
faces. Our analysis includes surfaces with boundary and with punctures. The
centres of all the mapping class groups are calculated. We determine the kernel
of inclusion-induced maps of the mapping class group of a subsurface, and give
necessary and sufficient conditions for injectivity. In the injective case, we show
that the commensurability class of a geometric subgroup completely determines up
to isotopy the defining subsurface, and we characterize centralizers, normalizers,
and commensurators of geometric subgroups.

Mathematics Subject Classification: Primary 57N05; Secondary 20F38

1 Introduction

Throughout the paper, M will denote a compact, connected, oriented surface. The
boundary ∂M , if nonempty, is a finite collection of simple closed curves. Consider
a finite subset P = {p1, . . . , pm}, of m distinct points (often called “punctures”
or “marked points”) in the interior of M . Define H(M,P ) to be the group of
orientation-preserving homeomorphisms h : M → M such that h is the identity
on each boundary component of M and h(P ) = P . Our main object of study
is the mapping class group M(M,P ) = π0(H(M,P )), the set of isotopy classes
of these mappings, with composition as the group operation. We emphasize that
throughout an isotopy, the boundary, and also the points P remain fixed. It is
clear that, up to isomorphism, these groups do not depend on the choice of P , but
depend only on the cardinality m = |P |, so we may write (M,m) or M(M,m)
in place of (M,P ) or M(M,P ), and simply M(M) for M(M, ∅). M(M,P ) may
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equivalently be considered as the group of orientation-preserving diffeomorphisms
of (M,P ), up to smooth isotopy. We refer the reader to the survey articles [2],
[14], [15], [30] and [31] and their bibliographies for more information.

Let N ⊂ M be a subsurface, by which we mean a closed subset which is
also a surface and for which we always assume the further properties: (1) every
component of ∂N lies in the interior of M , (2) P ∩ ∂N = ∅.

The inclusion i : (N,N ∩ P )→ (M,P ) induces a natural mapping

i∗ :M(N,N ∩ P )→M(M,P ).

If [h] is a class of a homeomorphism of N , then i∗([h]) is represented by extending
h to M using the identity mapping on M \ N . The image i∗(M(N,N ∩ P )) will
be called a geometric subgroup of M(M,P ).

Our study of these subgroups depends on a careful analysis of curves in M and
Dehn twists, which are the subject of Section 3. The mapping i∗ is often, but not
always, injective. We determine its kernel in Section 4. Section 5 is devoted to the
centres of mapping class groups. These are certainly well-known to specialists and
many of them can be found in the literature (see [15] and [17]). However, we need
the general result for the remainder of the paper and the proofs are straightforward
applications of Section 3. Our main result is that, assuming injectivity of the i∗,
up to a finite number of exceptions, two geometric subgroups are commensurable
if and only if they are equal if and only if their respective defining subsurfaces
are isotopic (Theorem 6.5). Note that the assumption that ∂N lies entirely in the
interior of M is necessary for the conclusion of Theorem 6.5; indeed, without this
assumption, it is very easy to construct non-isotopic subsurfaces N and N ′ which
define the same geometric subgroup, N satisfying ∂N ∩ ∂M = ∅ and N ′ satisfying
∂N ′ ∩ ∂M 6= ∅. From the main result, still assuming injectivity of the i∗, we
characterize the commensurator, the normalizer and the centralizer of a geometric
subgroup in M(M,P ).

We close this introduction and illustrate the injectivity question by discussing
some basic examples, which are well-known (c.f. [1] and [7]).

Examples: (1) M(D2) ∼= {1} and M(D2, 1) ∼= {1}, where D2 is a disk.
(2) Similarly, for the 2-sphere, M(S2) and M(S2, 1) are trivial.
The above examples are essentially the only surface mapping class groups which

are trivial.
(3) M(S1 × I) ∼= Z.
The mapping class group of the annulus S1 × I is generated by a Dehn twist,

described in Section 3.
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(4)M(S1× I, 1) ∼= Z2. Here, Dehn twists along the two boundary components
are generators. They are not isotopic because of the puncture.

(5) As a family of examples, consider disks D1 ⊂ D2 ⊂ . . . in the complex plane,
where the diameter of Dm is taken to be the real line interval
[1 − m/(m + 1),m + 1/2]. Take Pm = Dm ∩ Z = {1, . . . ,m}. Then it is also
well-known that the mapping class groups M(Dm, Pm) are isomorphic with the
classical braid groups Bm of Artin, which have generators σ1, . . . , σm−1 subject to
the relations

σiσj = σjσi, |i− j| > 1, σiσi+1σi = σi+1σiσi+1.

Under the isomorphism, σj, 0 < j < m corresponds with the (class of the)
diffeomorphism consisting of a “ half-twist” interchanging the integers j and j+ 1,
and supported on a small neighborhood of the interval [j, j + 1] ⊂ C. See [1] and
[7] for details, but beware some differences in choice of conventions. It is classical,
but nontrivial, that for n < m the homomorphism Bn → Bm, taking σj ∈ Bn to
σj ∈ Bm is injective, allowing us to write Bn ⊂ Bm. We chose notation so that
under the isomorphisms, Bn → Bm corresponds to the inclusion-induced mapping
i∗ : M(Dn, Pn) → M(Dm, Pm). We conclude that in this case i∗ is injective.
Note that the closure of the complementary subsurface is an annulus with m− n
punctures. The commensurator, the normalizer and the centralizer of M(Dn, Pn)
in M(Dm, Pm) are characterized in [8] and [35].

(6) The following is an example of an inclusion map which is not injective on
mapping class groups. Take M = S2 a 2-sphere with P = 2 points in S2, and let
D be a disk in S2 which encloses the points P . We have the map i∗ :M(D,P )→
M(S2, P ). As already discussed,M(D,P ) is the braid group B2, which is infinite
cyclic, generated by σ1. However, σ2

1 is isotopic with a Dehn twist along ∂D. In the
larger surface M = S2 this twist is isotopic with the identity (rel P ). So the kernel
of i∗ in this case is the infinite cyclic subgroup of index 2 in M(D,P ). M(S2, 2)
is cyclic of order 2.

(7) For the torus T 2 = S1 × S1 with either zero or one puncture, the mapping
class group is the modular group of invertible 2× 2 matrices with integer entries:
M(T 2) ∼=M(T 2, 1) ∼= SL(2,Z). Dehn twists along the curves S1 × ∗ and ∗ × S1

generate the mapping class group. Note that if A is an annulus neighborhood of
one of these curves, and happens to enclose the puncture of M(T 2, 1), the map
i∗ :M(A, 1)→M(T 2, 1) fails to be injective.
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2 Subgroups of mapping class groups

In this section we review some of the literature regarding subgroups of mapping
class groups. Although there is little published on the geometric subgroups, which
are the main concern of the present paper, certain other subgroups are quite well
understood. First, we recall some general properties of the mapping class groups
themselves. A more complete survey can be found in [30].

For the closed surface Mg of genus g, the mapping class groupsM(Mg,m) are
known to be finitely presented [9], [11], [23] [25], [26], [29], [36], [37]. The
generators can be taken to be Dehn twists (discussed below) along curves and
half-twists along arcs connecting the punctures.

According to Grossman [10] and Ivanov [15], M(Mg,m) is residually finite –
for every nontrivial element, there is a homomorphism of the mapping class group
onto a finite group which does not kill that element. This implies that M(Mg,m)
is Hopfian ([24], Chapter IV) – every epimorphismM(Mg,m)→M(Mg,m) is an
isomorphism. Conversely, in a recent paper [17] Ivanov and McCarthy proved that
M(Mg,m) is co-Hopfian – every monomorphism M(Mg,m) → M(Mg,m) is an
isomorphism.

Although, it contains torsion elements, M(Mg) has a finite index subgroup
which is torsion free (see [30] for a sketch of a proof.) It has recently been shown
by Mosher [32] that the mapping class groups are automatic. This implies that the
word problem is solvable (in quadratic time) and many other consequences [6].

The outer automorphism group ofM(Mg,m) has been determined by Ivanov [16]
and McCarthy [28]. It is equal to Z/2Z under the assumptions g 6= 0, m ≥ 3 if
g = 1, and m ≥ 1 if g = 2.

The abelianization of M(Mg) is cyclic of order 12, when g = 1, cyclic of order
10 when g = 2, and trivial (that is, M(Mg) is perfect) for g > 2 [34].

Finite subgroups of M(Mg) have been extensively studied. The so-called
Nielsen realization problem [38] was solved by Kerckhoff [22]. It asserts that
for any finite subgroup F of M(Mg), there is a complex structure on Mg such
that F is realized as a group of holomorphic automorphisms of Mg. According
to a classical result of Hurwitz [12], the orders of finite subgroups are bounded:
|F | ≤ 84(g − 1), g > 1.

McCarthy [27] showed that subgroups of M(Mg) satisfy the Tits alternative:
every subgroup either contains a free group on two generators, or a solvable sub-
group of finite index. Birman, Lubotzky and McCarthy [3] proved that solvable
subgroups of M(Mg) are virtually abelian, and gave upper bounds for the rank
of free abelian subgroups. Ivanov [15] proved these two results for M(Mg,m) and
showed that: if G is a subgroup of M(Mg,m) which is not virtually abelian, then
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G contains an uncountably infinite number of maximal subgroups of infinite in-
dex. The Frattini subgroup φ(G) of a group G is the intersection of all its maximal
subgroups. Ivanov also proved that the Frattini subgroup of a finitely generated
subgroup ofM(Mg,m) is nilpotent. Note that this property also holds for finitely
generated linear groups [33].

The centres of the M(Mg,m) are well-known [15], [17]: cyclic of order two if
g = 1 and m ≤ 2, and if g = 2 and m = 0, and trivial otherwise. We determine
the centres in the more general situation, with boundary, in the present paper.

The Torelli subgroup of the mapping class group consists of classes of mappings
which induce the identity on the homology of the surface. These subgroups have
been studied extensively in the series of papers [18], [19], [20], [21]. In particular,
they describe a finite set of generators for the Torelli groups. The cohomological
properties of mapping class groups and the Torelli groups have been studied inten-
sively and are also well-described in [30] and [31]. We shall not use any of these
deeper properties – indeed our methods are quite elementary and self-contained,
requiring as background only some basic properties of curves on surfaces due to
Epstein [5].

