Geometric subgroups of surface braid groups

Luis Paris and Dale Rolfsen

Abstract

Let M be a surface, let N be a subsurface of M, and let $n \leq m$ be two positive integers. The inclusion of N in M gives rise to a homomorphism from the braid group $B_{n} N$ with n strings on N to the braid group $B_{m} M$ with m strings on M. We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of $\pi_{1} N$ in $\pi_{1} M$. Then we calculate the commensurator, the normalizer, and the centralizer of $B_{n} N$ in $B_{m} M$ for large surface braid groups.

1. Introduction

The classical braid groups B_{m} were introduced by Artin in 1926 ([Ar1], [Ar2]) and have played a remarkable rôle in topology, algebra, analysis, and physics. A natural generalization to braids on surfaces was introduced by Fox and Neuwirth [FoN] in 1962. The surface braid groups, for closed surfaces, were calculated in terms of generators and relations during the ensuing decade ([Bi1], [Sc], [Va], [FaV]). Since then, most progress in this subject has been in its relation with mapping class groups and the general theory of configuration spaces (see the surveys [Bi3], [Co]). However, recently there is renewed interest in these fascinating groups in their own right, in part because of the action of surface braid groups on certain topological quantum field theories.

The purpose of this paper is to continue the study of the structure of the surface braid groups, with emphasis on certain naturally-occuring subgroups. A subsurface of a surface gives rise to inclusion maps between their braid groups. We determine necessary and sufficient conditions that these inclusion-induced maps are injective in Section 2. The remainder of the paper is devoted to a detailed study of these "geometric" subgroups. In particular, we calculate their centralizers, normalizers and commensurators in the larger surface braid group. Commensurators, in infinite groups, are of importance in their (unitary) representation theory. It is our hope that these results will be useful in the further study of surface braid groups, their representations and applications. In the remainder of this introductory section we present definitions, basic properties of surface braid groups, and a brief review of the literature.

1.1. Surface braids and configuration spaces

Let M be a topological manifold and choose distinct points $P_{1}, \ldots, P_{m} \in M$ (later we will specialize to $\operatorname{dim}(\mathrm{M})=2$). A braid with m strings on M based at $\left(P_{1}, \ldots, P_{m}\right)$ is an m-tuple $b=\left(b_{1}, \ldots, b_{m}\right)$ of paths, $b_{i}:[0,1] \rightarrow M$, such that

1) $b_{i}(0)=P_{i}$ and $b_{i}(1) \in\left\{P_{1}, \ldots, P_{m}\right\}$ for all $i \in\{1, \ldots, m\}$,
2) $b_{i}(t) \neq b_{j}(t)$ for $i, j \in\{1, \ldots, m\}, i \neq j$, and for $t \in[0,1]$.

There is a natural notion of homotopy of braids. The braid group with m strings on M based at $\left(P_{1}, \ldots, P_{m}\right)$ is the group $B_{m} M=B_{m} M\left(P_{1}, \ldots, P_{m}\right)$ of homotopy classes of braids based at $\left(P_{1}, \ldots, P_{m}\right)$. The group operation is concatenation of braids, generalizing the construction of the fundamental group. Indeed, for the case $m=1$ we clearly have $B_{1} M\left(P_{1}\right)=\pi_{1}\left(M, P_{1}\right)$. For $m>1$, it is useful to consider the class of pure braids, which have the property $b_{i}(1)=P_{i}$. These form a subgroup of B_{m} which we will denote by $P B_{m} M=P B_{m} M\left(P_{1}, \ldots, P_{m}\right)$. Let Σ_{m} be the group of permutations of $\left\{P_{1}, \ldots, P_{m}\right\}$. There is a natural epimorphism $\sigma: B_{m} M \rightarrow \Sigma_{m}$; its kernel is the pure braid group, so we have an exact sequence:

$$
1 \longrightarrow P B_{m} M \longrightarrow B_{m} M \xrightarrow{\sigma} \Sigma_{m} \longrightarrow 1 .
$$

Note that, if M is a connected manifold of dimension at least two, then $B_{m} M$ and $P B_{m} M$ do not depend (up to isomorphism) on the choice of P_{1}, \ldots, P_{m}. An m-braid naturally gives rise to m different paths in M under the map $b \rightarrow\left(b_{1}, \ldots, b_{m}\right)$. In the case of pure braids these are loops, so there is a natural homomorphism

$$
P B_{m} M \longrightarrow \pi_{1}\left(M, P_{1}\right) \times \cdots \times \pi_{1}\left(M, P_{m}\right) \cong \pi_{1}\left(M^{m}\right),
$$

where M^{m} denotes the m-fold cartesian power.

Proposition 1.1 ([Bi1]). If M is a connected manifold with $\operatorname{dim}(M)>2$, the above map is an isomorphism. For $\operatorname{dim}(M)=2$ it is surjective.

The proof is straightforward when one views braids from the configuration space point of view ([FoN], [FaN].) Let $F_{m} M$ denote the space of (ordered) distinct points of M, in other words $F_{m} M=\left(M^{m}\right) \backslash V$, where V is the big diagonal, consisting of m-tuples $x=\left(x_{1}, \ldots, x_{m}\right)$ for which $x_{i}=x_{j}$ for some $i \neq j$. Then we clearly have an isomorphism

$$
P B_{m} M \cong \pi_{1}\left(F_{m} M\right) .
$$

Proof of Proposition 1.1. The map in question is induced by the inclusion $F_{m} M=$ $(M)^{m} \backslash V \rightarrow(M)^{m}$. Noting that $V=\cup_{1 \leq i<j \leq m}\left\{x_{i}=x_{j}\right\}$ is a union of submanifolds of codimension $\operatorname{dim}(M)$, the proposition follows from well-known general position arguments.

Because of Proposition 1.1, braid theory (as formulated here) is of marginal interest for dimension ≥ 3 and we concentrate on dimension two, i. e. surface braid groups.

In the remainder of the paper, M will denote a connected surface, possibly with boundary and possibly nonorientable. To avoid pathology, we will assume M is either compact, or at least that it is a "punctured" compact manifold, i. e. M is homeomorphic to a compact 2-manifold, possibly with a finite set of points removed.

By permuting coordinates, there is a natural action of Σ_{m} upon $F_{m} M$ and we denote the orbit space, the space of unordered m-tuples, or configuration space, by $\hat{F}_{m} M=$ $F_{m} M / \Sigma_{m}$. We may view the full braid group as its fundamental group

$$
B_{m} M \cong \pi_{1}\left(\hat{F}_{m} M\right)
$$

The inclusion $P B_{m} M \subseteq B_{m} M$ may thus be interpreted as the mapping induced by the covering space map $F_{m} M \longrightarrow \hat{F}_{m} M$, which has fiber Σ_{m}. Fox and Neuwirth noted that $B_{m}(D)$, the braid groups of the disk D^{2}, coincide with the Artin braid groups.

One of the most useful tools in studying braid groups is the Fadell-Neuwirth fibration and its generalizations. As observed in [FaN], if M is a manifold and $1 \leq n<m$ the map $\rho: F_{m} M \rightarrow F_{n} M$ defined by $\rho\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{n}\right)$ is a (locally trivial) fibration which has the fiber $F_{m-n}\left(M \backslash\left\{P_{1}, \ldots, P_{n}\right\}\right)$. This gives rise to a long exact sequence of homotopy groups of these spaces. For example, in the case $n=m-1$ we have the exact sequence

$$
\cdots \rightarrow \pi_{2} F_{m} M \rightarrow \pi_{2} F_{m-1} M \rightarrow \pi_{1}\left(M \backslash\left\{P_{1}, \ldots, P_{m-1}\right\}\right) \rightarrow P B_{m} M \rightarrow P B_{m-1} M \rightarrow 1
$$

The punctured surface $M \backslash\left\{P_{1}, \ldots, P_{m-1}\right\}$ has the homotopy type of a one-dimensional complex, and we see immediately from the above long exact sequence that

$$
\pi_{k}\left(F_{m} M\right) \cong \pi_{k}\left(F_{m-1} M\right) \cong \cdots \cong \pi_{k}(M), \quad k \geq 3
$$

and

$$
\pi_{2}\left(F_{m} M\right) \subset \pi_{2}\left(F_{m-1} M\right) \subset \cdots \subset \pi_{2}(M)
$$

Because they are the only surfaces with nontrivial higher homotopy groups, the sphere S^{2} and the projective plane P^{2} are exceptional cases in the general theory.

Proposition 1.2. Suppose that M is a connected surface, $M \neq S^{2}$ or P^{2}, and $k \geq 2$. Then $\pi_{k} F_{m} M$ and $\pi_{k} \hat{F}_{m} M$ are trivial groups.

Proof. Since $F_{m} M \rightarrow \hat{F}_{m} M$ is a covering map, it suffices to prove the proposition for $F_{m} M$. But this follows from the observations made above, since $\pi_{k}(M)=1$ for $k \geq 2$.

Combining this with the Fadell-Neuwirth fibration:
Proposition 1.3. Suppose that M is a connected surface, $M \neq S^{2}$ or P^{2}, and $1 \leq n<m$. There is an exact sequence

$$
1 \longrightarrow P B_{m-n} M \backslash\left\{P_{1}, \ldots, P_{n}\right\} \longrightarrow P B_{m} M \xrightarrow{\rho} P B_{n} M \longrightarrow 1
$$

Let Σ_{n} be the group of permutations of $\left\{P_{1}, \ldots, P_{n}\right\}$ and let Σ_{m-n} be the group of permutations of $\left\{P_{n+1}, \ldots, P_{m}\right\}$. The Fadell-Neuwirth map gives rise to a (locally trivial) fibration

$$
\hat{\rho}: F_{m} M /\left(\Sigma_{n} \times \Sigma_{m-n}\right) \longrightarrow F_{n} M / \Sigma_{n}=\hat{F}_{n} M
$$

which has the fiber

$$
\left(F_{m-n} M \backslash\left\{P_{1}, \ldots, P_{n}\right\}\right) / \Sigma_{m-n}=\hat{F}_{m-n} M \backslash\left\{P_{1}, \ldots, P_{n}\right\}
$$

So:
Proposition 1.4. Suppose that M is a connected surface, $M \neq S^{2}$ or P^{2}, and $1 \leq n<m$. There is an exact sequence

$$
1 \longrightarrow B_{m-n} M \backslash\left\{P_{1}, \ldots, P_{n}\right\} \longrightarrow \sigma^{-1}\left(\Sigma_{n} \times \Sigma_{m-n}\right) \longrightarrow B_{n} M \longrightarrow 1
$$

1.2. Torsion

Except for $M=S^{2}, P^{2}$, the configuration space $\hat{F}_{m} M$ is an Eilenberg-Maclane space, i. e. a classifying space for $B_{m} M$. As is well-known, a group which has elements of finite order must have an infinite-dimensional classifying space (see, e. g. [Br, Cap VIII]). Since $\hat{F}_{m} M$ has dimension $2 m$, we can then conclude.

Proposition 1.5. If M is a connected surface, $M \neq S^{2}$ or P^{2}, then its braid groups $B_{m} M$ have no elements of finite order.

The braid groups of S^{2} and P^{2} do have torsion (with the exception the trivial group $B_{1}\left(S^{2}\right)$). We give a quick review of these, following [FaV] and [Va]. For S^{2} take all the basepoints to lie in a disk $D^{2} \subseteq S^{2}$ and let $\sigma_{1}, \ldots, \sigma_{m-1}$ be the standard braid generators of $B_{m}\left(D^{2}\right) ; \sigma_{i}$ exchanges P_{i} and P_{i+1}. They satisfy the famous braid relations

$$
\begin{align*}
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i}, \quad|i-j| \geq 2 \\
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad 1 \leq i \leq m-2 \tag{*}
\end{align*}
$$

The same σ_{i} can also be taken to be generators of $B_{m}\left(S^{2}\right)$ where they still satisfy these relations. The word $\sigma_{1} \sigma_{2} \cdots \sigma_{m-1} \sigma_{m-1} \cdots \sigma_{2} \sigma_{1}$ may be interpreted as the (pure) braid in which P_{1} circles around P_{2}, \ldots, P_{m}, while those points stay fixed. This is clearly homotopic in S^{2} to the identity braid, so we have the additional relation

$$
\sigma_{1} \sigma_{2} \cdots \sigma_{m-1} \sigma_{m-1} \cdots \sigma_{2} \sigma_{1}=1
$$

It is shown in $[\mathrm{FaV}]$ that this, together with $\left(^{*}\right)$ are defining relations for $B_{m}\left(S^{2}\right)$. The element $\tau=\sigma_{1} \sigma_{2} \cdots \sigma_{m-1}$ has order $2 m$ in $B_{m}\left(S^{2}\right)$; it can be pictured as a simple braid which permutes the basepoints cyclically.

For the projective plane, take σ_{i} as above corresponding to a disk engulfing the basepoints, and let ρ_{j} to be a braid in which the basepoint P_{j} travels along a nontrivial loop in P^{2} while the other basepoints sit still. See [Va] for a more precise description and a proof that $B_{n}\left(P^{2}\right)$ is presented by the $2 m-1$ generators $\sigma_{1}, \ldots, \sigma_{m-1}, \rho_{1}, \ldots, \rho_{m}$ and relations $\left.{ }^{*}\right)$ together with

$$
\begin{aligned}
\sigma_{i} \rho_{j} & =\rho_{j} \sigma_{i}, \quad j \neq i, i+1 \\
\rho_{i} & =\sigma_{i} \rho_{i+1} \sigma_{i} \\
\sigma_{i}^{2} & =\rho_{i+1}^{-1} \rho_{i}^{-1} \rho_{i+1} \rho_{i} \\
\rho_{1}^{2} & =\sigma_{1} \sigma_{2} \cdots \sigma_{m-1} \sigma_{m-1} \cdots \sigma_{2} \sigma_{1}
\end{aligned}
$$

The element τ as defined above, but considered an element of $B_{m}\left(P^{2}\right)$, again has order $2 m$. Thus we have the theorem of Van Buskirk, that for each $m \geq 2$, the surface braid group $B_{m} M$ has elements of finite order if and only if $M=S^{2}$ or P^{2}.

Some of these braid groups are actually finite: $B_{2}\left(S^{2}\right) \cong \mathbf{Z} / 2 \mathbf{Z}, B_{3}\left(S^{2}\right)$ has order 12 , $B_{1}\left(P^{2}\right) \cong \mathbf{Z} / 2 \mathbf{Z}$ and $B_{2}\left(P^{2}\right)$ is a group of order 16 whose subgroup $P B_{2}\left(P^{2}\right)$ is isomorphic with the quaternion group $\{ \pm 1, \pm i, \pm j, \pm k\} . B_{3}\left(P^{2}\right)$ is infinite, as are all the other higher braid groups of P^{2} and S^{2}.

For the braid groups of higher genus closed surfaces, we refer the reader to [Sc], and only mention how to produce a generating set. After removing a disk from a surface M of genus g, the remainder can be modelled as a disk with g twisted bands attached, in the nonorientable case, or $2 g$ bands if the surface is orientable. Then $B_{m}(M)$ is generated by $\sigma_{1}, \ldots, \sigma_{m-1}$ as above, plus $\rho_{i j}$ which represents the basepoint P_{i} running once around the $j_{t h}$ band, while the others are fixed. A finite set of relations can be found in $[\mathrm{Sc}]$.

1.3. Centers and Large Surfaces

The center $Z(G)$ of a group G is the subgroup of elements which commute with all elements of the group. Chow [Ch] proved that the groups $B_{m}=B_{m}\left(D^{2}\right)$ have infinite cyclic center, for $m \geq 2$. Some other surface braid groups also have nontrivial centers: those of S^{2} [GV], P^{2} [Va]. If τ is defined as in the preceding section, the element τ^{m} is central in $B_{m} S^{2}$. Birman stated in $[\mathrm{Bi} 2]$ that the torus braid groups $B_{m} T^{2}$ have center which is free abelian with two generators, but did not include a complete proof. We will prove this, and also calculate the center of the braid groups of the annulus $S^{1} \times I$ in Section 4. However, apart from these and a few other exceptions, most surface braid groups have no center. Our proof is the same as given in $[\mathrm{Bi} 2]$.

Definition. A compact surface M will be called large if $M \neq S^{2}, P^{2}, D^{2}, S^{1} \times I, T^{2}=$ $S^{1} \times S^{1}$, Möbius strip $S^{1} \hat{\times} I$, or Klein bottle $S^{1} \hat{\times} S^{1}$. In other words, we call a surface large if its fundamental group has no finite index abelian subgroup.

Proposition 1.6. Let M be a large compact surface. Then the center $Z\left(B_{m}(M)\right)$ is a trivial group.

Proof. First, we prove by induction on m that $Z\left(P B_{m} M\right)=\{1\}$. The case $m=1$ is well-known: the only surfaces whose fundamental groups have nontrivial centers are $P^{2}, S^{1} \times I, T^{2}$, the Möbius strip, and Klein bottle.

Let $m>1$ and M large. We consider the following exact sequence

$$
1 \longrightarrow \pi_{1}\left(M \backslash\left\{P_{1}, \ldots, P_{m-1}\right\}\right) \longrightarrow P B_{m} M \xrightarrow{\rho} P B_{m-1} M \longrightarrow 1
$$

Since ρ is surjective, it takes center into center, and by induction, $Z\left(P B_{m-1} M\right)=\{1\}$. So $Z\left(P B_{m} M\right) \subseteq \pi_{1}\left(M \backslash\left\{P_{1}, \ldots, P_{m-1}\right\}\right)$. But this latter group has trivial center, so $Z\left(P B_{m} M\right)=\{1\}$. Now, let $g \in Z\left(B_{m} M\right)$. There exists an integer $k>0$ such that $g^{k} \in P B_{m} M$. Then $g^{k} \in Z\left(P B_{m} M\right)$, thus $g^{k}=1$. By Proposition 1.5, $g=1$.

2. SUBSURFACES

A subsurface N of a surface M is the closure of an open subset of M. For simplicity we make the extra assumption that every boundary component of N either is a boundary component of M or lies in the interior of M.