3 Curves and Dehn twists

Working within the context of a surface M with punctures P as described above,
we shall consider a simple closed curve in M \ P as an embedding c : S1 →M \ P
which does not intersect the boundary of M . Note that c has an orientation; the
curve with the opposite orientation, but same image will be denoted c−1. By abuse
of notation, we also use the symbol c to denote the image of c. We will say that c
is essential if it does not bound a disk in M disjoint from P , and that c is generic
if it does not bound a disk in M containing 0 or 1 point of P .

Two simple closed curves a, b are isotopic if there exists a continuous family
ht ∈ H(M,P ), t ∈ [0, 1] of homeomorphisms such that h0 is the identity and
h1 ◦ a = b. Isotopy of curves is an equivalence relation which we denote by a ' b.
Following [7] the index of intersection of two simple closed curves a and b is:

I(a, b) = inf{|a′ ∩ b′|; a′ ' a, b′ ' b}

We note that:
1) I(a, b) = inf{|a′ ∩ b|; a′ ' a};
2) If a is not generic, then I(a, b) = 0 for every simple closed curve b;
3) If a ' b then I(a, b) = 0.

5



A bigon cobounded by two simple closed curves a and b in M \ P is a disk
D ⊂M \ P whose boundary is the union of an arc of a and an arc of b.

Proposition 3.1 (Epstein [5]) Let a, b : S1 → M \ P be two essential simple
closed curves, and suppose a is isotopic to b.

i) If a∩b = ∅, then there exists an annulus in M \P whose boundary components
are a and b.

ii) If a ∩ b 6= ∅, and they intersect transversely, then a and b cobound a bigon.

Proposition 3.2 Let a, b : S1 → M \ P be two essential simple closed curves,
which intersect transversely. Then

I(a, b) = |a ∩ b|

if and only if a and b do not cobound a bigon.

Proof: It is clear that if a and b cobound a bigon, one can isotop one of the
curves across the bigon and reduce the cardinality of the intersection by two. Now
suppose they do not cobound a bigon, and choose a simple closed curve a′ isotopic
to a and transverse to a such that

|a′ ∩ b| = I(a, b).

We will argue by induction on |a′ ∩ a| that

|a ∩ b| = |a′ ∩ b| = I(a, b).

If |a′ ∩ a| = 0, then by Proposition 3.1, there is an annulus in M \ P with
boundary components a and a′. Each arc of intersection of b with the annulus
must run from one boundary component to the other (see Figure 1), since neither
a, b nor a′, b cobound bigons. Therefore |a ∩ b| = |a′ ∩ b| = I(a, b).

Now suppose |a′ ∩ a| > 0. By Proposition 3.1, a and a′ cobound a bigon. We
may assume a′ ∩ a∩ b is empty, so any arc of intersection of b with the bigon must
have one endpoint in a and the other in a′ (see Figure 1), again because neither
a, b nor a′, b cobound bigons. Therefore we may push a′ across the bigon to obtain
a new curve a′′ isotopic to a and satisfying:

|a′′ ∩ a| = |a′ ∩ a| − 2 and |a′′ ∩ b| = |a′ ∩ b| = I(a, b).

By inductive hypothesis |a ∩ b| = |a′′ ∩ b| = I(a, b).
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a ∩ a′ = ∅ a ∩ a′ 6= ∅

a
a′

a′′
a′

a

Figure 1: Curves cobounding an annulus and a bigon.

Definition: If we parametrize S1 as the unit circle in the complex plane, and the
interval I = [0, 1], then the prototype Dehn twist τ : S1 × I → S1 × I is given by

τ(z, t) := (ze2πit, t).

Note that τ is the identity on the boundary circles. More generally, let a :
S1 → M \ P be a simple closed curve, and let N ⊂ M \ P be an annulus regular
neighborhood of the image of a, parametrized by ã : S1× I → N . Define the Dehn
twist along a to be (the isotopy class of) the homeomorphism A(x) = ãτ ã−1(x) for
x ∈ N, A(x) = x for x outside N .

We will use the convention throughout that a curve is denoted by a lower case
letter and a Dehn twist along the curve is denoted by the corresponding capital
letter. Note that, depending on parametrization chosen, there are two choices of
Dehn twist along a, inverse to each other. Usually, the choice is immaterial, pro-
vided one is consistent throughout, but we will adopt the convention in illustrations
that a curve crossing a will make a “right turn” at each encounter with a, after
being acted on by A (see Figure 2). We also observe:

1) The Dehn twist along a−1 coincides with the Dehn twist along a.
2) The curve a is fixed by the Dehn twist A.
3) If two curves are isotopic, then so are their corresponding Dehn twists.
4) If h is a homeomorphism of M , the Dehn twist along h(a) is hAh−1.
5) If a is not generic, A is isotopic to the identity.

Proposition 3.3 Let a, b : S1 → M \ P be two simple closed curves, A the Dehn
twist along a and n any integer. Then

I(An(b), b) = |n| · I(a, b)2.
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aN

A

Figure 2: Dehn twist along curve a.

Proof: This is a special case of a formula in [7]. We outline a proof, leaving details
to the reader. Assume |a∩b| = I(a, b). The cases n = 0 or I(a, b) = 0 being trivial,
suppose they are nonzero. Construct the curve An(b), which can be seen to cross
b exactly |n|I(a, b) times at each point of intersection of a with b (see Figure 3).
The proof is completed by noting that this is the minimal intersection of An(b)
with b, up to isotopy. For otherwise, by Proposition 3.2 there would be a bigon
cobounded by them. One can see this would imply that a and b also cobound a
bigon, which is impossible, again by Proposition 3.2.

a

A2(b)

b

Figure 3: Intersection of b with A2(b).

Proposition 3.4 Suppose a1, . . . , ap : S1 → M \ P are generic simple closed
curves such that:

a) ai ∩ aj = ∅ if i 6= j,
b) ai is neither isotopic with aj nor a−1

j , if i 6= j,
c) none of the ai is isotopic with a boundary component of M .
Then for each i, 1 ≤ i ≤ p, there exists a simple closed curve b : S1 → M \ P

such that aj ∩ b = ∅ if i 6= j, and |ai ∩ b| = I(ai, b) > 0.
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Remark: The last condition implies that b must be generic in M \ P .

Proof: We “cut open” M along all the curves ai to obtain the connected compact
surfaces N1, . . . ,Nr with the property that the union of the interiors of the Nj is the
interior of M \ ⋃pi=1 ai and each boundary component of Nj is either a boundary
component of M or a copy of some ai. There is a continuous projection of the
disjoint union onto M :

ρ :
r∐
j=1

Nj →M,

which covers each curve ai twice, and is injective on the union of the interiors of
the Nj . Now fix i ∈ {1, . . . , r} and consider the curve ai = ρ(c1) = ρ(c2), where c1
is a component of the boundary of some Nj and c2 is a component of the boundary
of Nk.

Case 1, j = k: Then c1 and c2 are different components of the boundary of the
connected surface Nj . There is an arc b̃ in Nj with one endpoint in c1, the other
endpoint being the point of c2 having same projection in ai, and the interior of b̃
in the interior of Nj and avoiding the puncture set P (see Figure 4). Then take
b = ρ(b̃). Clearly aj ∩ b = ∅ if i 6= j; moreover ai and b are transverse and they
cannot cobound a bigon, so |ai ∩ b| = 1 = I(ai, b).

c2

c1

Nj b̃

Figure 4: Constructing b, case 1.

Case 2, j 6= k: Then c1 is a boundary component of Nj , and by hypothesis, if
Nj is a disk, then Nj ∩ P contains at least two points, and if Nj is an annulus,
Nj ∩ P contains at least one point. So in any case, there exists an arc b1 in Nj

with both endpoints in c1, interior in the interior of Nj and disjoint from P , and
such that b1 and c1 do not cobound a bigon in Nj \ P ∩Nj (see Figure 5). In the
same way we choose an arc b2 in Nk, whose endpoints in c2 project to ρ(b1 ∩ c1)
in ai, whose interior is interior to Nk \ P ∩ Nk, and such that b2 and c2 do not
cobound a bigon in Nk \ P ∩Nk. Define b = ρ(b1 ∪ b2). Then aj ∩ b = ∅ if i 6= j

9



b1
Nj Nk

b2
c2c1

Figure 5: Constructing b, case 2.

and |ai ∩ b| = I(ai, b) = 2, because we have arranged that ai and b do not cobound
a bigon in M \ P .

Now consider a subsurface N ⊂ M ; recall this includes the assumption that
P ∩ ∂N = ∅ and ∂N is interior to M . We will say that N is essential if each
component of M \N which is a disk has nonempty intersection with the puncture
set P.

A component N ′ of M \N will be called an exterior cylinder if N ′ is a cylinder
(= annulus) disjoint from P , with both components of ∂N ′ also being components
of ∂N (see Figure 6).

N ′N

Figure 6: N ′ is an exterior cylinder for N .

Proposition 3.5 Let N ⊂ M be an essential subsurface and let a, b : S1 →
N \ N ∩ P be essential simple closed curves. Assume that a is not isotopic in
N \ N ∩ P to a boundary component of an exterior cylinder. Then a and b are
isotopic in M \ P if and only if they are isotopic in N \N ∩ P .

Proof: The only nontrivial part is to show that if a and b are isotopic in M \ P ,
then they are isotopic in N \N ∩P . We assume a and b intersect transversely and
argue by induction on |a ∩ b|.

If |a ∩ b| = 0, then Proposition 3.1 implies there exists an annulus in M \ P
with (unoriented) boundary a∪b. Since a is not isotopic to a boundary component
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of an exterior cylinder and N is essential, the annulus is disjoint from ∂N , and
therefore it lies in N \N ∩ P . It follows that a and b are isotopic in N \N ∩ P .

If |a ∩ b| > 0, then a and b cobound a bigon in M \ P , by Proposition 3.1.
Because N is essential, the bigon is disjoint from ∂N , and therefore it lies in N .
Pushing across this bigon defines an isotopy in N \ P from b to a curve b′ with
|b′ ∩ a| = |b ∩ a| − 2. By inductive hypothesis, b′ is isotopic with a in N \N ∩ P ,
so the same is true of b.