Let $P_{1} \in N$. The inclusion $N \subseteq M$ induces a morphism $\psi: \pi_{1}\left(N, P_{1}\right) \rightarrow \pi_{1}\left(M, P_{1}\right)$. The following proposition is well-known.

Proposition 2.1. Let N be a connected subsurface of M such that $\pi_{1}\left(N, P_{1}\right) \neq\{1\}$. The morphism $\psi: \pi_{1}\left(N, P_{1}\right) \rightarrow \pi_{1}\left(M, P_{1}\right)$ is injective if and only if none of the connected components of the closure $M \backslash N$ of $M \backslash N$ is a disk.

Let $P_{1}, \ldots, P_{n} \in N$, and let $P_{n+1}, \ldots, P_{m} \in M \backslash N$. The inclusion $N \subseteq M$ induces a morphism $\psi: B_{n} N \rightarrow B_{m} M$.

Proposition 2.2. Let M be different from the sphere and from the projective plane, and let N be such that none of the connected components of $\overline{M \backslash N}$ is a disk. Then the morphism $\psi: B_{n} N \rightarrow B_{m} M$ is injective.

Remark. Proposition 2.2 is proved in [Go] in the particular case where N is a disk.
Proof. Let $P \psi_{n}: P B_{n} N \rightarrow P B_{n} M$ be the morphism induced by the inclusion $N \subseteq M$. We prove that $P \psi_{n}$ is injective by induction on n. The case $n=1$ is a consequence of Proposition 2.1.

Let $n>1$. By Proposition 2.1, the inclusion

$$
N \backslash\left\{P_{1}, \ldots, P_{n-1}\right\} \subseteq M \backslash\left\{P_{1}, \ldots, P_{n-1}\right\}
$$

induces a monomorphism

$$
\alpha: \pi_{1}\left(N \backslash\left\{P_{1}, \ldots, P_{n-1}\right\}\right) \longrightarrow \pi_{1}\left(M \backslash\left\{P_{1}, \ldots, P_{n-1}\right\}\right) .
$$

The following diagram commutes.

By induction, $P \psi_{n-1}$ is injective. By the five lemma, $P \psi_{n}$ is injective, too.
Let $P \psi: P B_{n} N \rightarrow P B_{m} M$ be the morphism induced by the inclusion $N \subseteq M$. The following diagram commutes.

The morphism $P \psi_{n}$ is injective, thus $P \psi$ is injective, too.
Let $\iota: \Sigma_{n} \rightarrow \Sigma_{m}$ be the inclusion. The following diagram commutes.

Both $P \psi$ and ι are injective, so, by the five lemma, ψ is injective, too.
Let N_{1}, \ldots, N_{r} be the connected components of $\overline{M \backslash N}$. For $i=1, \ldots, r$, we write

$$
\mathcal{P}_{i}=\left\{P_{n+1}, \ldots, P_{m}\right\} \cap N_{i} .
$$

Theorem 2.3. Let M be different from the sphere and from the projective plane. The morphism $\psi: B_{n} N \rightarrow B_{m} M$ is injective if and only if either N_{i} is not a disk or $\mathcal{P}_{i} \neq \emptyset$, for all $i=1, \ldots, r$.

Proof. We suppose that there exists $i \in\{1, \ldots, r\}$ such that N_{i} is a disk and such that $\mathcal{P}_{i}=\emptyset$. We consider the following commutative diagram.

By [FaN], the morphism $\pi_{1}\left(N \backslash\left\{P_{2}, \ldots, P_{n}\right\}\right) \rightarrow B_{n} N$ is injective. On the other hand, the morphism $\psi: \pi_{1}\left(N \backslash\left\{P_{2}, \ldots, P_{n}\right\}\right) \rightarrow \pi_{1}\left(M \backslash\left\{P_{2}, \ldots, P_{m}\right\}\right)$ is clearly not injective. Thus $\psi: B_{n} N \rightarrow B_{m} M$ is not injective.

We suppose that either N_{i} is not a disk or $\mathcal{P}_{i} \neq \emptyset$, for all $i=1, \ldots, r$. We consider the following commutative diagram.

By Proposition 2.2, the morphism $\psi: B_{n} N \rightarrow B_{n} M \backslash\left\{P_{n+1}, \ldots, P_{m}\right\}$ is injective. By [FaN], the morphism $B_{n} M \backslash\left\{P_{n+1}, \ldots, P_{m}\right\} \rightarrow B_{m} M$ is injective. Thus $\psi: B_{n} N \rightarrow B_{m} M$ is injective.

3. COMMENSURATOR, NORMALIZER, AND CENTRALIZER OF $\pi_{1} N$ IN $\pi_{1} M$

Let N be a subsurface of a connected surface M. We say that N is a Möbius collar in M if N is a cylinder $S^{1} \times I$ and $\overline{M \backslash N}$ has two components N_{1}, N_{2} with one of them, say N_{1}, a Möbius strip (see Figure 3.1). Then $M_{0}=N \cup N_{1}$ will be called the Möbius strip collared by N in M.

Figure 3.1
Let G be a group, and let H be a subgroup of G. We denote by $C_{G}(H)$ the commensurator of H in G, by $N_{G}(H)$ the normalizer of H in G, and by $Z_{G}(H)$ the centralizer of H in G. That is,

$$
\begin{gathered}
Z_{G}(H)=\{g \in G: g h=h g \text { for all } h \in H\} \\
N_{G}(H)=\left\{g \in G: g H g^{-1}=H\right\} \\
C_{G}(H)=\left\{g \in G: g H g^{-1} \cap H \text { has finite index in } g H g^{-1} \text { and } H\right\}
\end{gathered}
$$

The goal of this section is to prove the following theorem.
Theorem 3.1. Let $P_{0} \in N$. We write $\pi_{1} M=\pi_{1}\left(M, P_{0}\right)$ and $\pi_{1} N=\pi_{1}\left(N, P_{0}\right)$.
i) If M is not large or if $\pi_{1} N=\{1\}$, then $C_{\pi_{1} M}\left(\pi_{1} N\right)=\pi_{1} M$.
ii) If M is large, if $\pi_{1} N \neq\{1\}$, and if N is not a Möbius collar in M, then $C_{\pi_{1} M}\left(\pi_{1} N\right)=\pi_{1} N$.
iii) If M is large and if N is a Möbius collar in M, then $C_{\pi_{1} M}\left(\pi_{1} N\right)=\pi_{1} M_{0}$, where M_{0} is the Möbius strip collared by N in M.

Corollary 3.2. i) If M is either a cylinder, or a torus, or a Möbius strip, then

$$
C_{\pi_{1} M}\left(\pi_{1} N\right)=N_{\pi_{1} M}\left(\pi_{1} N\right)=Z_{\pi_{1} M}\left(\pi_{1} N\right)=\pi_{1} M
$$

ii) If M is large, if N is not a Möbius collar in M, if $\pi_{1} N \neq\{1\}$, and if N is not large, then

$$
C_{\pi_{1} M}\left(\pi_{1} N\right)=N_{\pi_{1} M}\left(\pi_{1} N\right)=Z_{\pi_{1} M}\left(\pi_{1} N\right)=Z\left(\pi_{1} N\right)=\pi_{1} N
$$

iii) If M and N are both large, then

$$
\begin{gathered}
C_{\pi_{1} M}\left(\pi_{1} N\right)=N_{\pi_{1} M}\left(\pi_{1} N\right)=\pi_{1} N, \\
Z_{\pi_{1} M}\left(\pi_{1} N\right)=Z\left(\pi_{1} N\right)=\{1\} .
\end{gathered}
$$

iv) If M is large and if N is a Möbius collar in M, then

$$
C_{\pi_{1} M}\left(\pi_{1} N\right)=N_{\pi_{1} M}\left(\pi_{1} N\right)=Z_{\pi_{1} M}\left(\pi_{1} N\right)=\pi_{1} M_{0},
$$

where M_{0} is the Möbius strip collared by N in M.
Before proving Theorem 3.1, we recall some well-known results on graphs of groups.
An (oriented) graph Γ is the following data.

1) A set $V(\Gamma)$ of vertices.
2) A set $A(\Gamma)$ of arrows.
3) A map $s: A(\Gamma) \rightarrow V(\Gamma)$ called origin, and a map $t: A(\Gamma) \rightarrow V(\Gamma)$ called end.

A graph of groups $G(\Gamma)$ on Γ is the following data.

1) A group G_{v} for all $v \in V(\Gamma)$.
2) A group G_{a} for all $a \in A(\Gamma)$.
3) Two monomorphisms $\phi_{a, s}: G_{a} \rightarrow G_{s(a)}$ and $\phi_{a, t}: G_{a} \rightarrow G_{t(a)}$ for all $a \in A(\Gamma)$.

We refer to [Se] for a general exposition on graphs of groups.
Let T be a maximal tree of Γ. The fundamental group $\pi_{1}(G(\Gamma), T)$ of $G(\Gamma)$ based at T is the (abstract) group given by the following presentation. The generating set of $\pi_{1}(G(\Gamma), T)$ is

$$
\left\{e_{a} ; a \in A(\Gamma)\right\} \cup\left(\cup_{v \in V(\Gamma)} G_{v}\right)
$$

where $\left\{e_{a} ; a \in A(\Gamma)\right\}$ is an abstract set in one-to-one correspondance with $A(\Gamma)$. The relations of $\pi_{1}(G(\Gamma), T)$ are

1) the relations of G_{v} for all $v \in V(\Gamma)$,
2) $e_{a}=1$ for all $a \in A(T)$,
3) $e_{a}^{-1} \cdot \phi_{a, s}(g) \cdot e_{a}=\phi_{a, t}(g)$ for all $a \in A(\Gamma)$ and for all $g \in G_{a}$.

There is a morphism $\phi_{v}: G_{v} \rightarrow \pi_{1}(G(\Gamma), T)$ for all $v \in V(\Gamma)$. By [Se], this morphism is injective.

The fundamental group $\pi_{1}(\Gamma, T)$ of Γ based at T has the following presentation. The generating set of $\pi_{1}(\Gamma, T)$ is $\left\{e_{a} ; a \in A(\Gamma)\right\}$. The set of relations of $\pi_{1}(\Gamma, T)$ is $\left\{e_{a}=1 ; a \in\right.$ $A(T)\}$.

Let $p: \tilde{\Gamma} \rightarrow \Gamma$ be the universal cover of Γ. Let $G(\tilde{\Gamma})$ be the graph of groups on $\tilde{\Gamma}$ defined as follows.

1) $G_{\tilde{v}}=G_{p(\tilde{v})}$ for all $\tilde{v} \in V(\tilde{\Gamma})$.
2) $G_{\tilde{a}}=G_{p(\tilde{a})}$ for all $\tilde{a} \in A(\tilde{\Gamma})$.
3) $\phi_{\tilde{a}, s}=\phi_{p(\tilde{a}), s}$ and $\phi_{\tilde{a}, t}=\phi_{p(\tilde{a}), t}$ for all $\tilde{a} \in A(\tilde{\Gamma})$.

We fix a section $S: T \rightarrow \tilde{\Gamma}$ of p over T. We extend S to a section $S: A(\Gamma) \rightarrow A(\tilde{\Gamma})$ as follows. Let $a \in A(\Gamma)$. Then $S(a)$ is the unique lift of a such that $t(S(a))=S(t(a))$.

We define an action of $\pi_{1}(\Gamma, T)$ on $\pi_{1}(G(\tilde{\Gamma}), \tilde{\Gamma})$ as follows. Let $\tilde{v} \in V(\tilde{\Gamma})$, let $\tilde{g} \in G_{\tilde{v}}$, and let $u \in \pi_{1}(\Gamma, T)$. Then

$$
u(\tilde{g})=\tilde{g} \in G_{u(\tilde{v})}
$$

We consider the corresponding semidirect product $\pi_{1}(G(\tilde{\Gamma}), \tilde{\Gamma}) \times 1 \pi_{1}(\Gamma, T)$. By [Se], there is an isomorphism

$$
\pi_{1}(G(\Gamma), T) \longrightarrow \pi_{1}(G(\tilde{\Gamma}), \tilde{\Gamma}) \rtimes \pi_{1}(\Gamma, T)
$$

which sends G_{v} isomorphically on $G_{S(v)}$ for all $v \in V(\Gamma)$, and which sends e_{a} on e_{a} for all $a \in A(\Gamma)$. So, we can assume that $\pi_{1}(G(\Gamma), T)=\pi_{1}(G(\tilde{\Gamma}), \tilde{\Gamma}) \times \pi_{1}(\Gamma, T)$, that $G_{v}=G_{S(v)}$ for all $v \in V(\Gamma)$, and that $G_{a}=G_{S(a)}$ for all $a \in A(\Gamma)$.

Let $G=\pi_{1}(G(\Gamma), T)$, and let $\tilde{G}=\pi_{1}(G(\tilde{\Gamma}), \tilde{\Gamma})$. The universal cover of $G(\Gamma)$ is the graph $\bar{\Gamma}$ defined as follows.

$$
V(\bar{\Gamma})=(V(\tilde{\Gamma}) \times \tilde{G}) / \sim,
$$

where \sim is the equivalence relation defined by

$$
\left(\tilde{v}_{1}, \tilde{g}_{1}\right) \sim\left(\tilde{v}_{2}, \tilde{g}_{2}\right) \quad \text { if } \tilde{v}_{1}=\tilde{v}_{2}=\tilde{v} \text { and } \tilde{g}_{2}^{-1} \tilde{g}_{1} \in G_{\tilde{v}}
$$

We denote by $[\tilde{v}, \tilde{g}]$ the equivalence class of (\tilde{v}, \tilde{g}).

$$
A(\bar{\Gamma})=(A(\tilde{\Gamma}) \times \tilde{G}) / \sim
$$

where \sim is the equivalence relation defined by

$$
\left(\tilde{a}_{1}, \tilde{g}_{1}\right) \sim\left(\tilde{a}_{2}, \tilde{g}_{2}\right) \quad \text { if } \tilde{a}_{1}=\tilde{a}_{2}=\tilde{a} \text { and } \tilde{g}_{2}^{-1} \tilde{g}_{1} \in G_{\tilde{a}}
$$

We denote by $[\tilde{a}, \tilde{g}]$ the equivalence class of (\tilde{a}, \tilde{g}). The origin map $s: A(\bar{\Gamma}) \rightarrow V(\bar{\Gamma})$ is defined by

$$
s([\tilde{a}, \tilde{g}])=[s(\tilde{a}), \tilde{g}]
$$

for $\tilde{a} \in A(\tilde{\Gamma})$ and for $\tilde{g} \in \tilde{G}$. The end map $t: A(\bar{\Gamma}) \rightarrow V(\bar{\Gamma})$ is defined by

$$
t([\tilde{a}, \tilde{g}])=[t(\tilde{a}), \tilde{g}]
$$

for $\tilde{a} \in A(\tilde{\Gamma})$ and for $\tilde{g} \in \tilde{G}$. By [Se], $\bar{\Gamma}$ is a tree.
The group G acts on $\bar{\Gamma}$ as follows. Let $u \in \pi_{1}(\Gamma, T)$, let $\tilde{h}, \tilde{g} \in \tilde{G}$, let $\tilde{v} \in V(\tilde{\Gamma})$, and let $\tilde{a} \in A(\tilde{\Gamma})$. Then

$$
\begin{aligned}
\tilde{h}([\tilde{v}, \tilde{g}])=[\tilde{v}, \tilde{h} \tilde{g}], \tilde{h}([\tilde{a}, \tilde{g}])=[\tilde{a}, \tilde{h} \tilde{g}] \\
u([\tilde{v}, \tilde{g}])=\left[u(\tilde{v}), u \tilde{g} u^{-1}\right], u([\tilde{a}, \tilde{g}])=\left[u(\tilde{a}), u \tilde{g} u^{-1}\right] .
\end{aligned}
$$

The isotropy subgroup of a vertex $\bar{v} \in V(\bar{\Gamma})$ is

$$
\operatorname{Isot}(\bar{v})=\{g \in G ; g(\bar{v})=\bar{v}\}
$$

The isotropy subgroup of an arrow $\bar{a} \in A(\bar{\Gamma})$ is

$$
\operatorname{Isot}(\bar{a})=\{g \in G ; g(\bar{a})=\bar{a}\}
$$

Let $v \in V(\Gamma)$ and let $a \in A(\Gamma)$. By [Se],

$$
\begin{aligned}
& \operatorname{Isot}([S(v), 1])=G_{v}, \\
& \operatorname{Isot}([S(a), 1])=G_{a} .
\end{aligned}
$$

Now, we come back to our original assumptions. M is a surface (with boundary) different from the sphere and from the projective plane. N is a subsurface of M such that none of the connected components of $\overline{M \backslash N}$ is a disk. Without lost of generality, we can also assume that N is not a disk. Let N_{1}, \ldots, N_{r} be the connected components of $\overline{M \backslash N}$.

We define a graph Γ as follows.

$$
V(\Gamma)=\left\{v_{0}, v_{1}, \ldots, v_{r}\right\} .
$$

For $i \in\{1, \ldots, r\}$, we fix an abstract set $A_{i}(\Gamma)$ in one-to-one correspondance with the connected components of $N \cap N_{i}$. We set

$$
A(\Gamma)=\cup_{i=1}^{r} A_{i}(\Gamma)
$$

If $a \in A_{i}(\Gamma)$, then $s(a)=v_{0}$ and $t(a)=v_{i}$.
We define a graph of groups $G(\Gamma)$ on Γ as follows. Let $i \in\{1, \ldots, r\}$. We fix a point $P_{i} \in N_{i}$ and we set

$$
G_{v_{i}}=G_{i}=\pi_{1}\left(N_{i}, P_{i}\right) .
$$

We fix a point $P_{0} \in N$ and we set

$$
G_{v_{0}}=G_{0}=\pi_{1}\left(N, P_{0}\right)
$$

Let $a \in A_{i}(\Gamma)$. We denote by C_{a} the connected component of $N \cap N_{i}$ which corresponds to a. The set C_{a} is a boundary component of both N and N_{i}. We fix a point $P_{a} \in C_{a}$ and we set

$$
G_{a}=\pi_{1}\left(C_{a}, P_{a}\right) \simeq \mathbf{Z}
$$

We fix a path $\gamma_{a, s}:[0,1] \rightarrow N$ from P_{0} to P_{a}. This path induces a monomorphism $\phi_{a, s}: G_{a} \rightarrow G_{0}$. We fix a path $\gamma_{a, t}:[0,1] \rightarrow N_{i}$ from P_{i} to P_{a}. This path induces a monomorphism $\phi_{a, t}: G_{a} \rightarrow G_{i}$.

We fix an arrow $a_{i} \in A_{i}(\Gamma)$ for all $i \in\{1, \ldots, r\}$. We consider the graph T defined as follows.

1) $V(T)=\left\{v_{0}, v_{1}, \ldots, v_{r}\right\}$.
2) $A(T)=\left\{a_{1}, \ldots, a_{r}\right\}$.
3) $s\left(a_{i}\right)=v_{0}$ and $t\left(a_{i}\right)=v_{i}$ for all $i \in\{1, \ldots, r\}$.

The graph T is a maximal tree of Γ. We write

$$
\begin{gathered}
\gamma_{a}=\gamma_{a, s} \gamma_{a, t}^{-1} \\
\beta_{a}=\gamma_{a} \gamma_{a_{i}}^{-1}
\end{gathered}
$$

for all $a \in A_{i}(\Gamma)$. For $i=1, \ldots, r$, the path $\gamma_{a_{i}}$ induces a morphism

$$
\psi_{i}: G_{i}=\pi_{1}\left(N_{i}, P_{i}\right) \longrightarrow \pi_{1}\left(M, P_{0}\right)
$$

We denote by

$$
\psi_{0}: G_{0}=\pi_{1}\left(N, P_{0}\right) \longrightarrow \pi_{1}\left(M, P_{0}\right)
$$

the morphism induced by the inclusion $N \subseteq M$.
The following theorem is a well-known version of Van Kampen's theorem.
Theorem 3.3. The map

$$
\begin{array}{ccc}
\left\{e_{a} ; a \in A(\Gamma)\right\} & \longrightarrow & \pi_{1}\left(M, P_{0}\right) \\
e_{a} & \longmapsto & \beta_{a}
\end{array}
$$

and the morphisms $\psi_{i}: G_{i} \rightarrow \pi_{1}\left(M, P_{0}\right)(i=0,1, \ldots, r)$ induce an isomorphism

$$
\psi: \pi_{1}(G(\Gamma), T) \longrightarrow \pi_{1}\left(M, P_{0}\right)
$$

Let $\bar{\Gamma}$ be the universal cover of $G(\Gamma)$. Let $q: \bar{\Gamma} \rightarrow \Gamma$ be the map defined as follows. Let $\tilde{v} \in V(\tilde{\Gamma})$, let $\tilde{a} \in A(\tilde{\Gamma})$, and let $\tilde{g} \in \tilde{G}$. Then

$$
\begin{aligned}
q([\tilde{v}, \tilde{g}]) & =p(\tilde{v}), \\
q([\tilde{a}, \tilde{g}]) & =p(\tilde{a}) .
\end{aligned}
$$

The following lemma is a preliminary result to the proof of Theorem 3.1.
Lemma 3.4. Let $i \in\{1, \ldots, r\}$. Let $\bar{v} \in V(\bar{\Gamma})$ be such that $q(\bar{v})=v_{i}$. Let $\bar{a}, \bar{b} \in A(\bar{\Gamma})$ be such that $t(\bar{a})=t(\bar{b})=\bar{v}$ (see Figure 3.2).
i) If $q(\bar{a})=q(\bar{b})$ and $\operatorname{Isot}(\bar{a}) \cap \operatorname{Isot}(\bar{b}) \neq\{1\}$, then N_{i} is a Möbius strip.
ii) If $q(\bar{a}) \neq q(\bar{b})$ and $\operatorname{Isot}(\bar{a}) \cap \operatorname{Isot}(\bar{b}) \neq\{1\}$, then N_{i} is a cylinder and both boundary components of N_{i} are included in $N \cap N_{i}$.

Figure 3.2

Proof. i) We suppose that $i=1$ and that $\bar{a}=\left[S\left(a_{1}\right), 1\right]$. Then

$$
\bar{v}=t(\bar{a})=\left[t\left(S\left(a_{1}\right)\right), 1\right]=\left[S\left(v_{1}\right), 1\right] .
$$

Let $\bar{b}=[\tilde{b}, \tilde{g}]$. Then

$$
t(\bar{b})=[t(\tilde{b}), \tilde{g}]=\left[S\left(v_{1}\right), 1\right]
$$

thus $\tilde{b}=S\left(a_{1}\right)$ (since $\left.q(\bar{a})=q(\bar{b})=a_{1}\right)$, and $\tilde{g} \in G_{v_{1}}=G_{1}$. Note that $\tilde{g} \notin G_{a_{1}}$, otherwise

$$
\bar{b}=\left[S\left(a_{1}\right), \tilde{g}\right]=\left[S\left(a_{1}\right), 1\right]=\bar{a}
$$

So,

$$
\operatorname{Isot}(\bar{a})=G_{a_{1}} \quad \text { and } \quad \operatorname{Isot}(\bar{b})=\tilde{g} G_{a_{1}} \tilde{g}^{-1}
$$

Let h_{1} be a generator of $G_{a_{1}}$. There exist $k_{1}, k_{2} \in \mathbf{Z} \backslash\{0\}$ such that

$$
h_{1}^{k_{1}}=\tilde{g} h_{1}^{k_{2}} \tilde{g}^{-1}
$$

We suppose that N_{1} is not a Möbius strip. Let F be the subgroup of G_{1} generated by h_{1} and \tilde{g}. The subsurface N_{1} has non-empty boundary, thus G_{1} is a free group, therefore F is a free group of rank either 1 or 2 . Since F is a hopfian group (see [LS, Prop. 3.4]) and since $h_{1}^{k_{1}}=\tilde{g} h_{1}^{k_{2}} \tilde{g}^{-1}$, the group F has rank 1. By [Ep, Thm. 4.2], h_{1} generates F. In particular, there exists $l \in \mathbf{Z}$ such that

$$
\tilde{g}=h_{1}^{l} \in G_{a_{1}} .
$$

This is a contradiction. So, N_{1} is a Möbius strip.
ii) We suppose that $i=1$ and that $\bar{a}=\left[S\left(a_{1}\right), 1\right]$. Then

$$
\bar{v}=t(\bar{a})=\left[t\left(S\left(a_{1}\right)\right), 1\right]=\left[S\left(v_{1}\right), 1\right] .
$$

Let $\bar{b}=[\tilde{b}, \tilde{g}]$ and let $b=q(\bar{b}) \neq a_{1}$. Then

$$
t(\bar{b})=[t(\tilde{b}), \tilde{g}]=\left[S\left(v_{1}\right), 1\right]
$$

thus $\tilde{b}=S(b)$ and $\tilde{g} \in G_{v_{1}}=G_{1}$. So,

$$
\operatorname{Isot}(\bar{a})=G_{a_{1}} \quad \text { and } \quad \operatorname{Isot}(\bar{b})=\tilde{g} G_{b} \tilde{g}^{-1}
$$

Let h_{1} be a generator of $G_{a_{1}}$, and let h be a generator of G_{b}. There exist $k_{1}, k_{2} \in \mathbf{Z} \backslash\{0\}$ such that

$$
h_{1}^{k_{1}}=\tilde{g} h^{k_{2}} \tilde{g}^{-1} .
$$

Let F be the subgroup of G_{1} generated by h_{1} and $\tilde{g} h \tilde{g}^{-1}$. Since G_{1} is a free group, F is a free group of rank either 1 or 2 . Since F is a hopfian group and since $h_{1}^{k_{1}}=\left(\tilde{g} h \tilde{g}^{-1}\right)^{k_{2}}$, the group F has rank 1. The subsurface N_{1} has at least two boundary components, $C_{a_{1}}$
and C_{b}, thus N_{1} is not a Möbius strip. By [Ep, Thm. 4.2], both h_{1} and $\tilde{g} h \tilde{g}^{-1}$ generate F. So, we can assume that

$$
h_{1}=\tilde{g} h \tilde{g}^{-1}
$$

By [Ep, Lemma 2.4], it follows that N_{1} is a cylinder and that $C_{a_{1}}$ and C_{b} are the boundary components of N_{1}.

Proof of Theorem 3.1. i) It is obvious, as all the non-large surfaces have abelian fundamental groups, except the Klein bottle, which has an abelian subgroup of index 2.
ii) We suppose that there exists $g \in C_{\pi_{1} M}\left(\pi_{1} N\right)$ such that $g \notin \pi_{1} N$, and we prove that either M is not large, or N is a Möbius collar in M.

Let $\bar{v}_{0}=\left[S\left(v_{0}\right), 1\right] \in V(\bar{\Gamma})$. We have $g\left(\bar{v}_{0}\right) \neq \bar{v}_{0}$ since $g \notin \pi_{1} N=\operatorname{Isot}\left(\bar{v}_{0}\right)$. Let

$$
\bar{a}_{1}^{\varepsilon_{1}} \bar{a}_{2}^{\varepsilon_{2}} \ldots \bar{a}_{l}^{\varepsilon_{l}} \quad\left(a_{i} \in A(\bar{\Gamma}) \text { and } \varepsilon_{i} \in\{ \pm 1\}\right)
$$

be the (unique) reduced path of $\bar{\Gamma}$ from \bar{v}_{0} to $g\left(\bar{v}_{0}\right)$ (see Figure 3.3). For $j=1, \ldots, l$ we denote by \bar{v}_{j} the end of the path $\bar{a}_{1}^{\varepsilon_{1}} \ldots \bar{a}_{j}^{\varepsilon_{j}}$. Note that $l \geq 2$ since $q\left(g\left(\bar{v}_{0}\right)\right)=q\left(\bar{v}_{0}\right)=v_{0}$. If $h \in G_{0} \cap g G_{0} g^{-1}$, then $h \in \operatorname{Isot}\left(\bar{v}_{0}\right)$ and $h \in \operatorname{Isot}\left(g\left(\bar{v}_{0}\right)\right)$, thus $h \in \operatorname{Isot}\left(\bar{v}_{j}\right)$ and $h \in \operatorname{Isot}\left(\bar{a}_{j}\right)$ for all $j \in\{1, \ldots, l\}$. We suppose that $q\left(\bar{v}_{1}\right)=v_{1}$.

$$
\{1\} \neq G_{0} \cap g G_{0} g^{-1} \subseteq \operatorname{Isot}\left(\bar{a}_{1}\right) \cap \operatorname{Isot}\left(\bar{a}_{2}\right)
$$

thus, by Lemma 3.4, either N_{1} is a Möbius strip, or N_{1} is a cylinder and both boundary components of N_{1} are included in $N \cap N_{1}$.

Figure 3.3
The group $G_{0} \cap g G_{0} g^{-1}$ has finite index in $G_{0}=\pi_{1} N$, it is included in $\operatorname{Isot}\left(\bar{a}_{1}\right)$, and Isot $\left(\bar{a}_{1}\right)$ is an infinite cyclic group. So, $\pi_{1} N$ has an infinite cyclic subgroup of finite index, thus either N is a cylinder, or N is a Möbius strip.

If N is a Möbius strip, then N_{1} is also a Möbius strip and $M=N \cup N_{1}$ is a Klein bottle (see Figure 3.4).

Figure 3.4

If N and N_{1} are both cylinders, then $M=N \cup N_{1}$ is a torus (see Figure 3.5).

Figure 3.5
If N is a cylinder and if N_{1} is a Möbius strip, then N is a Möbius collar in M (see Figure 3.6).

Figure 3.6
iii) We suppose that N is a cylinder, that N_{1} is a Möbius strip, and that M is large (see Figure 3.6). Let $M_{0}=N \cup N_{1}$ be the Möbius strip collared by N in M. The subsurface M_{0} is not a Möbius collar in M, thus, by ii),

$$
C_{\pi_{1} M}\left(\pi_{1} M_{0}\right)=\pi_{1} M_{0}
$$

The group $\pi_{1} N$ has finite index in $\pi_{1} M_{0}$, thus

$$
C_{\pi_{1} M}\left(\pi_{1} N\right)=C_{\pi_{1} M}\left(\pi_{1} M_{0}\right)=\pi_{1} M_{0}
$$

4. CENTERS

The goal of this section is to describe the center of $B_{m} M$, where M is either a cylinder or a torus.

Let C be a cylinder. We assume that

$$
C=\{z \in \mathbf{C} ; 1 \leq|z| \leq 2\}
$$

and that

$$
P_{i}=1+\frac{i}{m+1} \quad \text { for } i=1, \ldots, m
$$

Let $d_{i}:[0,1] \rightarrow C$ be the path defined by

$$
d_{i}(t)=\left(1+\frac{i}{m+1}\right) e^{2 i \pi t} \quad \text { for } t \in[0,1]
$$

Let α be the element of $P B_{m} C$ represented by $d=\left(d_{1}, \ldots, d_{m}\right)$ (see Figure 4.1).

Figure 4.1

Proposition 4.1. With the above assumptions, the center of $B_{m} C$ is the infinite cyclic subgroup generated by α.

Proof. Let

$$
D=\{z \in \mathbf{C} ;|z| \leq 2\} .
$$

Let $P_{0}=0$. The inclusion $C \subseteq D \backslash\left\{P_{0}\right\}$ induces an isomorphism $B_{m} C \rightarrow B_{m}\left(D \backslash\left\{P_{0}\right\}\right)$. Let Σ_{m+1} be the group of permutations of $\left\{P_{0}, P_{1}, \ldots, P_{m}\right\}$, and let Σ_{m} be the group
of permutations of $\left\{P_{1}, \ldots, P_{m}\right\}$. We consider the morphism $\sigma: B_{m+1} D \rightarrow \Sigma_{m+1}$. By Proposition 1.4, we have the following exact sequence.

$$
1 \longrightarrow B_{m}\left(D \backslash\left\{P_{0}\right\}\right) \longrightarrow \sigma^{-1}\left(\Sigma_{m}\right) \longrightarrow \pi_{1}\left(D, P_{0}\right) \longrightarrow 1
$$

Moreover, $\pi_{1}\left(D, P_{0}\right)=\{1\}$. Thus the inclusion $D \backslash\left\{P_{0}\right\} \subseteq D$ induces an isomorphism $B_{m}\left(D \backslash\left\{P_{0}\right\}\right) \rightarrow \sigma^{-1}\left(\Sigma_{m}\right)$. The image of α by this isomorphism is the element of $B_{m+1} D$, denoted by $\tilde{\alpha}$, represented by the braid $\tilde{b}=\left(P_{0}, d_{1}, \ldots, d_{m}\right)$. By [Ch], we have $Z\left(B_{m+1} D\right)=Z\left(P B_{m+1} D\right)$, and this group is the infinite cyclic subgroup generated by $\tilde{\alpha}$. From the inclusions

$$
P B_{m+1} D \subseteq \sigma^{-1}\left(\Sigma_{m}\right) \subseteq B_{m+1} D
$$

it follows that the center of $\sigma^{-1}\left(\Sigma_{m}\right)$ is equal to the center of $B_{m+1} D$ which is the cyclic subgroup generated by $\tilde{\alpha}$. Thus, by the preceding isomorphism, the center of $B_{m} C=$ $B_{m}\left(D \backslash\left\{P_{0}\right\}\right)$ is the infinite cyclic subgroup generated by α.

Now, we describe the center of $B_{m} T$, where T is a torus. We assume that

$$
T=\mathbf{R}^{2} / \mathbf{Z}^{2}
$$

We denote by $\overline{(x, y)}$ the equivalence class of (x, y). We assume that

$$
P_{i}=\overline{\left(\frac{i+1}{m+3}, \frac{i+1}{m+3}\right)} \text { for } i=1, \ldots, m
$$

Let $a_{i}:[0,1] \rightarrow T$ be the path defined by

$$
a_{i}(t)=\overline{\left(\frac{i+1}{m+3}-t, \frac{i+1}{m+3}\right)} \text { for } t \in[0,1]
$$

and let $b_{i}:[0,1] \rightarrow T$ be the path defined by

$$
b_{i}(t)=\overline{\left(\frac{i+1}{m+3}, \frac{i+1}{m+3}-t\right)} \quad \text { for } t \in[0,1]
$$

Let α be the element of $P B_{m} T$ represented by $a=\left(a_{1}, \ldots, a_{m}\right)$ (see Figure 4.2), and let β be the element of of $P B_{m} T$ represented by $b=\left(b_{1}, \ldots, b_{m}\right)$.

Figure 4.2

Proposition 4.2. With the above assumptions, the center of $B_{m} T$ is the subgroup generated by α and β. It is a free abelian group of rank 2.

Proof. The proof of Proposition 4.2 is divided into 4 steps. Let Z_{m} denote the subgroup of $P B_{m} T$ generated by α and β.

Step 1. Z_{m} is a free abelian group of rank 2.
By [Bi1, Thm. 5], α and β commute, thus Z_{m} is an abelian group. We consider the following exact sequence.

$$
1 \longrightarrow P B_{m-1} T \backslash\left\{P_{1}\right\} \longrightarrow P B_{m} T \xrightarrow{\rho} \pi_{1}\left(T, P_{1}\right) \longrightarrow 1
$$

The group $\pi_{1}\left(T, P_{1}\right)$ is a free abelian group of rank 2 and $\{\rho(\alpha), \rho(\beta)\}$ is a basis of $\pi_{1}\left(T, P_{1}\right)$, thus Z_{m} is also a free abelian group of rank 2 .

Step 2. $Z_{m} \subseteq Z\left(B_{m} T\right)$.
Let

$$
D=\left[\frac{1}{m+3}, \frac{m+2}{m+3}\right] \times\left[\frac{1}{m+3}, \frac{m+2}{m+3}\right] \subseteq T
$$

By Proposition 2.2, the inclusion $D \subseteq T$ induces a monomorphism $B_{m} D \rightarrow B_{m} T$. The following diagram commutes.