Proposition 3.6 Consider two generic simple closed curves a, b : S1 → M \ P ,
and let A and B, respectively, denote Dehn twists along these curves. If j and k
are integers, j 6= 0, such that Aj = Bk in M(M,P ), then a is isotopic to b or b−1

in M \ P .

Remark: This proposition and the next one can be found in [17] for ∂M = ∅.
The general case needs an extra argument to consider Dehn twists along boundary
curves.

Proof: We will argue that if a is not isotopic with b±1 then Aj 6= Bk. It may be
assumed that a and b meet transversely and that |a ∩ b| = I(a, b). First assume
I(a, b) > 0. Then, by Proposition 3.3,

I(Aj(b), b) = |j|I(a, b)2 > 0

I(Bk(b), b) = I(b, b) = 0

and we conclude Aj 6= Bk.
Now suppose that I(a, b) = 0. If M has nonempty boundary, consider the

larger closed surface M̂ obtained by gluing a torus minus a disk to each boundary
component of M (if ∂M = ∅, let M̂ = M). By Proposition 3.5 a is not isotopic
with b±1 in M̂ \ P . By Proposition 3.4 there is a simple closed curve c in M̂ \ P
such that b ∩ c = ∅ and |a ∩ c| = I(a, c) > 0. Then

I(Aj(c), c) = |j|I(a, c)2 > 0

I(Bk(c), c) = I(c, c) = 0,

and therefore Aj 6= Bk in M(M̂, P ); so Aj 6= Bk in M(M,P ).

Proposition 3.7 Consider two generic simple closed curves a, b : S1 → M \ P ,
and let A and B, respectively, denote Dehn twists along these curves. If j and k
are integers, j 6= 0 and k 6= 0, such that Aj and Bk commute in M(M,P ), then
I(a, b) = 0.
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Proof: Assuming Aj and Bk commute, we have

Aj = BkAjB−k = Cj,

where C is the Dehn twist along the curve c = Bk(a). By Proposition 3.6 it follows
that c is isotopic with a±1. Proposition 3.3 implies

0 = I(a±1, a) = I(c, a) = I(Bk(a), a) = |k|I(a, b)2,

so I(a, b) = 0.

Remark: An alternative proof of Proposition 3.7 can be deduced from [13], where
it is shown that A and B commute if I(a, b) = 0, A and B satisfy the braid relation
ABA = BAB if I(a, b) = 1, and A and B generate a free group if I(a, b) ≥ 2.

Proposition 3.8 Suppose a1, . . . , ap : S1 → M \ P are generic simple closed
curves which are pairwise disjoint, and no curve ai is isotopic to aj or a−1

j , i 6= j.
Consider the function

h : Zp →M(M,P )

defined by
h(n1, . . . , np) = An1

1 · · ·Anpp ,

where Ai is the Dehn twist about ai. Then h is an injective homomorphism.

Proof: Because the curves are disjoint, the Dehn twists commute, and h is a ho-
momorphism. To see it is injective, suppose An1

1 · · ·A
np
p is the identity ofM(M,P )

for some (n1, . . . , np). We again employ the trick of considering the closed surface
M̂ , which is M plus a copy of a torus minus a disk glued to each boundary com-
ponent. Clearly, each ai : S1 → M̂ is generic, and by Proposition 3.5 ai is not
isotopic to a±1

j in M̂ \P , when i 6= j. Now fix an index i ∈ {1, . . . , p}. Proposition
3.4 supplies a simple closed curve b in M̂ \ P disjoint from aj, i 6= j, with

|ai ∩ b| = I(ai, b) > 0.

We calculate, using commutativity of the twists, b∩aj = ∅, i 6= j, and Proposition
3.3:

0 = I(b, b) = I(An1
1 · · ·Anpp (b), b)

= I(Anii (b), b) = |ni|I(ai, b)2.

Therefore ni = 0 and we have shown i∗ ◦h is injective, where i : (M,P )→ (M̂, P ),
so h is injective.
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Corollary 3.9 If a : S1 →M \P is a generic simple closed curve, then the Dehn
twist about a has infinite order in M(M,P ).

Proposition 3.10 Let a1, . . . , ap, b1, . . . , bp : S1 → M \ P be essential simple
closed curves satisfying:

1) ai ∩ aj = ∅ and bi ∩ bj = ∅ if i 6= j;
2) ai is not isotopic with a±1

j and bi is not isotopic with b±1
j if i 6= j;

3) ai is isotopic to bi for each i = 1, . . . , p.
Then there exists an isotopy ht ∈ H(M,P ) such that h0 = id and h1 ◦ ai = bi

for all i = 1, . . . , p.

Proof: We will use a double induction. First, induction on p. The proposition is
obvious if p = 1, so we assume it is true for p− 1 pairs of curves. This means that,
replacing each ai by h1 ◦ ai, we may assume that ai = bi for i = 1, . . . , p− 1. Then
we have ap disjoint from aj = bj , j < p and also bp disjoint from aj = bj , j < p,
and ap isotopic in M \ P to bp. We will be done if we show that there is a further
isotopy taking ap to bp which does not move the curves aj = bj , j < p. Taking ap
and bp to be transverse, we will argue by induction on |ap ∩ bp|.

If |ap∩bp| = 0, then ap and bp cobound an annulus in M \P , by Proposition 3.1.
Any simple closed curve in this annulus must be either inessential or parallel to a
boundary component, so our hypotheses guarantee that the annulus is disjoint from
all the curves aj = bj , j < p. Then there is an isotopy across the annulus taking
ap to bp; the isotopy may be taken to be the identity outside a small neighborhood
of the annulus, so the other curves do not move. Suppose |ap ∩ bp| > 0, then by
Proposition 3.1, the curves cobound a bigon in M \P , and we may argue as above
that the bigon is disjoint from the other curves. An isotopy taking ap across the
bigon, fixed outside a neighborhood of the bigon, reduces the number |ap ∩ bp| and
does not move the other curves. The inductive hypothesis now gives a final isotopy
taking ap to bp.

4 Subsurfaces and injectivity

Define the pure mapping class group of M relative to P to be the subgroup
PM(M,P ) of M(M,P ) consisting of all (classes of) diffeomorphisms which fix
P pointwise. Letting ΣP denote the group of permutations of the set P , we have
the exact sequence

1→ PM(M,P )→M(M,P )→ ΣP → 1.
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Definitions: A pair equivalent to (D2, 2) is called a pantalon of type I (see Figure
7). We have already observed that M(D2, 2) is infinite cyclic, generated by a
“half-twist” σ which interchanges the two punctures. PM(D2, 2) is the subgroup
generated by σ2, which is (up to isotopy) the same as a Dehn twist along the
boundary.

A pair (S1 × I, 1) is a pantalon of type II (see Figure 7). The mapping class
groups M(S1 × I, 1) and PM(S1 × I, 1) coincide, and are isomorphic with Z2,
generated by the Dehn twists along the two boundary components.

A pantalon of type III is a connected planar surface M with three boundary
components, the puncture set P is taken to be empty (see Figure 7). Its mapping
class group is M(M, 0) ∼= Z3, generated by Dehn twists along the three boundary
curves.

Type III

Type I Type II

Figure 7: The three types of pantalons.

We now define one of our basic tools, a pantalon decomposition of a pointed
surface (M,P ) (see Figure 8). This consists of:

1) a collection (Mi, Pi), i = 1, · · · , r, each pair being a pantalon of one of the
three types, together with maps φi : (Mi, Pi)→ (M,P ),

2) a collection a1, · · · , ap of simple closed curves in M , disjoint from each other,
from P and from ∂M satisfying the following.

a) Each φi is injective on the interior of Mi.
b) φi(intMi) and φj(intMj) are disjoint if i 6= j.
c) φi takes each boundary component of Mi to one of the curves ak or to a

boundary component of M . Two boundary components of Mi are allowed to map
to the same curve ak.

d) M = ∪ri=1φi(Mi) and P = ∪ri=1φi(Pi).

Informally, we say that a1, · · · , ap determine a pantalon decomposition of (M,P ),
cutting M open into pantalons (Mi, Pi).

14



M6

a1
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M1

M2

a5
a4
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M3
M4

a7

a6

M5

Figure 8: A pantalon decomposition.

It is straightforward to check that every connected compact orientable surface
M with punctures P admits a pantalon decomposition, with the following excep-
tions:

a) M = S2, a sphere, and |P | ≤ 3;
b) M = D2, a disk, |P | ≤ 1;
c) M = S1 × I, an annulus, with P = ∅;
d) M = T 2 the torus, with P = ∅.
Recall that a subsurface N ⊂M is essential if no component of M \N is a disk

disjoint from P . If some component N ′ of M \N is a disk with |N ′ ∩ P | = 1, we
call N ′ a pointed disk exterior to N .

Theorem 4.1 Consider an essential subsurface N ⊂ M with the associated ho-
momorphism induced by inclusion:

i∗ :M(N,N ∩ P )→M(M,P )

i) If N is a disk and |N ∩P | ≤ 1 then M(N,N ∩P ) is trivial, and therefore i∗
is injective.

ii) Suppose N is an annulus and N ∩P = ∅. If N has an exterior pointed disk,
then the kernel of i∗ is M(N,N ∩ P ); otherwise i∗ is injective.

iii) Assuming that (N,N ∩ P ) is not as in (i) or (ii), let a1, . . . , ar denote
the boundary components of N which bound pointed disks exterior to N , and let
bj, b

′
j , j = 1, . . . , s be the pairs of boundary components of N which cobound exterior

cylinders (disjoint from P ) (see Figure 9). Denote by Ai, Bj , B
′
j the Dehn twists

corresponding to the curves ai, bj , b′j , respectively. Then the kernel of i∗ is generated
by

{A1, . . . , Ar, B
−1
1 B′1, . . . , B

−1
s B′s}

and is isomorphic to Zr+s.
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d5

a1

b1

d1
d2

Figure 9: Subsurface N and pantalon decomposition.