Thus $B_{m} T$ is generated by $P B_{m} T \cup B_{m} D$.
By [Bi1, Thm. 5], α commutes with all the elements of $P B_{m} T$.
Let

$$
C=\left(\mathbf{R} \times\left[\frac{1}{m+3}, \frac{m+2}{m+3}\right]\right) / \mathbf{Z} \subseteq T
$$

By Proposition 2.2, the inclusion $C \subseteq T$ induces a monomorphism $B_{m} C \rightarrow B_{m} T$. Moreover, $\alpha \in B_{m} C$ and $B_{m} D \subseteq B_{m} C$. By Proposition 4.1, $Z\left(B_{m} C\right)$ is the infinite cyclic subgroup generated by α. So, α commutes with all the elements of $B_{m} D$.

This shows that $\alpha \in Z\left(B_{m} T\right)$. Similarly, $\beta \in Z\left(B_{m} T\right)$.
Step 3. $Z\left(P B_{m} T\right) \subseteq Z_{m}$.
We prove Step 3 by induction on m. Let $m=1$. Then $P B_{1} T=\pi_{1}\left(T, P_{1}\right)=Z_{1}$, thus $Z\left(P B_{1} T\right)=Z_{1}$.

Let $m>1$. Let $g \in Z\left(P B_{m} T\right)$. We consider the following exact sequence.

$$
1 \longrightarrow \pi_{1}\left(T \backslash\left\{P_{1}, \ldots, P_{m-1}\right\}\right) \longrightarrow P B_{m} T \xrightarrow{\rho} P B_{m-1} T \longrightarrow 1
$$

We have $\rho(g) \in Z\left(P B_{m-1} T\right)$. By induction, $Z\left(P B_{m-1} T\right) \subseteq Z_{m-1}$. Moreover, $\rho\left(Z_{m}\right)=$ Z_{m-1}. Thus we can choose $h \in Z_{m}$ such that $\rho(h)=\rho(g)$. We write $g^{\prime}=g h^{-1}$. Then $g^{\prime} \in Z\left(P B_{m} T\right)$ and $g^{\prime} \in \pi_{1}\left(T \backslash\left\{P_{1}, \ldots, P_{m-1}\right\}\right)$ (since $\rho\left(g^{\prime}\right)=1$), thus $g^{\prime} \in$ $Z\left(\pi_{1}\left(T \backslash\left\{P_{1}, \ldots, P_{m-1}\right\}\right)\right)=\{1\}$, thus $g^{\prime}=g h^{-1}=1$, therefore $g=h \in Z_{m}$.

Step 4. $Z\left(B_{m} T\right) \subseteq P B_{m} T$.
Let $g \in B_{m} T$. We suppose that there exist $i, j \in\{1, \ldots, m\}, i \neq j$ such that $\sigma(g)\left(P_{i}\right)=P_{j}$, and we prove that $g \notin Z\left(B_{m} T\right)$.

Let $\alpha_{i} \in P B_{m} T$ represented by $\left(P_{1}, \ldots, P_{i-1}, a_{i}, P_{i+1}, \ldots, P_{m}\right)$, where P_{k} denotes the constant path on P_{k} for $k=1, \ldots, m$ and a_{i} is as above. We consider the following exact sequence.

$$
1 \longrightarrow P B_{m-1} T \backslash\left\{P_{i}\right\} \longrightarrow P B_{m} T \xrightarrow{\rho_{i}} \pi_{1}\left(T, P_{i}\right) \longrightarrow 1
$$

Then $\rho_{i}\left(\alpha_{i}\right) \neq 1$ and $\rho_{i}\left(g \alpha_{i} g^{-1}\right)=1$ (see Figure 4.3), thus $g \alpha_{i} g^{-1} \neq \alpha_{i}$, therefore $g \notin$ $Z\left(B_{m} T\right)$.

Figure 4.3

5. COMMENSURATOR, NORMALIZER, AND
 CENTRALIZER OF $B_{n} D$ IN $B_{m} M$

Let M be an oriented surface different from the sphere, and let $D \subseteq M$ be a disk embedded in M. Let $n \geq 2$, let $P_{1}, \ldots, P_{n} \in D$, and let $P_{n+1}, \ldots, P_{m} \in M \backslash D$. The goal of this section is to describe the commensurator, the normalizer, and the centralizer of $B_{n} D$ in $B_{m} M$. Note that, if $n=1$, then $B_{1} D=\{1\}$, thus

$$
C_{B_{m} M}\left(B_{1} D\right)=N_{B_{m} M}\left(B_{1} D\right)=Z_{B_{m} M}\left(B_{1} D\right)=B_{m} M
$$

This section is divided into two subsections. We state our results in Subsection 5.1, and we prove them in Subsection 5.2.

5.1. Statements

A tunnel on M based at $\left(D ; P_{n+1}, \ldots, P_{m}\right)$ is a map

$$
H: D \cup\left\{P_{n+1}, \ldots, P_{m}\right\} \times[0,1] \longrightarrow M
$$

such that

1) $H(x, 0)=H(x, 1)=x$ for all $x \in D$,
2) $H\left(P_{i}, 0\right)=P_{i}$ and $H\left(P_{i}, 1\right) \in\left\{P_{n+1}, \ldots, P_{m}\right\}$ for all $P_{i} \in\left\{P_{n+1}, \ldots, P_{m}\right\}$,
3) $H(x, t) \neq H(y, t)$ for $x, y \in D \cup\left\{P_{n+1}, \ldots, P_{m}\right\}, x \neq y$, and for $t \in[0,1]$.

There is a natural notion of homotopy of tunnels. The tunnel group on M based at $\left(D ; P_{n+1}, \ldots, P_{m}\right)$ is the group $T_{m-n} M=T_{m-n} M\left(D ; P_{n+1}, \ldots, P_{m}\right)$ of homotopy classes of tunnels on M based at $\left(D ; P_{n+1}, \ldots, P_{m}\right)$. Multiplication is concatenation, as with braids.

We define a morphism

$$
\tau: T_{m-n} M \times B_{n} D \longrightarrow B_{m} M
$$

as follows. Let $h \in T_{m-n} M$ and let $f \in B_{n} D$. Let H be a tunnel on M based at $\left(D ; P_{n+1}, \ldots, P_{m}\right)$ which represents h, and let $b=\left(b_{\tilde{b}}, \ldots, b_{n}\right)$ be a braid on D based at $\left(P_{1}, \ldots, P_{n}\right)$ which represents f. Let $\tilde{b}=\left(\tilde{b}_{1}, \ldots, \tilde{b}_{n}, \tilde{b}_{n+1}, \ldots, \tilde{b}_{m}\right)$ be the braid on M defined by

$$
\begin{aligned}
& \tilde{b}_{i}(t)=H\left(b_{i}(t), t\right) \text { for } i \in\{1, \ldots, n\} \text { and for } t \in[0,1], \\
& \tilde{b}_{i}(t)=H\left(P_{i}, t\right) \text { for } i \in\{n+1, \ldots, m\} \text { and for } t \in[0,1] .
\end{aligned}
$$

Then $\tau(h, f)$ is the element of $B_{m} M$ represented by \tilde{b}.
Remark. This is related to the tensor product operation for the classical braid groups (see [Co]).

We denote by $C_{n, m} M$ the image of τ. Let $h \in T_{m-n} M$ and let $f, f^{\prime} \in B_{n} D$. Then

$$
\tau(h, f) \cdot f^{\prime} \cdot \tau(h, f)^{-1}=\tau\left(1, f f^{\prime} f^{-1}\right)=f f^{\prime} f^{-1}
$$

In particular,

$$
C_{n, m} M \subseteq N_{B_{m} M}\left(B_{n} D\right)
$$

Theorem 5.1. Let $n \geq 2$, and M be an orientable surface, $M \neq S^{2}$. Then

$$
C_{B_{m} M}\left(B_{n} D\right)=C_{n, m} M
$$

Let $Z_{n, m} M$ denote the image by τ of $T_{m-n} M \times Z\left(B_{n} D\right)$.
Corollary 5.2. Let $n \geq 2$. Then

$$
\begin{gathered}
C_{B_{m} M}\left(B_{n} D\right)=N_{B_{m} M}\left(B_{n} D\right)=C_{n, m} M \\
Z_{B_{m} M}\left(B_{n} D\right)=Z_{n, m} M
\end{gathered}
$$

Remark. i) We do not know whether a similar result holds for non-orientable surfaces.
ii) Corollary 5.2 generalizes [FRZ, Thm. 4.2].

Let $B_{m-n+1}^{1} M=B_{m-n+1}^{1} M\left(P_{1} ; P_{n+1}, \ldots, P_{m}\right)$ denote the subgroup of $B_{m-n+1} M=$ $B_{m-n+1} M\left(P_{1}, P_{n+1}, \ldots, P_{m}\right)$ consisting of $g \in B_{m-n+1} M$ such that $\sigma(g)\left(P_{1}\right)=P_{1}$. We define a morphism $\kappa: T_{m-n} M \rightarrow B_{m-n+1}^{1} M$ as follows. Let $h \in T_{m-n} M$. Let H be a tunnel on M based at $\left(D ; P_{n+1}, \ldots, P_{m}\right)$ which represents h. Let $b=\left(b_{1}, b_{n+1}, \ldots, b_{m}\right)$ be the braid defined by

$$
b_{i}(t)=H\left(P_{i}, t\right) \text { for } i \in\{1, n+1, \ldots, m\} \text { and for } t \in[0,1] .
$$

Then $\kappa(h)$ is the element of $B_{m-n+1}^{1} M$ represented by b.
Theorem 5.3. Let $n \geq 2$. There exists a morphism $\delta: C_{n, m} M \rightarrow B_{m-n+1}^{1} M$ such that

$$
\delta(\tau(h, f))=\kappa(h)
$$

for all $h \in T_{m-n} M$ and for all $f \in B_{n} D$. Moreover, we have the following exact sequences.

$$
\begin{gathered}
1 \longrightarrow B_{n} D \longrightarrow C_{n, m} M \stackrel{\delta}{\longrightarrow} B_{m-n+1}^{1} M \longrightarrow 1 \\
1 \longrightarrow Z\left(B_{n} D\right) \longrightarrow Z_{n, m} M \xrightarrow{\delta} B_{m-n+1}^{1} M \longrightarrow 1
\end{gathered}
$$

ThEOREM 5.4. Let $n \geq 2$. Let M be either with non-empty boundary or a torus. There exists a morphism $\iota: B_{m-n+1}^{1} M \rightarrow Z_{n, m} M$ such that $\delta \circ \iota=\mathrm{id}$. In particular,

$$
\begin{gathered}
C_{n, m} M \simeq B_{m-n+1}^{1} M \times B_{n} D \\
Z_{n, m} M \simeq B_{m-n+1}^{1} M \times Z\left(B_{n} D\right)
\end{gathered}
$$

Remark. Theorem 5.4 generalizes [FRZ, Thm. 4.3] and [Ro, Thm. 3].

5.2. Proofs

Lemma 5.5. We consider an exact sequence

$$
1 \longrightarrow G_{1} \longrightarrow G_{2} \xrightarrow{\phi} G_{3} \longrightarrow 1
$$

Let $H_{2} \subseteq G_{2}$ be a subgroup, let $H_{3}=\phi\left(H_{2}\right)$, and let $H_{1}=H_{2} \cap G_{1}$. Then

$$
\begin{gathered}
\phi\left(C_{G_{2}}\left(H_{2}\right)\right) \subseteq C_{G_{3}}\left(H_{3}\right), \\
C_{G_{2}}\left(H_{2}\right) \cap G_{1} \subseteq C_{G_{1}}\left(H_{1}\right) .
\end{gathered}
$$

Proof. Let $g \in C_{G_{2}}\left(H_{2}\right)$. We write

$$
F_{2}=H_{2} \cap g H_{2} g^{-1} .
$$

Let $h_{1}, \ldots, h_{k} \in H_{2}$ be such that

$$
H_{2}=F_{2} \cup h_{1} F_{2} \cup \ldots \cup h_{k} F_{2} .
$$

Then

$$
\phi\left(H_{2}\right)=H_{3}=\phi\left(F_{2}\right) \cup \phi\left(h_{1}\right) \phi\left(F_{2}\right) \cup \ldots \cup \phi\left(h_{k}\right) \phi\left(F_{2}\right) .
$$

So, $\phi\left(F_{2}\right)$ has finite index in H_{3}. Moreover,

$$
\phi\left(F_{2}\right)=\phi\left(H_{2} \cap g H_{2} g^{-1}\right) \subseteq \phi\left(H_{2}\right) \cap \phi\left(g H_{2} g^{-1}\right)=H_{3} \cap \phi(g) H_{3} \phi(g)^{-1}
$$

thus $H_{3} \cap \phi(g) H_{3} \phi(g)^{-1}$ has finite index in H_{3}. Similarly, $H_{3} \cap \phi(g) H_{3} \phi(g)^{-1}$ has finite index in $\phi(g) H_{3} \phi(g)^{-1}$. So, $\phi(g) \in C_{G_{3}}\left(H_{3}\right)$.

Let $g \in C_{G_{2}}\left(H_{2}\right) \cap G_{1}$. We write

$$
F_{2}=H_{2} \cap g H_{2} g^{-1}
$$

Let $h_{1}, \ldots, h_{k} \in H_{2}$ be such that

$$
H_{2}=F_{2} \cup h_{1} F_{2} \cup \ldots \cup h_{k} F_{2} .
$$

We assume that

$$
\begin{gathered}
h_{i} F_{2} \cap H_{1} \neq \emptyset \quad \text { for } i=1, \ldots, l \\
h_{i} F_{2} \cap H_{1}=\emptyset \quad \text { for } i=l+1, \ldots, k
\end{gathered}
$$

We can also assume that $h_{i} \in H_{1}$ for $i=1, \ldots, l$. Then

$$
H_{1}=\left(F_{2} \cap H_{1}\right) \cup h_{1}\left(F_{2} \cap H_{1}\right) \cup \ldots \cup h_{l}\left(F_{2} \cap H_{1}\right) .
$$

Moreover,

$$
F_{2} \cap H_{1}=H_{2} \cap g H_{2} g^{-1} \cap H_{1}=H_{1} \cap g H_{1} g^{-1} .
$$

Thus $H_{1} \cap g H_{1} g^{-1}$ has finite index in H_{1}. Similarly, $H_{1} \cap g H_{1} g^{-1}$ has finite index in $g H_{1} g^{-1}$. So, $g \in C_{G_{1}}\left(H_{1}\right)$.

Lemma 5.6. Let M be either with non-empty boundary or a torus. There exists a morphism $\iota_{0}: B_{m-n+1}^{1} M \rightarrow T_{m-n} M$ such that $\kappa \circ \iota_{0}=\mathrm{id}$.

Proof. Let $T M$ be the tangent space of M. It is known that $T M=\mathbf{R}^{2} \times M$. We provide M with the flat Riemannian metric. Namely, for all $x \in M$, the metric \langle,\rangle_{x} on x is the standard scalar product on \mathbf{R}^{2} (which does not depend on x). Furthermore, we set the following assumptions.

1) There is no closed geodesic of length ≤ 4.
2) D is the disk of radius 1 centred at P_{1}.
3) $d\left(P_{1}, P_{i}\right) \geq 2$ for all $i \in\{n+1, \ldots, m\}$.
4) Let C_{1}, \ldots, C_{q} be the boundary components of M. Then $d\left(P_{1}, C_{j}\right) \geq 2$ for all $j \in\{1, \ldots, q\}$.

Now, let $f \in B_{m-n+1}^{1} M$. Let $b=\left(b_{1}, b_{n+1}, \ldots, b_{m}\right)$ be a braid based at $\left(P_{1}\right.$, $\left.P_{n+1}, \ldots, P_{m}\right)$ which represents f. For $t \in[0,1]$, we write

$$
r(t)=\inf \left\{\frac{1}{2} d\left(b_{1}(t), b_{n+1}(t)\right), \ldots, \frac{1}{2} d\left(b_{1}(t), b_{m}(t)\right), \frac{1}{2} d\left(b_{1}(t), C_{1}\right), \ldots, \frac{1}{2} d\left(b_{1}(t), C_{q}\right), 1\right\}
$$

Then $r:[0,1] \rightarrow \mathbf{R}$ is a continuous map and $r(t)>0$ for all $t \in[0,1]$. Let

$$
D_{0}=\left\{\left(X_{1}, X_{2}\right) \in \mathbf{R}^{2} ; X_{1}^{2}+X_{2}^{2} \leq 1\right\} .
$$

Let $H_{0}: D_{0} \times[0,1] \rightarrow M$ be the map defined by

$$
H_{0}(X, t)=\exp _{b_{1}(t)}(r(t) X) \quad \text { for } X \in D_{0} \text { and for } t \in[0,1]
$$

Let $F: D_{0} \rightarrow D$ be the diffeomorphism defined by

$$
F(X)=\exp _{P_{1}} X \quad \text { for } X \in D_{0} .
$$

Let

$$
H: D \cup\left\{P_{n+1}, \ldots, P_{m}\right\} \times[0,1] \longrightarrow M
$$

be the map defined by

$$
\begin{aligned}
H(x, t) & =H_{0}\left(F^{-1}(x), t\right) \quad \text { for } x \in D \text { and for } t \in[0,1], \\
H\left(P_{i}, t\right) & =b_{i}(t) \quad \text { for } P_{i} \in\left\{P_{n+1}, \ldots, P_{m}\right\} \text { and for } t \in[0,1] .
\end{aligned}
$$

The map H is a tunnel on M based at $\left(D ; P_{n+1}, \ldots, P_{m}\right)$. We define $\iota_{0}(f)$ to be the element of $T_{m-n} M$ represented by H.

One can easily verify that ι_{0} is well-defined, that ι_{0} is a morphism, and that $\kappa \circ \iota_{0}=\mathrm{id}$.

Lemma 5.7. The morphism $\kappa: T_{m-n} M \rightarrow B_{m-n+1}^{1} M$ is surjective.
Remark. We do not know whether a similar result holds for non-orientable surfaces.
Proof. We choose an open disk K_{0} embedded in $M \backslash D$ and which does not contain any P_{i} for $i=n+1, \ldots, m$. The inclusion $M \backslash K_{0} \subseteq M$ induces an epimorphism ϕ : $B_{m-n+1}^{1} M \backslash K_{0} \rightarrow B_{m-n+1}^{1} M$. The following diagram commutes.

By Lemma 5.6, $\kappa: T_{m-n} M \backslash K_{0} \rightarrow B_{m-n+1}^{1} M \backslash K_{0}$ is surjective. It follows that κ : $T_{m-n} M \rightarrow B_{m-n+1}^{1} M$ is surjective, too.

From now on, we fix a (set) section $\iota_{0}: B_{m-n+1}^{1} M \rightarrow T_{m-n} M$ of κ. Moreover, we assume that ι_{0} is a morphism if M is either with non-empty boundary or a torus, and that $\iota_{0}(1)=1$.

Theorem 5.1 is a direct consequence of the following lemma.
Lemma 5.8. Let $n \geq 2$. Let $g \in C_{B_{m} M}\left(B_{n} D\right)$. There exist $u \in B_{m-n+1}^{1} M$ and $f \in B_{n} D$ such that

$$
g=\tau\left(\iota_{0}(u), f\right) .
$$

The following lemmas 5.9 and 5.10 are preliminary results to the proof of Lemma 5.8. Recall that Σ_{m} denotes the group of permutations of $\left\{P_{1}, \ldots, P_{m}\right\}$, that Σ_{n} denotes the group of permutations of $\left\{P_{1}, \ldots, P_{n}\right\}$, and that Σ_{m-n} denotes the group of permutations of $\left\{P_{n+1}, \ldots, P_{m}\right\}$. We write

$$
B_{m}^{n} M=\sigma^{-1}\left(\Sigma_{m-n}\right)
$$

Lemma 5.9. Let $n \geq 1$. Let $g \in C_{B_{m}^{n} M}\left(P B_{n} D\right)$. There exist $u \in B_{m-n+1}^{1} M$ and $f \in P B_{n} D$ such that

$$
g=\tau\left(\iota_{0}(u), f\right)
$$

Proof. We prove Lemma 5.9 by induction on n. Let $n=1$. Then $P B_{1} D=\{1\}$, thus

$$
C_{B_{m}^{1} M}\left(P B_{1} D\right)=B_{m}^{1} M
$$

On the other hand, if $u \in B_{m}^{1} M$, then

$$
u=\tau\left(\iota_{0}(u), P_{1}\right),
$$

where P_{1} denotes the constant path on P_{1}.
Let $n>1$. Let $g \in C_{B_{m}^{n} M}\left(P B_{n} D\right)$. We write $M^{\prime}=M \backslash\left\{P_{1}, \ldots, P_{n-1}, P_{n+1}, \ldots, P_{m}\right\}$, and $D^{\prime}=D \backslash\left\{P_{1}, \ldots, P_{n-1}\right\}$. We consider the following commutative diagram.

By Lemma 5.5, $\rho(g) \in C_{B_{m-1}^{n-1} M}\left(P B_{n-1} D\right)$. By induction, there exist $u \in B_{m-n+1}^{1} M$ and $f_{1} \in P B_{n-1} D$ such that

$$
\rho(g)=\tau\left(\iota_{0}(u), f_{1}\right)
$$

We choose $f_{2} \in P B_{n} D$ such that $\rho\left(f_{2}\right)=f_{1}$ and we write

$$
g^{\prime}=g \cdot \tau\left(\iota_{0}(u), f_{2}\right)^{-1}
$$

We have $g^{\prime} \in \pi_{1} M^{\prime}$ (since $\rho\left(g^{\prime}\right)=1$) and $g^{\prime} \in C_{B_{m}^{n} M}\left(P B_{n} D\right)$, thus, by Lemma 5.5,

$$
g^{\prime} \in C_{\pi_{1} M^{\prime}}\left(\pi_{1} D^{\prime}\right) .
$$

If either $m \neq n$ or M is not a disk, then M^{\prime} is large and D^{\prime} is not a Möbius collar in M^{\prime}, thus, by Theorem 3.1,

$$
C_{\pi_{1} M^{\prime}}\left(\pi_{1} D^{\prime}\right)=\pi_{1} D^{\prime}
$$

If $m=n$ and M is a disk, then $\pi_{1} M^{\prime}=\pi_{1} D^{\prime}$, thus

$$
C_{\pi_{1} M^{\prime}}\left(\pi_{1} D^{\prime}\right)=\pi_{1} D^{\prime}
$$

If follows that

$$
g^{\prime}=f_{3} \in \pi_{1} D^{\prime} \subseteq P B_{n} D .
$$

So,

$$
g=f_{3} \cdot \tau\left(\iota_{0}(u), f_{2}\right)=\tau\left(\iota_{0}(u), f_{3} f_{2}\right)
$$

Lemma 5.10. Let $n \geq 2$. Let $g \in C_{B_{m} M}\left(B_{n} D\right)$. Then $\sigma(g) \in \Sigma_{n} \times \Sigma_{m-n}$.
Proof. Let $g \in C_{B_{m} M}\left(B_{n} D\right)$. We suppose that $\sigma(g)\left(P_{n+1}\right)=P_{1}$. Let $f \in$ $\pi_{1}\left(D \backslash\left\{P_{2}, \ldots, P_{n}\right\}, P_{1}\right), f \neq 1$. The group $P B_{n} D$ has finite index in $B_{n} D$, thus
$C_{B_{m} M}\left(B_{n} D\right)=C_{B_{m} M}\left(P B_{n} D\right)$. Since $\pi_{1}\left(D \backslash\left\{P_{2}, \ldots, P_{n}\right\}\right) \subseteq P B_{n} D$ and since $g \in$ $C_{B_{m} M}\left(P B_{n} D\right)$, there exists an integer $k>0$ such that

$$
g f^{k} g^{-1} \in P B_{n} D
$$

We consider the following exact sequence.

$$
1 \longrightarrow \pi_{1}\left(M \backslash\left\{P_{1}, \ldots, P_{n}, P_{n+2}, \ldots, P_{m}\right\}\right) \longrightarrow P B_{m} M \xrightarrow{\rho} P B_{m-1} M \longrightarrow 1
$$

The morphism ρ sends $P B_{n} D$ isomorphically on $P B_{n} D$. On the other hand, $g f^{k} g^{-1} \neq 1$ (since $f \neq 1$ and $B_{m} M$ is torsion free) and $\rho\left(g f^{k} g^{-1}\right)=1$ (see Figure 5.1). This is a contradiction.

This proves that $\sigma(g) \in \Sigma_{n} \times \Sigma_{m-n}$.

Figure 5.1

Proof of Lemma 5.8. Let $g \in C_{B_{m} M}\left(B_{n} D\right)$. By Lemma 5.10, $\sigma(g) \in \Sigma_{n} \times \Sigma_{m-n}$. We choose $f_{1} \in B_{n} D$ such that $\sigma\left(g f_{1}^{-1}\right) \in \Sigma_{m-n}$ and we write $g^{\prime}=g f_{1}^{-1}$. Then $g^{\prime} \in B_{m}^{n} M$, $g^{\prime} \in C_{B_{m} M}\left(B_{n} D\right)$, and $C_{B_{m} M}\left(B_{n} D\right)=C_{B_{m} M}\left(P B_{n} D\right)$, thus

$$
g^{\prime} \in C_{B_{m}^{n} M}\left(P B_{n} D\right) .
$$

By Lemma 5.9 , there exist $u \in B_{m-n+1}^{1} M$ and $f_{2} \in P B_{n} D$ such that

$$
g^{\prime}=\tau\left(\iota_{0}(u), f_{2}\right)
$$

So,

$$
g=\tau\left(\iota_{0}(u), f_{2}\right) \cdot f_{1}=\tau\left(\iota_{0}(u), f_{2} f_{1}\right)
$$

Proof of Theorem 5.3. The proof of Theorem 5.3 is divided into 5 steps.

Step 1. Definition of δ.

We consider the natural morphism $\delta_{0}: B_{m}^{n} M \rightarrow B_{m-n+1}^{1} M$. Let $g \in C_{n, m} M$. By Lemma 5.10, $\sigma(g) \in \Sigma_{n} \times \Sigma_{m-n}$. We choose $f \in B_{n} D$ such that $\sigma\left(g f^{-1}\right) \in \Sigma_{m-n}$ and we set

$$
\delta(g)=\delta_{0}\left(g f^{-1}\right)
$$

We prove that the definition of $\delta(g)$ does not depend on the choice of f. Let $f_{1}, f_{2} \in$ $B_{n} D$ be such that $\sigma\left(g f_{1}^{-1}\right) \in \Sigma_{m-n}$ and $\sigma\left(g f_{2}^{-1}\right) \in \Sigma_{m-n}$. Then

$$
\delta_{0}\left(g f_{2}^{-1}\right)^{-1} \delta_{0}\left(g f_{1}^{-1}\right)=\delta_{0}\left(f_{2} g^{-1} g f_{1}^{-1}\right)=\delta_{0}\left(f_{2} f_{1}^{-1}\right)=1,
$$

thus $\delta_{0}\left(g f_{1}^{-1}\right)=\delta_{0}\left(g f_{2}^{-1}\right)$.
Step 2. The map $\delta: C_{n, m} M \rightarrow B_{m-n+1}^{1} M$ is a morphism.
Let $g_{1}, g_{2} \in C_{n, m} M$. Let $f_{1}, f_{2} \in B_{n} D$ be such that $\sigma\left(g_{1} f_{1}^{-1}\right) \in \Sigma_{m-n}$ and $\sigma\left(g_{2} f_{2}^{-1}\right) \in$ Σ_{m-n}. By Corollary 5.2,

$$
C_{n, m} M=N_{B_{m} M}\left(B_{n} D\right),
$$

thus there exists $f_{3} \in B_{n} D$ such that $g_{2}^{-1} f_{1} g_{2}=f_{3}$. Moreover,

$$
\sigma\left(\left(g_{1} g_{2}\right)\left(f_{2} f_{3}\right)^{-1}\right)=\sigma\left(g_{1} f_{1}^{-1} g_{2} f_{2}^{-1}\right) \in \Sigma_{m-n} .
$$

So,

$$
\delta\left(g_{1}\right) \delta\left(g_{2}\right)=\delta_{0}\left(g_{1} f_{1}^{-1}\right) \delta_{0}\left(g_{2} f_{2}^{-1}\right)=\delta_{0}\left(g_{1} f_{1}^{-1} g_{2} f_{2}^{-1}\right)=\delta_{0}\left(\left(g_{1} g_{2}\right)\left(f_{2} f_{3}\right)^{-1}\right)=\delta\left(g_{1} g_{2}\right)
$$

Step 3. Let $h \in T_{m-n} M$ and let $f \in B_{n} D$. Then

$$
\delta(\tau(h, f))=\delta(\tau(h, 1) \cdot \tau(1, f))=\delta(\tau(h, 1)) \cdot \delta(f)=\kappa(h) .
$$

Step 4. We have the following exact sequence.

$$
1 \longrightarrow B_{n} D \longrightarrow C_{n, m} M \xrightarrow{\delta} B_{m-n+1}^{1} M \longrightarrow 1
$$

Let $u \in B_{m-n+1}^{1} M$. Then

$$
\delta\left(\tau\left(\iota_{0}(u), 1\right)\right)=\kappa\left(\iota_{0}(u)\right)=u .
$$

This shows that δ is surjective.
Let $g \in C_{n, m} M$. By Lemma 5.8, there exist $u \in B_{m-n+1}^{1} M$ and $f \in B_{n} D$ such that $g=\tau\left(\iota_{0}(u), f\right)$. If $g \in \operatorname{ker} \delta$, then

$$
1=\delta(g)=\kappa\left(\iota_{0}(u)\right)=u
$$

thus

$$
g=\tau\left(\iota_{0}(u), f\right)=\tau(1, f)=f \in B_{n} D
$$

Step 5. We have the following exact sequence.

$$
1 \longrightarrow Z\left(B_{n} D\right) \longrightarrow Z_{n, m} M \stackrel{\delta}{\longrightarrow} B_{m-n+1}^{1} M \longrightarrow 1
$$

By Step 4, it suffices to show that $\delta: Z_{n, m} M \rightarrow B_{m-n+1}^{1} M$ is surjective. Let $u \in$ $B_{m-n+1}^{1} M$. Then $\tau\left(\iota_{0}(u), 1\right) \in Z_{n, m} M$ and $\delta\left(\tau\left(\iota_{0}(u), 1\right)\right)=u$.

Proof of Theorem 5.4. The morphism $\iota: B_{m-n+1}^{1} M \rightarrow Z_{n, m} M$ is defined by

$$
\iota(u)=\tau\left(\iota_{0}(u), 1\right) \quad \text { for } u \in B_{m-n+1}^{1} M
$$

Clearly, $\delta \circ \iota=\mathrm{id}$.

6. COMMENsURATOR, NORMALIZER, AND CENTRALIZER OF $B_{n} N$ IN $B_{m} M$

Let M be a large surface, and let N be a subsurface of M such that N is neither a disk, nor a Möbius collar in M, and such that none of the connected components of $\overline{M \backslash N}$ is a disk. Let N_{1}, \ldots, N_{r} be the connected components of $\overline{M \backslash N}$. Let $P_{1}, \ldots, P_{n} \in N$, and let $P_{n+1}, \ldots, P_{m} \in M \backslash N$. For $i=1, \ldots, r$ we write

$$
\begin{gathered}
\mathcal{P}_{i}=\left\{P_{n+1}, \ldots, P_{m}\right\} \cap N_{i} \\
B_{n_{i}} N_{i}=B_{n_{i}} N_{i}\left(\mathcal{P}_{i}\right)
\end{gathered}
$$

where n_{i} denotes the cardinality of \mathcal{P}_{i}. If $n_{i}=0$, we make the convention that $B_{0} N_{i}=\{1\}$.
The goal of this section is to prove the following theorem.

Theorem 6.1.

$$
C_{B_{m} M}\left(B_{n} N\right)=B_{n} N \times B_{n_{1}} N_{1} \times \ldots \times B_{n_{r}} N_{r}
$$

Corollary 6.2.

$$
\begin{gathered}
C_{B_{m} M}\left(B_{n} N\right)=N_{B_{m} M}\left(B_{n} N\right)=B_{n} N \times B_{n_{1}} N_{1} \times \ldots \times B_{n_{r}} N_{r}, \\
Z_{B_{m} M}\left(B_{n} N\right)=Z\left(B_{n} N\right) \times B_{n_{1}} N_{1} \times \ldots \times B_{n_{r}} N_{r} .
\end{gathered}
$$

The remains of this section are divided into two subsections. In Subsection 6.1 we study an action of $\pi_{1} N$ on some groupoid $\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)$. In Subsection 6.2 we apply the results of Subsection 6.1 to prove Theorem 6.1.

6.1. Action of $\pi_{1} N$ on $\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)$.

Throughout this subsection, we fix a point $P_{0} \in N$ and a point $P_{i} \in N_{i}$ for all $i=1, \ldots, r$. Moreover, we do not assume that none of the connected components of $\overline{M \backslash N}$ is a disk.

The fundamental groupoid of $M \backslash\left\{P_{0}\right\}$ based at $\left\{P_{1}, \ldots, P_{r}\right\}$ is the groupoid $\Pi_{1}(M \backslash$ $\left.\left\{P_{0}\right\}\right)$ defined by the following data.

1) The set of objects of $\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)$ is $\left\{P_{1}, \ldots, P_{r}\right\}$.
2) Let $P_{i}, P_{j} \in\left\{P_{1}, \ldots, P_{r}\right\}$. The set of morphisms from P_{i} to P_{j} is the set $\Pi_{1}(M \backslash$ $\left.\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]$ of homotopy classes of paths in $M \backslash\left\{P_{0}\right\}$ from P_{i} to P_{j}.

Let $P_{i}, P_{j}, P_{k} \in\left\{P_{1}, \ldots, P_{r}\right\}$. For convenience, we assume that the composition map goes from $\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right] \times \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{j}, P_{k}\right]$ to $\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{k}\right]$. Note that

$$
\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{i}\right]=\pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{i}\right) .
$$

Moreover, if $x \in \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]$, then the map

$$
\begin{array}{cccc}
\theta_{x}: \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{i}\right) & \longrightarrow & \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right] \\
g x & \longmapsto & g x
\end{array}
$$

is a bijection.
Let $P_{i}, P_{j} \in\left\{P_{1}, \ldots, P_{r}\right\}$. An interbraid on M based at $\left(P_{0},\left[P_{i}, P_{j}\right]\right)$ is a pair $b=$ $\left(b_{0}, b_{1}\right)$ of paths, $b_{k}:[0,1] \rightarrow M$, such that

1) $b_{0}(0)=b_{0}(1)=P_{0}, b_{1}(0)=P_{i}$, and $b_{1}(1)=P_{j}$,
2) $b_{0}(t) \neq b_{1}(t)$ for $t \in[0,1]$.

There is a natural notion of homotopy of interbraids. The interbraid groupoid on M based at $\left(P_{0},\left\{P_{1}, \ldots, P_{r}\right\}\right)$ is the groupoid $I B_{2} M=I B_{2} M\left(P_{0},\left\{P_{1}, \ldots, P_{r}\right\}\right)$ defined by the following data.

1) The set of objects of $I B_{2} M$ is $\left\{P_{1}, \ldots, P_{r}\right\}$.
2) Let $P_{i}, P_{j} \in\left\{P_{1}, \ldots, P_{r}\right\}$. The set of morphisms from P_{i} to P_{j} is the set $I B_{2} M\left[P_{i}, P_{j}\right]$ of homotopy classes of interbraids on M based at $\left(P_{0},\left[P_{i}, P_{j}\right]\right)$.