Proof: Part (i) is obvious and (ii) is a direct consequence of Proposition 3.8.
To prove (iii), let [h] ∈ Ker(i∗), where h : N → N . We have the following
commutative diagram, with exact rows.

1 → PM(N,P ∩N) → M(N,P ∩N) → ΣP∩N → 1
↓ i∗ ↓ ↓

1 → PM(M,P ) → M(M,P ) → ΣP → 1

Since the homomorphism ΣP∩N → ΣP is injective, [h] is in PM(N,P ∩N).
Let c1, . . . , ct denote the components of ∂N different from the ai and bj, b

′
j . In

addition, let d1, . . . , du : S1 → N \ P be simple closed curves which determine a
pantalon decomposition of (N,N ∩ P ) (see Figure 9). Note that all the curves we
are considering are pairwise disjoint and non-isotopic. Since h is isotopic to the
identity in M \ P , each h ◦ di is isotopic to di in M \ P . Proposition 3.5 implies
that h ◦ di is isotopic to di in N \ N ∩ P . By Proposition 3.10 we may suppose
that h ◦ di = di for all i = 1, . . . , u, and that h is the identity on the boundary of
each pantalon. Using the structure of the pure mapping class groups of pantalons
we conclude that

[h] = Aα1
1 · · ·Aαrr B

β1
1 B

′β′1
1 · · ·Bβs

s B
′β′s
s Cγ1

1 · · ·C
γt
t D

δ1
1 · · ·Dδu

u .

Therefore
1 = i∗[h] = B

β1+β′1
1 · · ·Bβs+β′s

s Cγ1
1 · · ·C

γt
t D

δ1
1 · · ·Dδu

u .

By Proposition 3.8

β1 + β′1 = · · · = βs + β′s = γ1 = · · · = γt = δ1 = · · · = δu = 0.
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Therefore
[h] = Aα1

1 · · ·Aαrr (B−1
1 B′1)β

′
1 · · · (B−1

s B′s)
β′s .

Conversely, it is clear that any [h] of this form is in the kernel of i∗. Finally,
Proposition 3.8 implies that Ker(i∗) is isomorphic to Zr+s.

Corollary 4.2 Let N ⊂M be any subsurface (with ∂N ∩ P = ∅) and let

i∗ :M(N,N ∩ P )→M(M,P )

the natural homomorphism.
i) If N is a disk and |N ∩ P | ≤ 1, then i∗ is injective.
ii) If N is an annulus and N ∩ P = ∅, then i∗ is injective if and only if there

is no boundary component of N which is the boundary of a disk intersecting P in
less than two points.

iii) If (N,N ∩ P ) is not as in (i) or (ii), then i∗ is injective if and only if
no component of M \N is either an annulus disjoint from P whose boundary
components are both boundary components of N , or a disk which contains less
than two points of P .

5 Centres

We begin this section by considering a special mapping of the surface M of genus
one, and with one boundary component; that is, M is a torus minus a disk, with
empty puncture set P . We model M as a certain identification space of a planar
surface, as follows (see Figure 10). Let

D = {z ∈ C; |z| ≤ 4}

D1 = {z ∈ C; |z − 2| < 1}

D2 = {z ∈ C; |z + 2| < 1}

Then D \ (D1 ∪D2) is a pantalon (of type III) with boundary curves a1, a2, c :
S1 → ∂M which we parametrize as follows, 0 ≤ θ ≤ 2π:

c(eiθ) = 4eiθ

a1(eiθ) = 2 + eiθ

a2(eiθ) = −2− e−iθ.
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a

c
a1

p

Figure 10: The projection map.

We consider M = (D \ (D1 ∪D2))/ ∼ where we identify the points on the
curves a1 and a2 by

a1(eiθ) ∼ a2(eiθ).

Denote the natural projection by

p : D \ (D1 ∪D2)→M.

The “meridian” curve a : S1 →M is defined by

a = p ◦ a1 = p ◦ a2.

Now we define a homeomorphism R : D → D by the equation:

R(reiθ) =

{
rei(θ−π) if 0 ≤ r ≤ 3
rei(θ−(r−2)π) if 3 ≤ r ≤ 4

We have R(D1) = D2, R(D2) = D1, R◦a1 = a−1
2 and R◦a2 = a−1

1 . Therefore,
R induces a homeomorphism

R̃ : M →M

such that
R̃ ◦ a = a−1.

Its class ρ = [R̃] ∈M(M) will be called a half-twist of M along c relative to a. The
Dehn twists A and C about the respective curves a and c relate to ρ as follows:

ρ2 = C, ρAρ−1 = A.

The latter equation follows since ρAρ−1 is the Dehn twist about ρ ◦ a = a−1, and
the Dehn twist about a−1 is the same as the Dehn twist about a for any simple
closed curve a.
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Proposition 5.1 Let M,ρ, a and A be as in the above discussion. If G is the
subgroup of M(M) consisting of classes of homomorphisms h : M →M such that
h ◦ a is isotopic with a or a−1, then G is generated by {A, ρ} and is isomorphic
with Z2.

Proof: Let [h] ∈ G; we may assume h ◦ a = a or h ◦ a = a−1. Note that a
determines a pantalon decomposition of M , with a single pantalon of type III,
namely D \ (D1 ∪D2).

If h ◦ a = a, by the structure of the mapping class group of the pantalon, for
some integers m,n:

[h] = AnCm = Anρ2m.

If h ◦ a = a−1, then R̃ ◦ h ◦ a = a and ρ[h] has the form

ρ[h] = AnCm = Anρ2m.

Therefore
[h] = ρ−1Anρ2m = Anρ2m−1.

It is clear that A and ρ are in G, so they generate G and we have already noted
that they commute. If Anρm = 1, then

(Anρm)2 = A2nρ2m = A2nCm = 1,

and by Proposition 3.8, 2n = m = 0. This shows G ∼= Z2.

We turn now to determining the centre ZM(M,P ) of an arbitrary (compact
orientable) surface M with puncture set P , that is, the subgroup of M(M,P )
consisting of mapping classes which commute with all elements ofM(M,P ). First
we record some simple cases: If M is a sphere or disk and |P | ≤ 1, ZM(M,P ) =
M(M,P ) = {1}. ZM(S2, 2) = M(S2, 2) = Z/2Z. M(S2, 3) ∼= Σ3 and therefore
ZM(S2, 3) is the trivial group. Each of the pantalons (type I, II or III) has an
abelian mapping class group, so the centre is equal to the whole group. For the
same reason ZM(S1 × I) =M(S1 × I) ∼= Z.

The case of the torus is somewhat more interesting. Since

M(T 2, 0) ∼=M(T 2, 1) ∼= SL(2,Z)

we see algebraically that the centre is the cyclic group of order two, consisting
of the two diagonal matrices, ±I, where I is the identity matrix. However, to
warm up for the more complicated cases, whe will establish this fact geometrically.
Consider the torus T 2 embedded in xyz-space as the set of points of distance 1 from
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the circle x2 + y2 = 4, z = 0 (see Figure 11). Let s : T 2 → T 2 be the (orientation-
preserving) involution s(x, y, z) = (x,−y,−z). In the case ofM(T 2, 1), we suppose
that P = {p} is a point on the x-axis, so that s(p) = p. Let σ = [s] ∈M(T 2) and
σ1 = [s] ∈M(T 2, {p}).

p
x

ba s

Figure 11: Involution generating the centre ofM(T 2).

Proposition 5.2 The centre of M(T 2) is the cyclic group of order 2 generated by
σ; similarly ZM(T 2, 1) ∼= Z/2Z, generated by σ1.

Proof: We prove the first part; the case of ZM(T 2, {p}) being essentially the
same. Since s has order 2, σ2 = 1 in M(T 2). Let a, b : S1 → T 2 be the circles
parametrized by

a(eiθ) = (2 + cos θ, 0, sin θ), b(eiθ) = (cos θ, sin θ, 0).

Then
s ◦ a = a−1 and s ◦ b = b−1.

Since a is not isotopic to a−1 we conclude that σ 6= 1, and so σ has order 2. Letting
A,B be the Dehn twists about a, b we have

σAσ−1 = A and σBσ−1 = B,

and since A and B generate M(T 2) we conclude that σ ∈ ZM(T 2).
Now suppose that [h] ∈ ZM(T 2), where h : T 2 → T 2. Then A = [h]A[h]−1 = C

is a Dehn twist about the curve c = h ◦ a. By Proposition 3.6, c ' a±1, so we may
assume that h◦a = a or h◦a = a−1. Case 1, h◦a = a; we can cut T 2 open along a
and conclude from the mapping class of the cylinder that [h] = Ak for some integer
k. Since I(a, b) = 1 and Ak and B commute, Proposition 3.7 implies that k = 0,
and [h] = 1 in this case. Case 2, h ◦ a = a−1. Then s ◦ h ◦ a = a and we conclude
from case 1 that σ[h] = 1, so [h] = σ−1 = σ.

Next we consider the torus with two marked points. Using the above model for
T 2, let P = {(0, 3, 0), (0,−3, 0)}, that it, a pair of points which are interchanged
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by the involution s : T 2 → T 2 described above. Let σ2 ∈ M(T 2, P ) = M(T 2, 2)
be the class represented by s. The following is proved in the same manner as the
above.

Proposition 5.3 The centre of M(T 2, 2) is the cyclic group of order 2 generated
by σ2.

We now consider the closed surface M of genus 2, which we realize in R3 as
the boundary of a uniform regular neighborhood of the union of the circles

(x+ 1)2 + y2 = 1, z = 0 and (x− 1)2 + y2 = 1, z = 0.

Let s : R3 → R3 be the same involution as in the previous discussion, and let
σ ∈M(M) be represented by the restriction of s to M .

Proposition 5.4 The centre of M(M), where M is a closed surface of genus 2,
is the cyclic group of order 2 generated by σ.

c2
x

a1 sc1 c3

b

a2

Figure 12: Generator of the centre of M(M2).

Proof: Let a1, a2, b, c1, c2, c3 be the simple closed curves as in Figure 12. In
particular, b is the curve of intersection of M with the plane x = 0, c1 and c3 lie
in the plane z = 0 and a1, a2, c2 are in the plane y = 0. We have

s ◦ ai = a−1
i , s ◦ b = b, s ◦ ci = c−1

i .