Let $P_{i}, P_{j}, P_{k} \in\left\{P_{1}, \ldots, P_{r}\right\}$. For convenience, we assume that the composition map goes from $I B_{2} M\left[P_{i}, P_{j}\right] \times I B_{2} M\left[P_{j}, P_{k}\right]$ to $I B_{2} M\left[P_{i}, P_{k}\right]$. Note that

$$
I B_{2} M\left[P_{i}, P_{i}\right]=P B_{2} M\left(P_{0}, P_{i}\right)
$$

Moreover, if $X \in I B_{2} M\left[P_{i}, P_{j}\right]$, then the map

$$
\begin{array}{cccc}
\Theta_{X}: & P B_{2} M\left(P_{0}, P_{i}\right) & \longrightarrow & I B_{2} M\left[P_{i}, P_{j}\right] \\
g & \longmapsto & g X
\end{array}
$$

is a bijection.
Let $P_{i}, P_{j} \in\left\{P_{1}, \ldots, P_{r}\right\}$. We consider the natural maps

$$
\begin{gathered}
\alpha: I B_{2} M\left[P_{i}, P_{j}\right] \longrightarrow \pi_{1}\left(M, P_{0}\right), \\
\beta: \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right] \longrightarrow I B_{2} M\left[P_{i}, P_{j}\right] .
\end{gathered}
$$

Let $x \in \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]$, and let $X=\beta(x)$. Then the following diagram commutes.

Thus, α is surjective, β is injective, and

$$
\alpha^{-1}(1)=\beta\left(\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]\right) .
$$

So, we can assume that

$$
\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]=\beta\left(\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]\right) \subseteq I B_{2} M\left[P_{i}, P_{j}\right]
$$

The inclusion $N \subseteq M$ induces a morphism $\psi_{k}: \pi_{1}\left(N, P_{0}\right) \rightarrow P B_{2} M\left(P_{0}, P_{k}\right)$ for all $k=1, \ldots, r$. We define an action of $\pi_{1}\left(N, P_{0}\right)$ on $I B_{2} M\left[P_{i}, P_{j}\right]$ as follows. Let $u \in$ $\pi_{1}\left(N, P_{0}\right)$ and let $X \in I B_{2} M\left[P_{i}, P_{j}\right]$. Then

$$
u(X)=\psi_{i}(u) \cdot X \cdot \psi_{j}(u)^{-1}
$$

Let $x \in \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]$ and let $u \in \pi_{1}\left(N, P_{0}\right)$. Then $\alpha(u(x))=1$, thus $u(x) \in$ $\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]$. So, the action of $\pi_{1}\left(N, P_{0}\right)$ on $I B_{2} M\left[P_{i}, P_{j}\right]$ induces an action of $\pi_{1}\left(N, P_{0}\right)$ on $\Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]$.

We denote by $S_{N}\left[P_{i}, P_{j}\right]$ the set of $x \in \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{i}, P_{j}\right]$ such that, for all $u \in$ $\pi_{1}\left(N, P_{0}\right)$ there exists an integer $k>0$ such that $u^{k}(x)=x$. The main result of Subsection 6.1 is the following proposition.

Proposition 6.3. Let $i, j \in\{1, \ldots, r\}$.

$$
S_{N}\left[P_{i}, P_{j}\right]=\left\{\begin{array}{l}
\pi_{1}\left(N_{i}, P_{i}\right)=\pi_{1}\left(N_{j}, P_{j}\right) \quad \text { if } i=j \\
\emptyset \quad \text { if } i \neq j
\end{array}\right.
$$

The lemmas 6.4 to 6.7 are preliminary results to the proof of Proposition 6.3.
From now on and till the end of the proof of Lemma 6.7, we set the following assumptions (see Figure 6.1).

1) N is a sphere with $q+1$ holes $(q \geq 1)$. We denote by $C_{0}, C_{1}, \ldots, C_{q}$ the boundary components of N.
2) $\overline{M \backslash N}$ has two connected components, N_{1} and N_{2}.
3) $N \cap N_{1}=C_{1} \cup \ldots \cup C_{q}$, and $N \cap N_{2}=C_{0}$.

Figure 6.1
We choose a point $P_{0}^{\prime} \in N$ different from P_{0}. We choose a point $Q_{i} \in C_{i}$ for all $i=$ $0,1, \ldots, q$. According to Figure 6.2,

1) we choose a path $\gamma_{i}^{s}:[0,1] \rightarrow N \backslash\left\{P_{0}\right\}$ from P_{0}^{\prime} to Q_{i} for all $i=0,1, \ldots, q$,
2) we choose a path $\gamma_{i}^{t}:[0,1] \rightarrow N_{1}$ from P_{1} to Q_{i} for all $i=1, \ldots, q$,
3) we choose a path $\gamma_{0}^{t}:[0,1] \rightarrow N_{2}$ from P_{2} to Q_{0}.

Figure 6.2
We write

$$
\begin{aligned}
& \gamma_{i}=\gamma_{i}^{s}\left(\gamma_{i}^{t}\right)^{-1} \quad \text { for } i=0,1, \ldots, q, \\
& \beta_{i}=\gamma_{1}^{-1} \gamma_{i} \in \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right) \text { for } i=1, \ldots, q, \\
& T=\gamma_{1}^{-1} \gamma_{0} \in \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{1}, P_{2}\right] .
\end{aligned}
$$

Note that the path T induces a morphism

$$
\begin{array}{ccc}
\pi_{1}\left(N_{2}, P_{2}\right) & \longrightarrow & \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right) \\
g & \longmapsto & T g T^{-1}
\end{array}
$$

The following lemma is a consequence of Van Kampen's theorem.
Lemma 6.4. Let F be the subgroup of $\pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right)$ generated by $\beta_{2}, \ldots, \beta_{q}$.

$$
\pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right)=\pi_{1}\left(N_{1}, P_{1}\right) *\left(T \cdot \pi_{1}\left(N_{2}, P_{2}\right) \cdot T^{-1}\right) * F .
$$

All these groups are free and $\left\{\beta_{2}, \ldots, \beta_{q}\right\}$ is a basis for F.
According to Figure 6.3,

1) we choose a simple loop $\alpha_{i}:[0,1] \rightarrow C_{i}$ based at Q_{i} for all $i=0,1, \ldots, q$,
2) we choose a path $\delta_{i}:[0,1] \rightarrow N$ from P_{0} to Q_{i} for all $i=0,1, \ldots, q$.

Figure 6.3
We write

$$
\begin{aligned}
& h_{i}=\gamma_{i}^{t} \alpha_{i}\left(\gamma_{i}^{t}\right)^{-1} \in \pi_{1}\left(N_{1}, P_{1}\right) \quad \text { for } i=1, \ldots, q, \\
& h_{0}=\gamma_{0}^{t} \alpha_{0}\left(\gamma_{0}^{t}\right)^{-1} \in \pi_{1}\left(N_{2}, P_{2}\right), \\
& u_{i}=\delta_{i} \alpha_{i} \delta_{i}^{-1} \in \pi_{1}\left(N, P_{0}\right) \quad \text { for } i=0,1, \ldots, q .
\end{aligned}
$$

According to Figure 6.4, we choose a loop $\mu:[0,1] \rightarrow N \backslash\left\{P_{0}\right\}$ based at P_{0}^{\prime} turning around P_{0}.

Figure 6.4
We write

$$
h_{c}=\gamma_{1}^{-1} \mu \gamma_{1} \in \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right) .
$$

One can easily verify that

$$
h_{c}=T h_{0}^{-1} T^{-1} \cdot h_{1}^{-1} \cdot \beta_{2} h_{2}^{-1} \beta_{2}^{-1} \cdot \ldots \cdot \beta_{q} h_{q}^{-1} \beta_{q}^{-1} .
$$

LEMMA 6.5. i) $u_{0}(g)=g$ for all $g \in \pi_{1}\left(N_{1}, P_{1}\right)$.
ii) $u_{0}(g)=g$ for all $g \in \pi_{1}\left(N_{2}, P_{2}\right)$.
iii) $u_{0}\left(\beta_{i}\right)=\beta_{i}$ for all $\beta_{i} \in\left\{\beta_{2}, \ldots, \beta_{q}\right\}$.
iv) $u_{0}(T)=h_{c}^{-1} T$.

Proof. i) We choose a loop $\zeta:[0,1] \rightarrow N_{1}$ based at P_{1} which represents g. Then the image of ζ and the image of u_{0} are disjoint (see Figure 6.5), thus $u_{0}(g)=g$.

Figure 6.5
ii) We choose a loop $\zeta:[0,1] \rightarrow N_{2}$ based at P_{2} which represents g. The image of ζ and the image of u_{0} are disjoint, thus $u_{0}(g)=g$.
iii) The image of β_{i} and the image of u_{0} are disjoint, thus $u_{0}\left(\beta_{i}\right)=\beta_{i}$.
iv) In Figure 6.6, the interbraid drawn in (a) is homotopic to the interbraid drawn in (b), and the interbraid drawn in (b) is homotopic to the interbraid drawn in (c). The interbraid drawn in (a) represents $u_{0}(T)$, and the interbraid drawn in (c) represents

$$
\gamma_{1}^{-1} \mu^{-1} \gamma_{0}
$$

It follows that

Figure 6.6.a

Figure 6.6.b

Figure 6.6.c

Lemma 6.6. Let $k \in\{2, \ldots, q\}$.
i) $u_{k}(g)=g$ for all $g \in \pi_{1}\left(N_{1}, P_{1}\right)$.
ii) $u_{k}(g)=g$ for all $g \in \pi_{1}\left(N_{2}, P_{2}\right)$.
iii) $u_{k}(T)=T$.
iv) $u_{k}\left(\beta_{i}\right)=\beta_{i}$ for all $i \in\{2, \ldots, k-1\}$.
v) $u_{k}\left(\beta_{k}\right)=\beta_{k} h_{k}^{-1} \beta_{k}^{-1} h_{c}^{-1} \beta_{k} h_{k}$.
vi) $u_{k}\left(h_{c}\right)=\beta_{k} h_{k}^{-1} \beta_{k}^{-1} h_{c} \beta_{k} h_{k} \beta_{k}^{-1}$.

Proof. The statements i) to iv) can be proved with the same arguments as those given in the proofs of the statements i) to iii) of Lemma 6.5.
v) In Figure 6.7, the braid drawn in (a) is homotopic to the braid drawn in (b), and the braid drawn in (b) is homotopic to the braid drawn in (c). The braid drawn in (a) represents $u_{k}\left(\beta_{k}\right)$, and the braid drawn in (c) represents

$$
\gamma_{1}^{-1} \gamma_{k}^{s} \alpha_{k}^{-1}\left(\gamma_{k}^{s}\right)^{-1} \mu^{-1} \gamma_{k}^{s} \alpha_{k}\left(\gamma_{k}^{t}\right)^{-1}
$$

It follows that

$$
\begin{aligned}
u_{k}\left(\beta_{k}\right) & =\gamma_{1}^{-1} \gamma_{k}^{s} \alpha_{k}^{-1}\left(\gamma_{k}^{s}\right)^{-1} \mu^{-1} \gamma_{k}^{s} \alpha_{k}\left(\gamma_{k}^{t}\right)^{-1} \\
& =\gamma_{1}^{-1} \gamma_{k}^{s}\left(\gamma_{k}^{t}\right)^{-1} \cdot \gamma_{k}^{t} \alpha_{k}^{-1}\left(\gamma_{k}^{t}\right)^{-1} \cdot \gamma_{k}^{t}\left(\gamma_{k}^{s}\right)^{-1} \gamma_{1} \cdot \gamma_{1}^{-1} \mu^{-1} \gamma_{1} \cdot \gamma_{1}^{-1} \gamma_{k}^{s}\left(\gamma_{k}^{t}\right)^{-1} \cdot \gamma_{k}^{t} \alpha_{k}\left(\gamma_{k}^{t}\right)^{-1} \\
& =\beta_{k} h_{k}^{-1} \beta_{k}^{-1} h_{c}^{-1} \beta_{k} h_{k}
\end{aligned}
$$

Figure 6.7.a

Figure 6.7.b

Figure 6.7.c
vi) In Figure 6.8, the braid drawn in (a) is homotopic to the braid drawn in (b), the braid drawn in (b) is homotopic to the braid drawn in (c), and the braid drawn in (c) is homotopic to the braid drawn in (d). The braid drawn in (a) represents $u_{k}\left(h_{c}\right)$, and the braid drawn in (d) represents

$$
\gamma_{1}^{-1} \gamma_{k}^{s} \alpha_{k}^{-1}\left(\gamma_{k}^{s}\right)^{-1} \mu \gamma_{k}^{s} \alpha_{k}\left(\gamma_{k}^{s}\right)^{-1} \gamma_{1}
$$

It follows that

$$
\begin{aligned}
u_{k}\left(h_{c}\right)= & \gamma_{1}^{-1} \gamma_{k}^{s} \alpha_{k}^{-1}\left(\gamma_{k}^{s}\right)^{-1} \mu \gamma_{k}^{s} \alpha_{k}\left(\gamma_{k}^{s}\right)^{-1} \gamma_{1} \\
= & \gamma_{1}^{-1} \gamma_{k}^{s}\left(\gamma_{k}^{t}\right)^{-1} \cdot \gamma_{k}^{t} \alpha_{k}^{-1}\left(\gamma_{k}^{t}\right)^{-1} \cdot \gamma_{k}^{t}\left(\gamma_{k}^{s}\right)^{-1} \gamma_{1} \cdot \gamma_{1}^{-1} \mu \gamma_{1} \cdot \gamma_{1}^{-1} \gamma_{k}^{s}\left(\gamma_{k}^{t}\right)^{-1} . \\
& \quad \gamma_{k}^{t} \alpha_{k}\left(\gamma_{k}^{t}\right)^{-1} \cdot \gamma_{k}^{t}\left(\gamma_{k}^{s}\right)^{-1} \gamma_{1} \\
= & \beta_{k} h_{k}^{-1} \beta_{k}^{-1} h_{c} \beta_{k} h_{k} \beta_{k}^{-1} \quad \square
\end{aligned}
$$

Figure 6.8.a

Figure 6.8.b

Figure 6.8.c

Figure 6.8.d

Lemma 6.7. $S_{N}\left[P_{1}, P_{1}\right]=\pi_{1}\left(N_{1}, P_{1}\right)$ and $S_{N}\left[P_{1}, P_{2}\right]=\emptyset$.
Proof. The proof of Lemma 6.7 is divided into 5 steps.
Step 1. $\pi_{1}\left(N_{1}, P_{1}\right) \subseteq S_{N}\left[P_{1}, P_{1}\right]$.
Let $g \in \pi_{1}\left(N_{1}, P_{1}\right)$ and let $u \in \pi_{1}\left(N, P_{0}\right)$. Let $\zeta:[0,1] \rightarrow N_{1}$ be a loop based at P_{1} which represents g, and let $\xi:[0,1] \rightarrow N$ be a loop based at P_{0} which represents u. The image of ζ and the image of ξ are disjoint, thus $u(g)=g$.

Step 2. $S_{N}\left[P_{1}, P_{1}\right] \subseteq \pi_{1}\left(N_{1}, P_{1}\right) * F$.

Let

$$
h_{c}^{\prime}=\beta_{q} h_{q} \beta_{q}^{-1} \cdot \ldots \cdot \beta_{2} h_{2} \beta_{2}^{-1} \cdot h_{1} .
$$

Then

$$
\begin{gathered}
h_{c}=T h_{0}^{-1} T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-1} \\
h_{c}^{\prime} \in \pi_{1}\left(N_{1}, P_{1}\right) * F
\end{gathered}
$$

Let $g \in \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right)$. By Lemma 6.4, g can be (uniquely) written

$$
g=x_{0} T y_{1} T^{-1} x_{1} \ldots T y_{l} T^{-1} x_{l}
$$

where

$$
\begin{aligned}
& x_{i} \in \pi_{1}\left(N_{1}, P_{1}\right) * F \text { for } i=0,1, \ldots, l, \\
& x_{i} \neq 1 \quad \text { for } i=1, \ldots, l-1, \\
& y_{i} \in \pi_{1}\left(N_{2}, P_{2}\right) \backslash\{1\} \quad \text { for } i=1, \ldots, l
\end{aligned}
$$

We suppose that $l \geq 1$. By Lemma 6.5,

$$
\begin{aligned}
u_{0}(g) & =x_{0} h_{c}^{-1} T y_{1} T^{-1} h_{c} x_{1} \ldots h_{c}^{-1} T y_{l} T^{-1} h_{c} x_{l} \\
& =x_{0} h_{c}^{\prime} \cdot T \cdot h_{0} y_{1} h_{0}^{-1} \cdot T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-1} x_{1} h_{c}^{\prime} \cdot \ldots \cdot T \cdot h_{0} y_{l} h_{0}^{-1} \cdot T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-1} x_{l}
\end{aligned}
$$

It follows that, for an integer $k>0$,

$$
u_{0}^{k}(g)=x_{0}\left(h_{c}^{\prime}\right)^{k} \cdot T \cdot h_{0}^{k} y_{1} h_{0}^{-k} \cdot T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-k} x_{1}\left(h_{c}^{\prime}\right)^{k} \cdot \ldots \cdot T \cdot h_{0}^{k} y_{l} h_{0}^{-k} \cdot T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-k} x_{l},
$$

thus $u_{0}^{k}(g) \neq g$.
So, if $g \in S_{N}\left[P_{1}, P_{1}\right]$, then there exists an integer $k>0$ such that $u_{0}^{k}(g)=g$, thus $l=0$, therefore $g \in \pi_{1}\left(N_{1}, P_{1}\right) * F$.

For $j=2, \ldots, q$, we denote by $F\left(\beta_{2}, \ldots, \beta_{j}\right)$ the subgroup of F generated by $\left\{\beta_{2}, \ldots\right.$, $\left.\beta_{j}\right\}$.

Step 3. $S_{N}\left[P_{1}, P_{1}\right] \subseteq \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{q-1}\right)$.
Let

$$
h^{\prime}=\beta_{q-1} h_{q-1} \beta_{q-1}^{-1} \cdot \ldots \cdot \beta_{2} h_{2} \beta_{2}^{-1} \cdot h_{1} \cdot T h_{0} T^{-1}
$$

Then

$$
\begin{gathered}
h_{c}=\left(h^{\prime}\right)^{-1} \beta_{q} h_{q}^{-1} \beta_{q}^{-1} \\
h^{\prime} \in \pi_{1}\left(N_{1}, P_{1}\right) *\left(T \cdot \pi_{1}\left(N_{2}, P_{2}\right) \cdot T^{-1}\right) * F\left(\beta_{2}, \ldots, \beta_{q-1}\right) .
\end{gathered}
$$

Let $g \in \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right)$. By Lemma 6.4, g can be (uniquely) written

$$
g=x_{0} \beta_{q}^{\varepsilon_{1}} x_{1} \ldots \beta_{q}^{\varepsilon_{l}} x_{l},
$$

where

$$
\begin{aligned}
& x_{i} \in \pi_{1}\left(N_{1}, P_{1}\right) *\left(T \cdot \pi_{1}\left(N_{2}, P_{2}\right) \cdot T^{-1}\right) * F\left(\beta_{2}, \ldots, \beta_{q-1}\right) \text { for } i=0,1, \ldots, l, \\
& \varepsilon_{i} \in\{ \pm 1\} \text { for } i=1, \ldots, l \\
& x_{i} \neq 1 \text { if } \varepsilon_{i+1}=-\varepsilon_{i} \quad \text { for } i=1, \ldots, l-1
\end{aligned}
$$

We call this expression a relative reduced expression of g with respect to β_{q} of length $l=l_{q}(g)$.

We suppose that $l \geq 1$. Let $k>0$ be an integer. By Lemma 6.6,

$$
\begin{aligned}
& u_{q}\left(\beta_{q}\right)=\beta_{q} h_{q}^{-1} \beta_{q}^{-1} h_{c}^{-1} \beta_{q} h_{q}=h^{\prime} \beta_{q} h_{q} \\
& u_{q}\left(x_{i}\right)=x_{i} \quad \text { for } i=0,1, \ldots, l
\end{aligned}
$$

If $\varepsilon_{i}=\varepsilon_{i+1}=1$, then

$$
u_{q}^{k}\left(\beta_{q} x_{i} \beta_{q}\right)=\left(h^{\prime}\right)^{k} \cdot \beta_{q} \cdot h_{q}^{k} x_{i}\left(h^{\prime}\right)^{k} \cdot \beta_{q} \cdot h_{q}^{k} .
$$

If $\varepsilon_{i}=1$ and $\varepsilon_{i+1}=-1$, then

$$
u_{q}^{k}\left(\beta_{q} x_{i} \beta_{q}^{-1}\right)=\left(h^{\prime}\right)^{k} \cdot \beta_{q} \cdot h_{q}^{k} x_{i} h_{q}^{-k} \cdot \beta_{q}^{-1} \cdot\left(h^{\prime}\right)^{-k}
$$

and $h_{q}^{k} x_{i} h_{q}^{-k} \neq 1\left(\right.$ since $\left.x_{i} \neq 1\right)$. If $\varepsilon_{i}=-1$ and $\varepsilon_{i+1}=1$, then,

$$
u_{q}^{k}\left(\beta_{q}^{-1} x_{i} \beta_{q}\right)=h_{q}^{-k} \cdot \beta_{q}^{-1} \cdot\left(h^{\prime}\right)^{-k} x_{i}\left(h^{\prime}\right)^{k} \cdot \beta_{q} \cdot h_{q}^{k}
$$

and $\left(h^{\prime}\right)^{-k} x_{i}\left(h^{\prime}\right)^{k} \neq 1\left(\right.$ since $\left.x_{i} \neq 1\right)$. If $\varepsilon_{i}=\varepsilon_{i+1}=-1$, then

$$
u_{q}^{k}\left(\beta_{q}^{-1} x_{i} \beta_{q}^{-1}\right)=h_{q}^{-k} \cdot \beta_{q}^{-1} \cdot\left(h^{\prime}\right)^{-k} x_{i} h_{q}^{-k} \cdot \beta_{q}^{-1} \cdot\left(h^{\prime}\right)^{-k} .
$$

So, $u_{q}^{k}(g)$ has a relative reduced expression with respect to β_{q} of length l, and this expression begins with either $x_{0}\left(h^{\prime}\right)^{k}$ (if $\varepsilon_{1}=1$) or $x_{0} h_{q}^{-k}$ (if $\varepsilon_{1}=-1$). In particular, $u_{q}^{k}(g) \neq g$.

So, if $g \in S_{N}\left[P_{1}, P_{1}\right]$, then there exists an integer $k>0$ such that $u_{q}^{k}(g)=g$, thus $l_{q}(g)=0$, therefore

$$
g \in \pi_{1}\left(N_{1}, P_{1}\right) *\left(T \cdot \pi_{1}\left(N_{2}, P_{2}\right) \cdot T^{-1}\right) * F\left(\beta_{2}, \ldots, \beta_{q-1}\right) .
$$

By Step 2, it follows that

$$
g \in \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{q-1}\right) .
$$

Step 4. $S_{N}\left[P_{1}, P_{1}\right] \subseteq \pi_{1}\left(N_{1}, P_{1}\right)$.
By Step 3,

$$
S_{N}\left[P_{1}, P_{1}\right] \subseteq \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{q-1}\right)
$$

Let $j \in\{2, \ldots, q-1\}$. We suppose that $S_{N}\left[P_{1}, P_{1}\right] \subseteq \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{j}\right)$ and we prove that $S_{N}\left[P_{1}, P_{1}\right] \subseteq \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{j-1}\right)$.

Let R be the set of $g \in \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right)$ which can be (uniquely) written

$$
g=x_{0} \beta_{j}^{\varepsilon_{1}} x_{1} \ldots \beta_{j}^{\varepsilon_{l}} x_{l}
$$

where

$$
\begin{aligned}
& \text { either } x_{i} \in \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{j-1}\right) \text { or } x_{i} \in\left\{h_{c}, h_{c}^{-1}\right\} \text { for } i=0,1, \ldots, l, \\
& x_{i} \neq 1 \text { if } \varepsilon_{i+1}=-\varepsilon_{i} \text { for } i=1, \ldots, l-1, \\
& x_{0}, x_{l} \notin\left\{h_{c}, h_{c}^{-1}\right\}, \\
& \varepsilon_{i}=-1 \text { and } \varepsilon_{i+1}=1 \text { if } x_{i} \in\left\{h_{c}, h_{c}^{-1}\right\} \text { for } i=1, \ldots, l-1 .
\end{aligned}
$$

We write $l=l_{R}(g)$.
In order to be able to choose $j \in\{2, \ldots, q-1\}$, we first have to assume that $q \geq 3$. In particular, neither N_{1}, nor $N \cup N_{2}$ is a disk, thus $h_{i} \neq 1$ for all $i=1, \ldots, q$. The uniqueness of the expression of g comes from the fact that h_{c} can be written

$$
h_{c}=T h_{0}^{-1} T^{-1} \cdot h_{1}^{-1} \cdot \beta_{2} h_{2}^{-1} \beta_{2}^{-1} \cdot \ldots \cdot \beta_{j} h_{j}^{-1} \beta_{j}^{-1} \cdot \beta_{j+1} h_{j+1}^{-1} \beta_{j+1}^{-1} \cdot \ldots \cdot \beta_{q} h_{q}^{-1} \beta_{q}^{-1} .
$$

This kind of expression would not be necessarily unique if $j=q$.
We suppose that $l \geq 1$. If $\varepsilon_{i}=\varepsilon_{i+1}=1$, then, by Lemma 6.6,

$$
u_{j}\left(\beta_{j} x_{i} \beta_{j}\right)=\beta_{j} \cdot h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c}^{-1} \cdot \beta_{j} \cdot h_{j} x_{i} \cdot \beta_{j} \cdot h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c}^{-1} \cdot \beta_{j} \cdot h_{j}
$$

If $\varepsilon_{i}=1$ and $\varepsilon_{i+1}=-1$, then, by Lemma 6.6,

$$
u_{j}\left(\beta_{j} x_{i} \beta_{j}^{-1}\right)=\beta_{j} \cdot h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c}^{-1} \cdot \beta_{j} \cdot h_{j} x_{i} h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c} \cdot \beta_{j} \cdot h_{j} \cdot \beta_{j}^{-1}
$$

and $h_{j} x_{i} h_{j}^{-1} \neq 1\left(\right.$ since $\left.x_{i} \neq 1\right)$. If $\varepsilon_{i}=-1, \varepsilon_{i+1}=1$, and $x_{i} \notin\left\{h_{c}, h_{c}^{-1}\right\}$, then, by Lemma 6.6,

$$
u_{j}\left(\beta_{j}^{-1} x_{i} \beta_{j}\right)=h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c} \cdot \beta_{j} \cdot h_{j} \cdot \beta_{j}^{-1} \cdot x_{i} \cdot \beta_{j} \cdot h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c}^{-1} \cdot \beta_{j} \cdot h_{j} .
$$

If $\varepsilon_{i}=\varepsilon_{i+1}=-1$, then, by Lemma 6.6,

$$
u_{j}\left(\beta_{j}^{-1} x_{i} \beta_{j}^{-1}\right)=h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c} \cdot \beta_{j} \cdot h_{j} \cdot \beta_{j}^{-1} \cdot x_{i} h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c} \cdot \beta_{j} \cdot h_{j} \cdot \beta_{j}^{-1}
$$

If $\varepsilon_{i}=-1, \varepsilon_{i+1}=1$ and $x_{i}=h_{c}^{\varepsilon}$ (where $\varepsilon \in\{ \pm 1\}$), then, by Lemma 6.6,

$$
\begin{aligned}
u_{j}\left(\beta_{j}^{-1} h_{c}^{\varepsilon} \beta_{j}\right) & =h_{j}^{-1} \beta_{j}^{-1} h_{c} \beta_{j} h_{j} \beta_{j}^{-1} \cdot \beta_{j} h_{j}^{-1} \beta_{j}^{-1} h_{c}^{\varepsilon} \beta_{j} h_{j} \beta_{j}^{-1} \cdot \beta_{j} h_{j}^{-1} \beta_{j}^{-1} h_{c}^{-1} \beta_{j} h_{j} \\
& =h_{j}^{-1} \cdot \beta_{j}^{-1} \cdot h_{c}^{\varepsilon} \cdot \beta_{j} \cdot h_{j}
\end{aligned}
$$

It follows that $u_{j}(g) \in R$, that $l_{R}\left(u_{j}(g)\right) \geq l$, and that $l_{R}\left(u_{j}(g)\right)>l$ if none of the x_{i} is included in $\left\{h_{c}, h_{c}^{-1}\right\}$ for $i=1, \ldots, l-1$. This shows that $u_{j}^{k}(g) \neq g$ if $k>0$ is an integer, if $g \in \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{j}\right)$, and if $l_{R}(g) \geq 1$.

Let $g \in S_{N}\left[P_{1}, P_{1}\right]$. By hypothesis, $g \in \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{j}\right)$. There exists an integer $k>0$ such that $u_{j}^{k}(g)=g$, thus $l_{R}(g)=0$, therefore $g \in \pi_{1}\left(N_{1}, P_{1}\right) * F\left(\beta_{2}, \ldots, \beta_{j-1}\right)$.

Step 5. $S_{N}\left[P_{1}, P_{2}\right]=\emptyset$.
Let $g \in \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{1}, P_{2}\right]$. By Lemma $6.4, g$ can be (uniquely) written

$$
g=x_{0} T y_{1} T^{-1} x_{1} \ldots T y_{l} T^{-1} x_{l} T
$$

where

$$
\begin{aligned}
& x_{i} \in \pi_{1}\left(N_{1}, P_{1}\right) * F \text { for } i=0,1, \ldots, l \\
& x_{i} \neq 1 \quad \text { for } i=1, \ldots, l-1 \\
& y_{i} \in \pi_{1}\left(N_{2}, P_{2}\right) \backslash\{1\} \quad \text { for } i=1, \ldots, l
\end{aligned}
$$

By Lemma 6.5,

$$
\begin{aligned}
u_{0}(g) & =x_{0} h_{c}^{-1} T y_{1} T^{-1} h_{c} x_{1} \ldots h_{c}^{-1} T y_{l} T^{-1} h_{c} x_{l} h_{c}^{-1} T \\
& =x_{0} h_{c}^{\prime} \cdot T \cdot h_{0} y_{1} h_{0}^{-1} \cdot T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-1} x_{1} h_{c}^{\prime} \cdot \ldots \cdot T \cdot h_{0} y_{l} h_{0}^{-1} \cdot T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-1} x_{l} h_{c}^{\prime} \cdot T \cdot h_{0}
\end{aligned}
$$

It follows that, for an integer $k>0$,

$$
\begin{aligned}
u_{0}^{k}(g)= & x_{0}\left(h_{c}^{\prime}\right)^{k} \cdot T \cdot h_{0}^{k} y_{1} h_{0}^{-k} \cdot T^{-1} \cdot\left(h_{c}^{\prime}\right)^{-k} x_{1}\left(h_{c}^{\prime}\right)^{k} \cdot \ldots \cdot T \cdot h_{0}^{k} y_{l} h_{0}^{-k} \cdot T^{-1} . \\
& \left(h_{c}^{\prime}\right)^{-k} x_{l}\left(h_{c}^{\prime}\right)^{k} \cdot T \cdot h_{0}^{k}
\end{aligned}
$$

thus $u_{0}^{k}(g) \neq g$.
Now, the special assumptions on N that we made just before Proposition 6.3 are dropped.

Proof of Proposition 6.3. We prove that $S_{N}\left[P_{1}, P_{1}\right]=\pi_{1}\left(N_{1}, P_{1}\right)$ and that $S_{N}\left[P_{1}, P_{2}\right]=\emptyset$. The same argument works for any P_{i} and P_{j}.

Let $g \in \pi_{1}\left(N_{1}, P_{1}\right)$ and let $u \in \pi_{1}\left(N, P_{0}\right)$. Let $\zeta:[0,1] \rightarrow N_{1}$ be a loop based at P_{1} which represents g, and let $\xi:[0,1] \rightarrow N$ be a loop based at P_{0} which represents u. The image of ζ and the image of ξ are disjoint, thus $u(g)=g$. This shows that $\pi_{1}\left(N_{1}, P_{1}\right) \subseteq S_{N}\left[P_{1}, P_{1}\right]$.

Now, let C_{1}, \ldots, C_{q} be the connected components of $N \cap N_{1}$. We choose a subsurface $N^{\prime} \subseteq N$ (see Figure 6.9) such that

1) N^{\prime} is a sphere with $q+1$ holes,
2) $\overline{M \backslash N^{\prime}}$ has two connected components, N_{1} and

$$
N_{2}^{\prime}=\overline{N \backslash N^{\prime}} \cup N_{2} \cup \ldots \cup N_{r},
$$

3) $N^{\prime} \cap N_{1}=C_{1} \cup \ldots \cup C_{q}$,
4) $N^{\prime} \cap N_{2}^{\prime}$ has a unique connected component that we denote by C_{0},
5) $P_{0} \in N^{\prime}$.

Moreover, in the case where $r=1$, we pick some point $P_{2} \in N_{2}^{\prime}$.

Figure 6.9
Let $S_{N^{\prime}}\left[P_{1}, P_{1}\right]$ be the set of $g \in \pi_{1}\left(M \backslash\left\{P_{0}\right\}, P_{1}\right)$ such that, for all $u \in \pi_{1}\left(N^{\prime}, P_{0}\right)$, there exists an integer $k>0$ such that $u^{k}(g)=g$. We have $S_{N}\left[P_{1}, P_{1}\right] \subseteq S_{N^{\prime}}\left[P_{1}, P_{1}\right]$ (since $N \supseteq N^{\prime}$), and, by Lemma 6.7, $S_{N^{\prime}}\left[P_{1}, P_{1}\right]=\pi_{1}\left(N_{1}, P_{1}\right)$, thus $S_{N}\left[P_{1}, P_{1}\right] \subseteq \pi_{1}\left(N_{1}, P_{1}\right)$. It is clear by disjointness that $\pi_{1}\left(N_{1}, P_{1}\right) \subseteq S_{N}\left[P_{1}, P_{1}\right]$, so $\pi_{1}\left(N_{1}, P_{1}\right)=S_{N}\left[P_{1}, P_{1}\right]$.

Now, we assume that $r \geq 2$. Let $S_{N^{\prime}}\left[P_{1}, P_{2}\right]$ be the set of $g \in \Pi_{1}\left(M \backslash\left\{P_{0}\right\}\right)\left[P_{1}, P_{2}\right]$ such that, for all $u \in \pi_{1}\left(N^{\prime}, P_{0}\right)$, there exists an integer $k>0$ such that $u^{k}(g)=g$. We have $S_{N}\left[P_{1}, P_{2}\right] \subseteq S_{N^{\prime}}\left[P_{1}, P_{2}\right]$ (since $N \supseteq N^{\prime}$), and, by Lemma 6.7, $S_{N^{\prime}}\left[P_{1}, P_{2}\right]=\emptyset$, thus $S_{N}\left[P_{1}, P_{2}\right]=\emptyset$.

6.2. Proof of Theorem 6.1

The lemmas 6.8 to 6.12 are preliminary results to the proof of Theorem 6.1.
Lemma 6.8. Let $m=2$ and let $n=1$. Let $i \in\{1, \ldots, r\}$ be such that $P_{2} \in N_{i}$. Then

$$
C_{P B_{2} M}\left(P B_{1} N\right)=C_{P B_{2} M}\left(\pi_{1} N\right)=\pi_{1}\left(N, P_{1}\right) \times \pi_{1}\left(N_{i}, P_{2}\right) .
$$

Proof. We assume that $i=1$ (i.e. $P_{2} \in N_{1}$). The inclusion

$$
\pi_{1}\left(N, P_{1}\right) \times \pi_{1}\left(N_{1}, P_{2}\right) \subseteq C_{P B_{2} M}\left(\pi_{1} N\right)
$$

is obvious.
Let $g \in C_{P B_{2} M}\left(\pi_{1} N\right)$. We consider the following exact sequence.

$$
1 \longrightarrow \pi_{1}\left(M \backslash\left\{P_{1}\right\}\right) \longrightarrow P B_{2} M \xrightarrow{\rho} \pi_{1} M \longrightarrow 1
$$

The morphism ρ sends $\pi_{1}\left(N, P_{1}\right)$ isomorphically on $\pi_{1}\left(N, P_{1}\right)$. By Lemma 5.5, $\rho(g) \in$ $C_{\pi_{1} M}\left(\pi_{1} N\right)$. By Theorem 3.1, $\rho(g)=f \in \pi_{1}\left(N, P_{1}\right)$. We write $g^{\prime}=f^{-1} g$. We have $g^{\prime} \in \pi_{1}\left(M \backslash\left\{P_{1}\right\}, P_{2}\right)$ (since $\rho\left(g^{\prime}\right)=1$) and $g^{\prime} \in C_{P B_{2} M}\left(\pi_{1} N\right)$.