Since a1 is not isotopic with a−1
1 , σ 6= 1 has order 2 in M(M). Let A1,A2,B, C1,

C2, C3 be the Dehn twists about the respective curves, which generate M(M),
according to [23]. From the above equations we conclude that

σAiσ
−1 = Ai, σBσ−1 = B, σCiσ

−1 = Ci,

so σ is indeed central in M(M).
Given [h] ∈ ZM(M) we have Ai = [h]Ai[h]−1, which is a Dehn twist about

h◦ai. By Proposition 3.6 h◦ai is isotopic with a±1
i . Similarly h◦b is isotopic with
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b±1. By Proposition 3.10 we may assume that h ◦ ai = ai or a−1
i and that h ◦ b = b

or b−1.
Let M1 and M2 be the closures of the two components of M \ b, with a1 in M1,

a2 in M2. Now h ◦ b = b−1 can only happen if h(M1) = M2 and h(M2) = M1,
which is impossible because h ◦ ai = a±1

i . So we must have h ◦ b = b, h(Mi) = Mi.
Letting ρi denote the half-twist of Mi along b relative to ai, Proposition 5.1 implies
that [h] can be written in the form

[h] = ρn1
1 Am1

1 ρn2
2 Am2

2 ,

for some integers n1, n2,m1,m2. Consider

[h]2 = A2m1
1 A2m2

2 Bn1+n2.

Since [h]2 is central it commutes with C1, as do A2 and B. Therefore A2m1
1 also

commutes with C1. But I(a1, c1) = 1, so by Proposition 3.7, 2m1 = 0. Similarly
2m2 = 0 and n1 + n2 = 0. We note that either n1 and n2 are both odd or both
even. If they are both even, then h ◦ a1 = a1 and h ◦ a2 = a2, if both odd, then
h ◦ a1 = a−1

1 and h ◦ a2 = a−1
2 .

Case 1, n1 and n2 are even: write n1 = 2k1 and n2 = 2k2. Then

[h] = ρ2k1
1 ρ2k2

2 = Bk1+k2 = B0 = 1,

because k1 + k2 = (n1 + n2)/2 = 0.
Case 2, n1 and n2 are odd. Then

s ◦ h ◦ a1 = a1 and s ◦ h ◦ a2 = a2

and by case 1, σ[h] = 1. Therefore [h] = σ−1 = σ.

Proposition 5.5 Let M denote the genus one oriented surface with one boundary
component. Then the centre of M(M) is the infinite cyclic group generated by the
half-twist ρ, defined in the discussion preceding Proposition 5.1.

Proof: Let a be the curve on M , A the Dehn twist about a, R̃ : M →M , ρ = [R̃],
all as described in the discussion preceding Proposition 5.1. Let b be the curve on
M which is the image, under the identification D \ (D1 ∪D2)→M , of the interval
[-1, 1], so that I(a, b) = 1. Let B be the Dehn twist about b; then {A,B} generates
M(M).

Noting that R̃ ◦ a = a−1 and R̃ ◦ b = b−1, we see that ρ commutes with A and
B, and therefore ρ is in the centre of M(M). Since ρ2 = C and C has infinite
order, ρ has also infinite order.
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Now let ξ be in the centre of M(M), and h : M →M a homeomorphism with
[h] = ξ. Then A = ξAξ−1 is a Dehn twist about h ◦ a, so by Proposition 3.6 h ◦ a
is isotopic with a or a−1. By Proposition 5.1 ξ is of the form

ξ = Apρq, p, q ∈ Z.

Because ξ and ρ commute with B, Ap commutes with B. But I(a, b) = 1, so
Proposition 3.7 implies that p = 0 and therefore ξ = ρq.

Remark: Let M be a genus one oriented surface with one boundary compo-
nent as above. According to [36] M(M) is isomorphic to the Artin braid group
〈A,B|ABA = BAB〉, by [4] its center is the infinite cyclic group generated by
(ABA)2, and one can check directly that ρ = (ABA)2.

Following is the main result regarding the centre of M(M,P ), for a general
Riemann surface. We have already noted that there are certain exceptional cases,
so we list the hypotheses here for the generic result:

1) If M is a sphere, then assume |P | ≥ 4,
2) If M is a disk, then assume |P | ≥ 3,
3) If M is an annulus, then assume |P | ≥ 1,
4) If M is a torus, then assume |P | ≥ 3,
5) If M is a surface of genus one and one boundary component, then assume

|P | ≥ 1,
6) If M is a surface of genus 2, then assume |P | ≥ 1.

Theorem 5.6 Let M be a connected compact orientable surface with marked points
P ⊂ M and assume the hypotheses (1) - (6) above. Let c1, · · · , cq : S1 → ∂M be
the boundary curves of M and C1, · · · , Cq the Dehn twists about these curves. Then
the centre ZM(M,P ) of M(M,P ) is the subgroup generated by {C1 · · · , Cq} and
is isomorphic with Zq. In particular, if ∂M is empty, the centre of M(M,P ) is
trivial.

Proof: It is clear that Ci is central in M(M,P ); the fact that the subgroup
generated by C1, · · · , Cq is isomorphic with Zq follows directly from Proposition
3.8. Now consider an element ξ in the centre of M(M,P ), with representative
homeomorphism h : M →M, [h] = ξ.

Consider curves a1, · · · , ap which detemine a pantalon decomposition of (M,P ).
(All the cases which do not admit a pantalon decomposition have been excluded.)
Since ξ is central, the Dehn twist Ai about the curves ai satisfy

Ai = ξAiξ
−1,
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and since ξAiξ−1 is a Dehn twist about h ◦ ai we conclude from Proposition 3.6
that h ◦ ai is isotopic with ai or a−1

i . By Proposition 3.10 we may suppose that

h ◦ ai = a±1
i ,

and consequently, h permutes the pantalons.
The pantalons (Mj , Pj) are mapped to M by maps φj. We call a curve ai

separating if it is in the image of φk and φl, for some k 6= l (a separating curve in
our sense need not separate the surface itself). First assume that ai is separating
and that h ◦ ai = a−1

i . Then h(φk(Mk)) = φl(Ml) and h(φl(Ml)) = φk(Mk). We
consider all the possibilities:

If (Mk, Pk) and (Ml, Pl) are pantalons of type I, then M is a 2-sphere and
|P | = 4 (see Figure 13.i). Consider the exact sequence:

1→ PM(S2, 4)→M(S2, 4)→ Σ4 → 1.

Since the centre of Σ4 is trivial, ξ must act trivially on P , whereas h interchanges
the points φk(Pk) and φl(Pl), so this case cannot occur.

If (Mk, Pk) and (Ml, Pl) are pantalons of type II, then φk(Mk) ∩ φl(Ml) = ai
and there are other curves aµ and aν which form the remaining boundary curves
of these pantalons (see Figure 13.ii). Then, since h interchanges the pantalons,
h(aµ) = a±1

ν . On the other hand, h(aµ) = a±1
µ , so we must have aµ = a±1

ν and
conclude that M is a torus and |P | = 2. This case has been excluded.

MlMk Ml

ai

Mk

ai aν

(ii)(i)

aµ

Figure 13: First cases, ai separating.

If (Mk, Pk) and (Ml, Pl) are pantalons of type III with identifications, so that
φk(Mk) and φl(Ml) are genus 1 surfaces with one boundary component ai, then
M is a closed surface of genus 2 and P is empty (see Figure 14.i). This case also
has been excluded.

Finally suppose (Mk, Pk) and (Ml, Pl) are pantalons of type III, mapped home-
omorphically by φk and φl (see Figure 14.ii). Then we argue as in the type II case
that their other boundary components must be identified, and that M is closed,
has genus 2, and P is empty, an excluded case.
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(ii)

ai

Mk Ml

(i)

ai

MlMk

Figure 14: ai separating type III pantalons.

Thus we have shown that if ai is separating, then h ◦ ai = ai. In addition we
have seen that h(φk(Mk)) = φk(Mk) for all k.

Recall the notation m = |P | and q is the number of boundary components of
M . We complete the proof by considering three cases:

Case 1: m+ q ≥ 2. Then we may assume all the ai are separating (see Figure
15). If M is not a sphere or disk, then each pantalon can be taken to be of type II
or III. If M is either a sphere or disk, the exact sequence

1→ PM(M,P )→M(M,P )→ ΣP → 1,

and the fact that ΣP has trivial centre under the assumption |P | ≥ 3, shows
that ξ ∈ PM(M,P ), or in other words, h fixes P pointwise. So we have, by the
structure of the (pure) mapping class groups of the pantalons of type I, II and III:

ξ = Ar11 · · ·Arpp Cs11 · · ·Csqq ,

for some integers r1, . . . , rp, s1, . . . , sq. Now fix i ∈ {1, . . . , p}. By Proposition 3.4,
there exists a generic simple closed curve b : S1 → M \ P such that I(ai, b) > 0
but aj ∩ b = ∅ if j 6= i. If B is the Dehn twist about b, we see that B commutes
with Aj, j 6= i. B also commutes with all the Cj and with ξ since they are central.
It follows that B commutes with Arii . By Proposition 3.7 we conclude that ri = 0.
Since i was arbitrary,

ξ = Cs11 · · ·Csqq .

Case 2: m + q = 1. We may now suppose that a1 is not separating, but
a2, . . . , ap are separating curves, and the pantalon (M1, P1) is of type III with two
boundary curves identified to a1, so that φ1(M1) is a surface of genus one with one
boundary component, which we may take to be a2 (see Figure 16). Moreover we
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Figure 15: Pantalon decomposition, all ai separating.

may assume (M2, P2), . . . , (Mr, Pr) are pantalons of type II or III, embedded in M .
Let ρ denote the half-twist of φ1(M1) along a2 relative to a1. Then by Proposition
5.1 and the structure of the mapping class groups of type II and III pantalons, ξ
can be written (assuming q = 1,m = 0 and noting that ρ2 = A2):

ξ = ρkAr11 A
r3
3 · · ·Arpp Cs11 ,

for integers k, r1, r3, . . . , rp, s1. Then

ξ2 = A2r1
1 Ak2A

2r3
3 · · ·A2rp

p C2s1
1 .

Employing the same argument as in Case 1, we conclude that

2r1 = k = 2r3 = · · · = 2rp = 0,

and so ξ = Cs11 if q = 1. If q = 0 and m = 1 we similarly conclude that ξ = 1.

a1

M1

a2 c1

Figure 16: Pantalon decomposition with a1 nonseparating.

Case 3: m+ q = 0. In particular, q = 0. Then we need two singular pantalons
in the decomposition of M , ξ has an expression as a product of two half-twists
together with powers of the Ai and we conclude by examining ξ2, exactly as in
case 2 that the powers are all zero and therefore ξ = 1.

6 Commensurability

If G is a group, then two subgroups H,H ′ < G are said to be commensurable if
H ∩ H ′ has finite index in both H and H ′. Commensurability is an equivalence
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relation on the set of all subgroups of G, really of interest only for infinite groups.
Following is an elementary property of commensurable subgroups, which we shall
find useful.

Proposition 6.1 Suppose H and H ′ are commensurable subgroups of G. Then
for each h ∈ H, there exists a nonzero integer k such that hk ∈ H ′.

Proof: If not, then {hk}, k ∈ Z is an infinite set of elements, all in different cosets
of H rel H ∩H ′, contradicting finite index.

Proposition 6.2 Suppose a1, . . . , ap : S1 → M \ P are essential simple closed
curves which are pairwise disjoint. Let b : S1 → M \ P be an essential simple
closed curve such that I(ai, b) = 0 for all i = 1, . . . , p. Then there exists a simple
closed curve c : S1 →M \P isotopic to b and such that ai∩c = ∅ for all i = 1, . . . , p.

Proof: We may assume b transverse to all the ai and argue by induction on the
cardinality of b ∩ (a1 ∪ · · · ∪ ap). If b ∩ (a1 ∪ · · · ∪ ap) is empty, there is nothing to
prove; suppose it is nonempty. Choose i so that b∩ai 6= ∅. Proposition 3.2 implies
that b and ai cobound a bigon D. There may be other intersections of aj with D,
but there is always an outermost bigon D′ ⊂ D cobounded by b and some ak, and
otherwise disjoint from a1 ∪ · · · ∪ ap (see Figure 17). Now we can push b across D′

to obtain a curve b′ isotopic with b and

|b′ ∩ (a1 ∪ · · · ∪ ap)| = |b ∩ (a1 ∪ · · · ∪ ap)| − 2.

By inductive hypothesis, there exists an isotopy from b′ to an essential simple
closed curve c in M \ P such that ai ∩ c = ∅ for all i = 1, . . . , p.
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Figure 17: Bigon in proof of Proposition 6.2.

Definitions: Recall that a subsurface is essential if none of its exterior components
is a disk with zero marked points. By a marked subsurface we mean a pair (N,Q)
where N is a subsurface of M and Q = P ∩ N . We will say that an essential
marked subsurface (N,Q) of (M,P ) is injective provided it satisfies:

27



a) If N is a disk, then |Q| ≥ 2,
b) If N is an annulus with Q empty, then there is no pointed disk component

of the exterior of N in M ,
c) If N is not an annulus, or if |Q| ≥ 1, then no component of M \N is a disk

with one marked point, or a cylinder with no marked points and both boundary
components in ∂N .

By Corollary 4.2 these criteria assure the injectivity of

M(N,Q)→M(M,P ).

If (N,Q) and (N ′, Q′) are marked subsurfaces of (M,P ), we say they are iso-
topic provided there is a continuous family of homeomorphisms ht ∈ H(M,P ), t ∈
[0, 1] such that h0 = identity, and h1(N,Q) = (N ′, Q′). In particular, Q = Q′.

We would like to be able to say that geometric subgroups are commensurable
if and only if they are equal, if and only if their defining subsurfaces are isotopic.
However, just as with centres, there are some exceptions to the general principle.
Our first family are the infinite cyclic geometric subgroups. The only marked
surfaces with mapping class Z are (S1 × I, 0) and (D2, 2); we note for future
reference that these are the only mapping class groups which contain Z as a finite-
index subgroup.

Proposition 6.3 Suppose (N,Q) and (N ′, Q′) are injective subsurfaces of (M,P ),
and suppose N = S1 × I and Q is empty. Suppose M(N,Q) and M(N ′, Q′) are
commensurable subgroups of M(M,P ). Then either (1) N ′ is a cylinder S1 × I
with Q′ empty or (2) N ′ is a disk and |Q′| = 2.

In case (1), N ′ is isotopic with N . In case (2), (N ′, Q′) = (D2, 2), then one
of the components (N1, Q1) of the exterior of (N,Q) in (M,P ) is a (D2, 2), and
(N1, Q1) is isotopic with (N ′, Q′) (see Figure 18).

N1 N

Figure 18: Injective subsurfaces in Proposition 6.3.

Proof: SinceM(N,Q) is infinite cyclic, so is every nontrivial subgroup, including
M(N,Q) ∩ M(N ′, Q′), so (N ′, Q′), its mapping class group containing a finite
index Z, can only be (S1 × I, ∅) or (D2, 2).
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Case 1: (N ′, Q′) is (S1 × I, ∅). Let a′(z) = (z, 1/2), z ∈ S1 denote the central
curve of N ′ and similarly label the central curve of N as a : S1 → N , and let
A′, A be Dehn twists of M about these curves. A and A′ represent generators of
M(N,Q) andM(N ′, Q′), respectively. By commensurability their intersection has
finite index, so there exist nonzero integers k, l such that

Ak = A′l.

Proposition 3.6 implies that a′ is isotopic with a or with a−1. Since N and N ′

are regular neighborhoods, respectively, of a and a′, it follows that N and N ′ are
isotopic in this case.

Case 2: (N ′, Q′) is (D2, 2). Choose notation as in Case 1, except that a′ now
denotes the boundary curve of N ′. Again we have nonzero k and l so that Ak = A′l,
and we conclude that a′ is isotopic with a±1. After an isotopy, we may assume a′

equals a boundary component of N . It then follows that N ′ is a component of the
exterior of N .

Definition: A doubled pantalon is the marked surface obtained by pasting together
two pantalons of the same type along their boundaries (see Figure 19). More
specifically, if (M,P ) is a marked surface and N a subsurface of M , the triple
(M,N,P ) is called a doubled pantalon in each of the cases:

Type I: M ∼= S2, N ∼= D2, |P | = 4, |P ∩N | = 2;
Type II: M ∼= S1 × S1 ⊃ S1 × I ∼= N, |P | = 2, |P ∩N | = 1;
Type III: M = closed surface of genus two, P = empty set, N ∼= M \N = type

III pantalons.
One reason to be interested in doubled pantalons is that they provide examples

of nonisotopic subsurfaces inducing commensurable geometric subgroups, which
we will see to be an exceptional case.

Proposition 6.4 Suppose that (M,N,P ) is a doubled pantalon, and let N ′ =
M \N . Then M(N,N ∩ P ) and M(N ′,N ′ ∩ P ) inject in M(M,P ), and are
commensurable subgroups. The subgroups are equal in the case of Types II or III.
For Type I, the intersection M(N,N ∩P )∩M(N ′,N ′ ∩P ) has index two in each
of M(N,N ∩ P ) and M(N ′,N ′ ∩ P ). In each of the three types, the subsurfaces
N and N ′ are non-isotopic in M (rel P ).

Proof: In the case of doubled pantalons of Type II or III, the two geometric
subgroups both equal the free abelian group generated by twists along the common
boundary of N andN ′. This has rank 2 or 3, respectively. For Type I, the generator
of M(N,N ∩ P ) is a half-twist interchanging the two points N ∩ P , which clearly
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N

Type I

Type II

Type III

N

N

Figure 19: Doubled pantalons.

does not belong to M(N ′,N ′ ∩ P ), all of whose elements fix N ∩ P pointwise.
Likewise the generator of M(N ′,N ′ ∩P ) is not in M(N,N ∩P ). But the squares
of the generators, being a Dehn twist along the common boundary, coincide. The
question of isotopy is clear for types I and II, because the surfaces N and N ′

enclose different marked points. In type III, the two pantalons, N and N ′ are
nonisotopic, too. For an isotopy taking N to N ′ would take the boundary to itself,
but with orientation reversed. But a simple homological calculation shows that if
a, b, c are the (oriented) boundary curves of N , a cannot be isotopic with a−1, b−1

or c−1.

In the following, consider two connected marked injective subsurfaces (N,Q),
(N ′, Q′) ⊂ (M,P ), it being understood that Q = N ∩P and Q′ = N ′ ∩P . We will
refer to the following four statements:

a) M(N,Q) and M(N ′, Q′) are commensurable subgroups of M(M,P );
b) M(N,Q) =M(N ′, Q′);
c) (N,Q) and (N ′, Q′) are isotopic;
d) (N,Q) is isotopic with either (N ′, Q′) or (M \N ′, P \Q′).

Theorem 6.5 Suppose that N and N ′ are injective subsurfaces of M and that
(N,Q) 6= (S1 × I, 0) 6= (N ′, Q′). Then:

i) if (M,N,P ) is not a doubled pantalon, (a)⇔ (b)⇔ (c);
ii) if (M,N,P ) is a doubled pantalon of Type II or III, (a)⇔ (b)⇔ (d);
iii) if (M,N,P ) is a doubled pantalon of Type I, (b)⇔ (c)⇒ (a)⇔ (d).

Proof: It is obvious that (c) ⇒ (b) ⇒ (a) in all three cases. Before breaking
into cases, let d1, . . . , dl : S1 →M \ P denote the boundary components of N and
similarly d′1, . . . , d

′
l′ the components of ∂N ′. Let {ai} be curves in N defining a
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pantalon decomposition of N (see Figure 20). Let Nj denote the components of
M \N . Choose curves bjk giving a pantalon decomposition of (Nj ,Nj ∩ P ) for
(Nj ,Nj ∩ P ) 6= (S1 × I, ∅).

N2

N1

b1,1

b1,2

d4

a1

a2 a3

a4
a5

N

b2,1

b2,2

d3 d2

d1

N3

b1,3

Figure 20: Pantalon decomposition of N and its complement.

We wish to show that in all cases (a) ⇒ (d). So we assume commensurability
of the geometric subgroupsM(N,Q) and M(N ′, Q′); the strategy is to show that
after an isotopy, the boundaries of N and N ′ can be made to coincide. We break
the argument into two steps.

Step 1: Each component d′j of ∂N ′ is isotopic (in M , rel P ) with a component
(di)±1 of ∂N , and vice-versa.

Proof of Step 1: First note that we may assume in this step that ∂M = ∅, by
the trick used before: adjoin a genus one surface to each boundary component of
M to obtain M̂ . M(M,P ) injects in M(M̂, P ), so the subgroups M(N,Q) and
M(N ′, Q′) are unchanged, and the desired conclusion of step 1, if true in M̂ , will
also hold in M by Proposition 3.5. In particular, since N is injective, none of the
Nj is a cylinder with Nj ∩ P = ∅, and the union of all the ai, bjk and di gives a
pantalon decomposition of M . Let Ai, Bjk, and Di denote the Dehn twists about
the respective curves ai, bjk, di. Let d′ = d′j be any boundary component of N ′,
and D′ the element of M(N ′, Q′) ⊂ M(M,P ) represented by a Dehn twist along
d′. We now calculate some intersection numbers:

I(ai, d′) = 0. Reason: Being a twist on a boundary curve, D′ is central in
M(N ′, Q′), though perhaps not in M(M,P ). By commensurability and Proposi-
tion 6.1 since Ai ∈M(N,Q) there is an integer s 6= 0 such that Asi ∈M(N ′, Q′). It
follows that Asi and D′ commute. Then Proposition 3.7 implies that I(ai, d′) = 0.

I(bjk, d′) = 0. This is shown similarly, noting that Bjk commutes with all of
M(N,Q), and by commensurability, a nonzero power of D′ is in M(N,Q).

I(di, d′) = 0 for all i. As in the previous case, a power of D′ belongs toM(N,Q)
and so commutes with Di, a twist of ∂N .
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Now Proposition 6.2 implies that d′ may be assumed, after an isotopy, to be
disjoint from the ai, bjk, di, i. e. d′ lies entirely inside one of the pantalons in the
decomposition of M corresponding to those curves. Being essential, d′ is isotopic
with one of the boundary curves of that pantalon (or its inverse). We have con-
cluded that, up to isotopy of M rel P , we have one (and only one) of the following
possibilities, for some i, j, k:

d′ ' a±1
i , d′ ' b±1

jk , or d′ ' d±1
i .

First assume d′ ' a±1
i . Since ai is not isotopic with a boundary component of N ,

there exists a generic simple closed curve e in N \Q such that I(d′, e) = I(ai, e) > 0.
The Dehn twist E along e is an element of M(N,Q), a subgroup commensurable
with M(N ′, Q′), so there exists t > 0 such that Et ∈ M(N ′, Q′). Recalling that
D′ is central in M(N ′, Q′), D′ and Et commute. By Proposition 3.7, I(d′, e) = 0,
a contradiction.

Next assume d′ ' b±1
jk , one of the pantalon curves of the component Nj of the

complement of N . As above, there is a simple closed curve e in Nj \ (Nj ∩P ) with
I(d′, e) = I(bjk, e) > 0. Noting that the Dehn twist E commutes with all elements
ofM(N,N ∩P ) and that a power of D′ belongs toM(N,N ∩P ), we obtain again
the contradiction that I(d′, e) = 0. Therefore d′ ' d±1

i . So Step 1 is established,
noting that by symmetry, any di is isotopic to some d′k.

Step 2: Now, the boundary of M is not assumed to be necessarily empty. If,
as in the hypothesis, (N,Q) 6= (S1 × I, 0) 6= (N ′, Q′), the curves d1, . . . , dl are
isotopically distinct, and likewise d′1, . . . , d

′
l′ . We conclude that l = l′ and, after

renumbering, each d′i is isotopic in M rel P , with di or d−1
i . By Proposition 3.10

there is an isotopy of M \ P taking ∂N to ∂N ′. It follows that (a) ⇒ (d) in all
cases.

We now show that the possibility N = M \N ′ can occur only if (N,Q) is a
pantalon in which case (M,N,P ) is a doubled pantalon. Suppose that (N,Q) is
not a pantalon (or (S1 × I, 0), (D2, 0), (D2, 1) which are excluded by assumption).
Then there exist curves a, b : S1 → N \Q with I(a, b) > 0. Let A,B ∈ M(N,Q)
denote the corresponding Dehn twists. By commensurability, Ak ∈M(N ′, Q′) for
some k > 0. But by disjointness, all elements of M(N ′, Q′) commute with all
elements of M(N,Q), so Ak and B commute. Proposition 3.7 implies I(a, b) = 0,
a contradiction.

In summary, we have shown that in case (i), (c)⇒ (b)⇒ (a)⇒ (c). Cases (ii)
and (iii) also follow from the above arguments and Proposition 6.4.
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7 Normalizers and Commensurators

The commensurator of a subgroup H of a group G is

ComG(H) = {g ∈ G : g−1Hg and H are commensurable},

the normalizer of H in G is

NG(H) = {g ∈ G : g−1Hg = H},

and the centralizer of H in G is

ZG(H) = {g ∈ G : gh = hg for all h ∈ H}.

In general we have

ZG(H) ⊂ NG(H) ⊂ ComG(H). Also H ⊂ NG(H).

For any subsurface N of M , we define the stabilizer Stab(N) as

Stab(N) = {[h] ∈M(M,P ) : h(N) is isotopic to N in M rel P ∪ ∂M}.

Noting that h ' h′ implies h(N) ' h′(N), we see this is a well-defined subgroup
of M(M,P ).

As in the previous section, the doubled pantalons are exceptional cases, so we
make the following constructions. Let (M,N,P ) be a doubled pantalon of type I, II
or III, embedded in the xyz-space symmetrically with respect to 180 degree rotation
s : M →M about the x-axis, and so that (N,N ∩P ) is the intersection of (M,P )
with the half-space y ≥ 0 (see Figure 21). The map s interchanges N and M \N ,
and reverses the orientation of ∂N . We will call σ = [s] :M(M,P ) →M(M,P ),
the exchange map, for each of the three types of doubled pantalon.

Theorem 7.1 Let N ⊂ M be an injective subsurface and denote G = M(M,P )
and H =M(N,N ∩ P ).

i) If (M,N,P ) is not a doubled pantalon, then

ComG(H) = NG(H) = Stab(N).

ii) If (M,N,P ) is a doubled pantalon of type II or III, then

ComG(H) = NG(H) = Stab(N)× 〈σ〉.

iii) If (M,N,P ) is a doubled pantalon of type I, then

ComG(H) = Stab(N)× 〈σ〉 and NG(H) = Stab(N).

Here 〈σ〉 denotes the cyclic subgroup of order 2 generated by the exchange σ of
(M,N,P ) and Stab(N) is normal in the semidirect product.
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Figure 21: Exchange map for doubled pantalons.

Proof: Let ξ ∈ ComG(H) and let h ∈ H(M,P ) represent ξ. Note that

ξM(N,P ∩N)ξ−1 =M(h(N), P ∩ h(N)).

First suppose (M,N,P ) is not a doubled pantalon, and ifN is a cylinder assume
P ∩N is nonempty. Since the groups M(N,P ∩N) and M(h(N), P ∩ h(N)) are
commensurable, Theorem 6.5 implies thatM(N,P∩N) =M(h(N), P ∩h(N)) and
that h(N) is isotopic to N rel P . This shows that ComG(H) = NG(H) = Stab(N).

Next suppose that N is a cylinder and P ∩ N is empty. Then h(N) is also a
cylinder and by Proposition 6.3 M(N,P ∩N) =M(h(N), P ∩ h(N)) and h(N) is
isotopic to N rel P . Again we conclude ComG(H) = NG(H) = Stab(N).

Now assume that (M,N,P ) is a doubled pantalon of type II or III. By Theorem
6.5, M(N,P ∩N) =M(h(N), P ∩ h(N)) and h(N) is isotopic to N or M \N rel
P . Therefore ComG(H) = NG(H), but this group is bigger than Stab(N); for
example σ belongs to the normalizer, but does not stabilize N .

We can define an epimorphism f : ComG(H) → Z/2Z by f([h]) = 0 if h(N)
is isotopic to N and f([h]) = 1 if h(N) is isotopic to M \N . The kernel of f
is Stab(N). The homomorphism f has a section s : Z/2Z → ComG(H) given
by s(0) = [id], s(1) = σ, where σ is the exchange of (M,N,P ). It follows that
ComG(H) = Stab(N)× 〈σ〉. By Propositions 5.3 and 5.5, σ is in the centre of
M(M,P ), so the product is, in fact, a direct product.

Finally, consider the case that (M,N,P ) is a doubled pantalon of type I. By
Theorem 6.5, h(N) is isotopic with N or M \N . Moreover, if ξ ∈ NG(H), then
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h(N) is isotopic with N , so we conclude that NG(H) = Stab(N). By defining
the homomorphism f and its section s exactly as above, we also conclude that
ComG(H) = Stab(N)× 〈σ〉.

We proceed now to study the group Stab(N) which, as seen before, determines
the commensurator and the normalizer of M(N,N ∩ P ) in M(M,P ).

We first state the following proposition which can be proved in the same manner
as Theorem 4.1.

Proposition 7.2 Let (N,Q) and (N ′, Q′) be marked surfaces. Choose l bound-
ary components c1, . . . , cl of N and l boundary components c′1, . . . , c

′
l of N ′, and

denote by Ci and C ′i the Dehn twists corresponding to ci and c′i in M(N,Q) and
M(N ′, Q′), respectively. Let M be the surface obtained by pasting together N and
N ′ along the curves ci and c′−1

i for all i = 1, . . . , l, and let P = Q ∪ Q′ ⊂ M
(see Figure 22). Assume that |Q| ≥ 2 if N is a disk and |Q| ≥ 1 if N is
an annulus. Assume the same for N ′ and Q′. Consider the homomorphism
φ : M(N,Q) ×M(N ′, Q′) → M(M,P ) induced by the inclusions of N and N ′

in M . Then the kernel of φ is generated by

{(C1, C
′−1
1 ), . . . , (Cl, C ′−1

l )},

and is isomorphic with Zl.

c′2

c1

c2

N N ′

c′1

Figure 22: Marked surfaces whose union is M .

Let (M,P ) be a marked surface, and let N be an injective subsurface of M . Let
c1, . . . , cl denote the boundary components of N and Σl the symmetric group of
{1, . . . , l}. There is a natural homomorphism τ : Stab(N) → Σl which associates
to [h] ∈ Stab(N) the unique σ ∈ Σl such that h(ci) is isotopic to cσ(i). Here we
assume that the curves ci are provided with the orientation induced by the one
of N . So, since h(N) is isotopic to N , such a σ exists and is unique, even if N
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is an annulus and N ∩ P = ∅. The homomorphism τ is not surjective in general.
However, one can explicitly describe its image which depends on the topology of
the complement of N \N ∩P in M \P . This image is long and tedious to describe
and we let the reader off this description.

Let N1, . . . ,Nr denote the connected components of M \N . The inclusions of
the Ni in M and of N in M induce a homomorphism

φ :M(N,N ∩ P )×M(N1,N1 ∩ P )× . . .×M(Nr,Nr ∩ P )→M(M,P ).

Assume that N is not an annulus with N ∩ P = ∅. Let Ci denote the Dehn
twist in M(N,N ∩ P ) corresponding to ci, Nj the component of M \N having ci
as boundary component, and C ′i the Dehn twist in M(Nj ,Nj ∩ P ) corresponding
to ci. Then, by Proposition 7.2, the kernel of φ is generated by

{C1C
′−1
1 , . . . , ClC

′−1
l }

and is a copy of Zl. The image of φ is obviously included in the kernel of τ and,
by Proposition 3.10, any element of the kernel of τ belongs in the image of φ. So,
we have proved:

Theorem 7.3 Let (N,N ∩P ) be a marked injective subsurface of (M,P ) different
from (S1 × I, ∅), and let τ and φ be the homomorphisms given above. Then we
have the exact sequence

1→ Zl →M(N,N ∩P )×M(N1,N1∩P )× . . .×M(Nr,Nr∩P ) φ→ Stab(N) τ→ Σl.

Proposition 7.4 Assume that N is an annulus, N ∩ P = ∅, and there is no
boundary component of N which is the boundary of a disk intersecting P in less
than two points.

i) Suppose M is a torus and P is empty. Then

Stab(N) =M(N)× 〈σ〉,

where σ is the element in M(M) of order two which generates the centre.
ii) Suppose M \N has a unique connected component, N1, and (M,P ) 6=

(T 2, ∅) (see Figure 23.i). Then we have an exact sequence

1→ Z→M(N1, P )→ Stab(N) τ→ Σ2 → 1.

iii) Suppose M \N has two connected components, N1 and N2 (see Figure
23.ii).Then we have an exact sequence

1→ Z→M(N1,N1 ∩ P )×M(N2,N2 ∩ P )→ Stab(N) τ→ Σ2.
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Figure 23: The annulus N of Proposition 7.4.

Proof: First, suppose that M is a torus and P is empty. By the structure of
the mapping class group of an annulus, the kernel of τ is M(N) ' Z. Moreover,
σ ∈ Stab(N) and σ permutes (up to isotopy) the boundary components of N , thus
τ is surjective and the map (1, 2) 7→ σ gives a section of τ . Since σ is central in
M(M), it follows that Stab(N) =M(N)× 〈σ〉.

Assume now that M \N has a unique connected component, N1, and (M,P ) 6=
(T 2, ∅). Let c1, c2 denote the boundary components of N . We can cut N1 along
some closed essential curve d into two subsurfaces such that one of them is a
pantalon of type III having d, c1 and c2 as boundary components (see Figure
23.i). Pasting this pantalon with N one obtains a genus one surface with one
boundary component, d. Let ρ be the half-twist of this surface of genus one along
d relative to c1, as defined in Section 5. Then ρ ∈ Stab(N) and τ(ρ) = (1, 2). This
shows that τ is surjective. Let Ci denote the Dehn twist along ci in M(N1, P ),
ι : M(N1, P ) → Stab(N) the homomorphism induced by the inclusion of N1 in
M , and θ : Z → M(N1, P ) the homomorphism defined by θ(1) = C1C

−1
2 . Then

the equality Imι = Kerτ follows from Proposition 3.10, and Theorem 4.1 implies
Kerθ = {0} and Imθ = Kerι.

Assume now that M \N has two connected components, N1 and N2. Let ci
denote the common boundary component of N and Ni, Ci the Dehn twist along
ci in M(Ni,Ni ∩ P ),

ι :M(N1,N1 ∩ P )×M(N2,N2 ∩ P )→ Stab(N)

the homomorphism induced by the inclusions of N1 and N2 in M , and

θ : Z→M(N1,N1 ∩ P )×M(N2,N2 ∩ P )

the homomorphism defined by θ(1) = (C1, C
−1
2 ). The equality Imι = Kerτ and the

inclusion Imθ ⊂ Kerι are obvious, and the injectivity of θ follows from Corollary
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3.9. So, it remains to prove the inclusion Kerι ⊂ Imθ. If (N1,N1∩P ) = (S1×I, ∅),
thenM(N1,N1∩P ) =M(N) is the infinite cyclic subgroup generated by C1 = C2,
and therefore, since M(N2,N2 ∩ P ) injects in M(M,P ) by Theorem 4.1, Kerι ⊂
Imθ. If (N1,N1 ∩ P ) 6= (S1 × I, ∅) 6= (N2,N2 ∩ P ), then the inclusion Kerι ⊂ Imθ
follows from Proposition 7.2.

8 Centralizers

Theorem 8.1 Let N ⊂ M be an injective subsurface and denote G = M(M,P )
and H =M(N,N ∩ P ).

i) If N is an annulus and N ∩ P is empty, then

ComG(H) = NG(H) = ZG(H) = Stab(N).

ii) If (M,N,P ) is a doubled pantalon of type II or III, then

ZG(H) =M(N,N ∩ P )× 〈σ〉,

where 〈σ〉 is the cyclic subgroup of order two generated by the exchange σ of
(M,N,P ).

iii) Suppose that (N,N ∩ P ) is not as in (i) or (ii). Let N1, . . . ,Nr denote the
connected components of M \N . Then we have the exact sequence

1→ Zl → ZM(N,N ∩P )×M(N1,N1∩P )× . . .×M(Nr,Nr∩P )
φ→ ZG(H)→ 1,

where l is the number of components of ∂N and φ is the homomorphism defined
in Section 7. Moreover, assuming that |N ∩P | ≥ 3 if N is a disk and |N ∩P | ≥ 1
if N is a genus one surface with one boundary component, the restriction

φ :M(N1,N1 ∩ P )× . . .×M(Nr,Nr ∩ P )→ ZG(H)

of φ to M(N1,N1 ∩ P )× . . .×M(Nr,Nr ∩ P ) is an isomorphism.

Proof: Suppose that N is an annulus and N ∩ P is empty. The equalities
ComG(H) = NG(H) = Stab(N) are proved in Theorem 7.1 and the inclusion
ZG(H) ⊂ NG(H) is obvious. So, it remains to prove Stab(N) ⊂ ZG(H). Let c1, c2
denote the boundary curves of N . The Dehn twists C1 and C2 along c1 and c2,
respectively, coincide and generate M(N). Let ξ ∈ Stab(N) and let h ∈ H(M,P )
represent ξ. Then h ◦ c1 is isotopic with c1 or c2, thus ξC1ξ

−1 = C1 or C2 = C1,
therefore ξ ∈ ZG(H).
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Suppose now that (N,N ∩ P ) is not as in (i) or (ii). We know by Theorem
7.1 that ZG(H) ⊂ NG(H) = Stab(N). Consider the exact sequence of Theorem
7.3. Let c1, . . . , cl denote the boundary components of N and Ci the Dehn twist
in M(M,P ) corresponding to ci. Let ξ ∈ ZG(H) and let h ∈ H(M,P ) represent
ξ. The transformation h cannot permute the ci because ξCiξ−1 is the Dehn twist
along h ◦ ci, the equality ξCiξ

−1 = Ci implies by Proposition 3.6 that h ◦ ci is
isotopic with ci or c−1

i , and (N,N ∩ P ) 6= (S1 × I, ∅) together with the injectivity
of N imply that c−1

i is not isotopic with some cj , j 6= i. So, ZG(H) ⊂ Kerτ = Imφ.
Then the exact sequence

1→ Zl → ZM(N,N ∩P )×M(N1,N1 ∩P )× . . .×M(Nr,Nr ∩P )
φ→ ZG(H)→ 1

is a straightforward consequence of the exact sequence of Theorem 7.3.
Suppose now in addition that |N∩P | ≥ 3 if N is a disk and |N∩P | ≥ 1 if N is a

genus one surface with one boundary component. Then, by Theorem 5.6, the centre
ofM(N,N ∩P ) is the free abelian group of rank l generated by {C1, . . . , Cl}. Thus
it follows from the expression of the kernel of φ given in the proof of Theorem 7.3
that the restriction of φ toM(N1,N1∩P )×. . .×M(Nr,Nr∩P ) is an isomorphism.

Assume now that (M,N,P ) is a doubled pantalon of type II or III. Let ξ ∈
ZG(H) and let h ∈ H(M,P ) represent ξ. We show as above that, if h stabilizes N
(up to isotopy), then h fixes (up to isotopy) the boundary components of N , and
therefore h ∈M(N,N ∩ P ) =M(M \N,M \N ∩ P ). So,

ZG(H) ∩ Stab(N) =M(N,N ∩ P ).

The exchange σ is an element of the centre of M(M,P ) and thus an element of
ZG(H). Finally, from the equality NG(H) = Stab(N)×〈σ〉 of Theorem 7.1 follows
the equality ZG(H) =M(N,N ∩ P )× 〈σ〉.
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