Let $u \in \pi_{1}\left(N, P_{1}\right)$. Since $g^{\prime} \in C_{P B_{2} M}\left(\pi_{1} N\right)$, there exists an integer $k>0$ such that

$$
g^{\prime} u^{k}\left(g^{\prime}\right)^{-1} \in \pi_{1}\left(N, P_{1}\right) .
$$

The morphism ρ sends $\pi_{1}\left(N, P_{1}\right)$ isomorphically on $\pi_{1}\left(N, P_{1}\right)$, thus

$$
g^{\prime} u^{k}\left(g^{\prime}\right)^{-1}=\rho\left(g^{\prime} u^{k}\left(g^{\prime}\right)^{-1}\right)=\rho\left(g^{\prime}\right) \rho\left(u^{k}\right) \rho\left(g^{\prime}\right)^{-1}=u^{k},
$$

therefore

$$
u^{k} g^{\prime} u^{-k}=g^{\prime}
$$

We write $Q_{1}=P_{2}$ and we choose a point $Q_{i} \in N_{i}$ for all $i=2, \ldots, r$. Let $\Pi_{1}\left(M \backslash\left\{P_{1}\right\}\right)$ be the fundamental groupoid on $M \backslash\left\{P_{1}\right\}$ based at $\left\{Q_{1}, Q_{2}, \ldots, Q_{r}\right\}$. By the above considerations, $g^{\prime} \in S_{N}\left[Q_{1}, Q_{1}\right]$, thus, by Proposition $6.3, g^{\prime} \in \pi_{1}\left(N_{1}, P_{2}\right)$. So,

$$
g=f g^{\prime} \in \pi_{1}\left(N, P_{1}\right) \times \pi_{1}\left(N_{1}, P_{2}\right) .
$$

Lemma 6.9.

$$
C_{P B_{m} M}\left(P B_{n} N\right)=P B_{n} N \times P B_{n_{1}} N_{1} \times \ldots \times P B_{n_{r}} N_{r}
$$

Proof. The proof of Lemma 6.9 is divided into 2 steps.
Step 1. Let $n=1$. We prove by induction on m that

$$
C_{P B_{m} M}\left(P B_{1} N\right)=C_{P B_{m} M}\left(\pi_{1} N\right)=\pi_{1} N \times P B_{n_{1}} N_{1} \times \ldots \times P B_{n_{r}} N_{r}
$$

The case $m=1$ is proved in Theorem 3.1, and the case $m=2$ is proved in Lemma 6.8. Let $m \geq 3$. The inclusion

$$
\pi_{1} N \times P B_{n_{1}} N_{1} \times \ldots \times P B_{n_{r}} N_{r} \subseteq C_{P B_{m} M}\left(\pi_{1} N\right)
$$

is obvious.
Let $g \in C_{P B_{m} M}\left(\pi_{1} N\right)$. We consider the following exact sequence.

$$
1 \longrightarrow \pi_{1}\left(M \backslash\left\{P_{1}, P_{2}, \ldots, P_{m-1}\right\}\right) \longrightarrow P B_{m} M \xrightarrow{\rho} P B_{m-1} M \longrightarrow 1
$$

The morphism ρ sends $\pi_{1}\left(N, P_{1}\right)$ isomorphically on $\pi_{1}\left(N, P_{1}\right)$. By Lemma 5.5, $\rho(g) \in$ $C_{P B_{m-1} M}\left(\pi_{1} N\right)$. We assume that $P_{m} \in N_{1}$. By induction,

$$
C_{P B_{m-1} M}\left(\pi_{1} N\right)=\pi_{1} N \times P B_{n_{1}-1} N_{1} \times P B_{n_{2}} N_{2} \times \ldots \times P B_{n_{r}} N_{r} .
$$

Thus we can choose $f \in \pi_{1}\left(N, P_{1}\right), h_{1}^{\prime} \in P B_{n_{1}-1} N_{1}$, and $h_{i} \in P B_{n_{i}} N_{i}$ for all $i=2, \ldots, r$ such that

$$
\rho(g)=f h_{1}^{\prime} h_{2} \ldots h_{r}
$$

The morphism ρ sends $P B_{n_{i}} N_{i}$ isomorphically on $P B_{n_{i}} N_{i}$ for all $i=2, \ldots, r$, and sends $P B_{n_{1}} N_{1}$ surjectively on $P B_{n_{1}-1} N_{1}$. We choose $h_{1} \in P B_{n_{1}} N_{1}$ such that $\rho\left(h_{1}\right)=h_{1}^{\prime}$ and we write

$$
g^{\prime}=g h_{r}^{-1} \ldots h_{2}^{-1} h_{1}^{-1} f^{-1}
$$

We have $g^{\prime} \in \pi_{1}\left(M \backslash\left\{P_{1}, P_{2}, \ldots, P_{m-1}\right\}, P_{m}\right)\left(\right.$ since $\left.\rho\left(g^{\prime}\right)=1\right)$ and $g^{\prime} \in C_{P B_{m} M}\left(\pi_{1} N\right)$. We have the inclusions

$$
\begin{aligned}
\pi_{1}\left(M \backslash\left\{P_{1}, P_{2}, \ldots, P_{m-1}\right\}\right) & \subseteq P B_{2} M \backslash\left\{P_{2}, \ldots, P_{m-1}\right\} \\
\pi_{1} N & \subseteq P B_{2} M \backslash\left\{P_{2}, \ldots, P_{m-1}\right\}
\end{aligned}
$$

where $P B_{2} M \backslash\left\{P_{2}, \ldots, P_{m-1}\right\}$ denotes the pure braid group on $M \backslash\left\{P_{2}, \ldots, P_{m-1}\right\}$ based at $\left(P_{1}, P_{m}\right)$. So,

$$
g^{\prime} \in C_{P B_{2} M \backslash\left\{P_{2}, \ldots, P_{m-1}\right\}}\left(\pi_{1} N\right)
$$

thus, by Lemma 6.6,

$$
g^{\prime} \in \pi_{1}\left(N, P_{1}\right) \times \pi_{1}\left(N_{1} \backslash \mathcal{P}_{1}^{\prime}, P_{m}\right),
$$

where $\mathcal{P}_{1}^{\prime}=\mathcal{P}_{1} \backslash\left\{P_{m}\right\}$. Let $\bar{f} \in \pi_{1}\left(N, P_{1}\right)$ and let $\bar{h}_{1} \in \pi_{1}\left(N_{1} \backslash \mathcal{P}_{1}^{\prime}, P_{m}\right)$ be such that $g^{\prime}={\bar{f} \bar{h}_{1}}^{\prime}$. Then

$$
1=\rho\left(g^{\prime}\right)=\rho(\bar{f}) \rho\left(\bar{h}_{1}\right)=\bar{f}
$$

thus $g^{\prime}=\bar{h}_{1} \in \pi_{1}\left(N_{1} \backslash \mathcal{P}_{1}^{\prime}, P_{m}\right)$. So,

$$
g=g^{\prime} \cdot f h_{1} h_{2} \ldots h_{r}=f\left(g^{\prime} h_{1}\right) h_{2} \ldots h_{r} \in \pi_{1} N \times P B_{n_{1}} N_{1} \times P B_{n_{2}} N_{2} \times \ldots \times P B_{n_{r}} N_{r}
$$

Step 2. We prove by induction on n that

$$
C_{P B_{m} M}\left(P B_{n} N\right)=P B_{n} N \times P B_{n_{1}} N_{1} \times \ldots \times P B_{n_{r}} N_{r}
$$

The case $n=1$ is proved in Step 1. Let $n>1$. The inclusion

$$
P B_{n} N \times P B_{n_{1}} N_{1} \times \ldots \times P B_{n_{r}} N_{r} \subseteq C_{P B_{m} M}\left(P B_{n} N\right)
$$

is obvious.
Let $g \in C_{P B_{m} M}\left(P B_{n} N\right)$. Let $N^{\prime}=N \backslash\left\{P_{1}, \ldots, P_{n-1}\right\}$ and let $M^{\prime}=M \backslash\left\{P_{1}, \ldots\right.$, $\left.P_{n-1}, P_{n+1}, \ldots, P_{m}\right\}$. We consider the following commutative diagram.

By Lemma 5.5, $\rho(g) \in C_{P B_{m-1} M}\left(P B_{n-1} N\right)$. By induction,

$$
C_{P B_{m-1} M}\left(P B_{n-1} N\right)=P B_{n-1} N \times P B_{n_{1}} N_{1} \times \ldots \times P B_{n_{r}} N_{r} .
$$

Thus we can choose $f^{\prime} \in P B_{n-1} N$ and $h_{i} \in P B_{n_{i}} N_{i}$ for all $i=1, \ldots, r$ such that

$$
\rho(g)=f^{\prime} h_{1} \ldots h_{r} .
$$

The morphism ρ sends $P B_{n_{i}} N_{i}$ isomorphically on $P B_{n_{i}} N_{i}$ for all $i=1, \ldots, r$, and sends $P B_{n} N$ surjectively on $P B_{n-1} N$. We choose $f \in P B_{n} N$ such that $\rho(f)=f^{\prime}$ and we write

$$
g^{\prime}=g h_{r}^{-1} \ldots h_{1}^{-1} f^{-1}
$$

We have $g^{\prime} \in \pi_{1}\left(M^{\prime}, P_{n}\right)$ (since $\rho\left(g^{\prime}\right)=1$) and $g^{\prime} \in C_{P B_{m} M}\left(P B_{n} N\right)$, thus, by Lemma 5.5, $g^{\prime} \in C_{\pi_{1} M^{\prime}}\left(\pi_{1} N^{\prime}\right)$. By Theorem 3.1, $g^{\prime} \in \pi_{1}\left(N^{\prime}, P_{n}\right) \subseteq P B_{n} N$. So,

$$
g=\left(g^{\prime} f\right) h_{1} \ldots h_{r} \in P B_{n} N \times P B_{n_{1}} N_{1} \times \ldots \times P B_{n_{r}} N_{r} .
$$

Lemma 6.10. Let $m=n$. Then

$$
C_{B_{n} M}\left(B_{n} N\right)=B_{n} N
$$

Proof. The inclusion

$$
B_{n} N \subseteq C_{B_{n} M}\left(B_{n} N\right)
$$

is obvious.
Let $g \in C_{B_{n} M}\left(B_{n} N\right)$. We choose $f \in B_{n} N$ such that $\sigma(f)=\sigma(g)$ and we write $g^{\prime}=g f^{-1}$. We have $g^{\prime} \in P B_{n} M$ and $g^{\prime} \in C_{B_{n} M}\left(B_{n} N\right)=C_{B_{n} M}\left(P B_{n} N\right)$, thus $g^{\prime} \in$ $C_{P B_{n} M}\left(P B_{n} N\right)$. By Lemma $6.9, g^{\prime} \in P B_{n} N$. So,

$$
g=g^{\prime} f \in B_{n} N
$$

Recall that Σ_{m} denotes the group of permutations of $\left\{P_{1}, \ldots, P_{m}\right\}$, that Σ_{n} denotes the group of permutations of $\left\{P_{1}, \ldots, P_{n}\right\}$, and that Σ_{m-n} denotes the group of permutations of $\left\{P_{n+1}, \ldots, P_{m}\right\}$. The following lemma can be proved with the same arguments as those given in the proof of Lemma 5.10. Note that, since $\pi_{1}\left(N, P_{1}\right) \neq\{1\}$, we do not need to assume that $n \geq 2$ in Lemma 6.11.

Lemma 6.11. Let $g \in C_{B_{m} M}\left(B_{n} N\right)$. Then $\sigma(g) \in \Sigma_{n} \times \Sigma_{m-n}$.
Let $\Sigma_{n_{i}}$ denote the group of permutations of \mathcal{P}_{i} for $i=1, \ldots, r$.

Lemma 6.12. Let $g \in C_{B_{m} M}\left(B_{n} N\right)$. Then

$$
\sigma(g) \in \Sigma_{n} \times \Sigma_{n_{1}} \times \ldots \times \Sigma_{n_{r}}
$$

Proof. Let $g \in C_{B_{m} M}\left(B_{n} N\right)$. By Lemma 6.11, $g \in \sigma^{-1}\left(\Sigma_{n} \times \Sigma_{m-n}\right)$. We consider the following exact sequence.

$$
1 \longrightarrow B_{m-n} M \backslash\left\{P_{1}, \ldots, P_{n}\right\} \longrightarrow \sigma^{-1}\left(\Sigma_{n} \times \Sigma_{m-n}\right) \xrightarrow{\rho} B_{n} M \longrightarrow 1
$$

The morphism ρ sends $B_{n} N$ isomorphically on $B_{n} N$. By Lemma 5.5, $\rho(g) \in C_{B_{n} M}\left(B_{n} N\right)$. By Lemma 6.10, $\rho(g)=f \in B_{n} N$. We write $g^{\prime}=g f^{-1}$. We have $g^{\prime} \in B_{m-n} M \backslash$ $\left\{P_{1}, \ldots, P_{n}\right\}$ (since $\rho\left(g^{\prime}\right)=1$) and $g^{\prime} \in C_{B_{m} M}\left(B_{n} N\right)$.

Let $h \in B_{n} N$. Since $g^{\prime} \in C_{B_{m} M}\left(B_{n} N\right)$, there exists an integer $k>0$ such that

$$
g^{\prime} h^{k}\left(g^{\prime}\right)^{-1} \in B_{n} N
$$

Since ρ is an isomorphism on $B_{n} N$,

$$
g^{\prime} h^{k}\left(g^{\prime}\right)^{-1}=\rho\left(g^{\prime} h^{k}\left(g^{\prime}\right)^{-1}\right)=\rho\left(g^{\prime}\right) \rho\left(h^{k}\right) \rho\left(g^{\prime}\right)^{-1}=h^{k}
$$

therefore

$$
h^{k} g^{\prime} h^{-k}=g^{\prime} .
$$

We suppose that $P_{n+1} \in N_{1}$, that $P_{n+2} \in N_{2}$, and that $\sigma(g)\left(P_{n+1}\right)=P_{n+2}$. We also have $\sigma\left(g^{\prime}\right)\left(P_{n+1}\right)=P_{n+2}$. We write $Q_{1}=P_{n+1}$ and $Q_{2}=P_{n+2}$. We choose a point $Q_{i} \in N_{i}$ for all $i=3, \ldots, r$. Let $\Pi_{1}\left(M \backslash\left\{P_{1}\right\}\right)$ be the fundamental groupoid on $M \backslash\left\{P_{1}\right\}$ based at $\left\{Q_{1}, \ldots, Q_{r}\right\}$. Let $b^{\prime}=\left(b_{n+1}^{\prime}, \ldots, b_{m}^{\prime}\right)$ be a braid on $M \backslash\left\{P_{1}, \ldots, P_{n}\right\}$ based at $\left(P_{n+1}, \ldots, P_{m}\right)$ which represents g^{\prime}. Let $x \in \Pi_{1}\left(M \backslash\left\{P_{1}\right\}\right)\left[Q_{1}, Q_{2}\right]$ be represented by b_{n+1}^{\prime}. By the above considerations, $x \in S_{N}\left[Q_{1}, Q_{2}\right]$. This contradicts Proposition 6.3.

So,

$$
\sigma(g) \in \Sigma_{n} \times \Sigma_{n_{1}} \times \ldots \times \Sigma_{n_{r}} .
$$

Proof of Theorem 6.1. The inclusion

$$
B_{n} N \times B_{n_{1}} N_{1} \times \ldots \times B_{n_{r}} N_{r} \subseteq C_{B_{m} M}\left(B_{n} N\right)
$$

is obvious.
Let $g \in C_{B_{m} M}\left(B_{n} N\right)$. By Lemma 6.12,

$$
\sigma(g) \in \Sigma_{n} \times \Sigma_{n_{1}} \times \ldots \times \Sigma_{n_{r}} .
$$

Thus we can choose $f \in B_{n} N$ and $h_{i} \in B_{n_{i}} N_{i}$ for all $i=1, \ldots, r$ such that

$$
\sigma(g)=\sigma(f) \sigma\left(h_{1}\right) \ldots \sigma\left(h_{r}\right) .
$$

We write

$$
g^{\prime}=g h_{r}^{-1} \ldots h_{1}^{-1} f^{-1}
$$

We have $g^{\prime} \in P B_{m} M$ and $g^{\prime} \in C_{B_{m} M}\left(B_{n} N\right)=C_{B_{m} M}\left(P B_{n} N\right)$, thus $g^{\prime} \in$ $C_{P B_{m} M}\left(P B_{n} N\right)$. By Lemma 6.9, there exist $f^{\prime} \in P B_{n} N$ and $h_{i}^{\prime} \in P B_{n_{i}} N_{i}$ for all $i=1, \ldots, r$ such that

$$
g^{\prime}=f^{\prime} h_{1}^{\prime} \ldots h_{r}^{\prime}
$$

So,

$$
\begin{aligned}
g & =f^{\prime} h_{1}^{\prime} \ldots h_{r}^{\prime} \cdot f h_{1} \ldots h_{r}=\left(f^{\prime} f\right)\left(h_{1}^{\prime} h_{1}\right) \ldots\left(h_{r}^{\prime} h_{r}\right) \\
& \in B_{n} N \times B_{n_{1}} N_{1} \times \ldots \times B_{n_{r}} N_{r} .
\end{aligned}
$$

References

[Ar1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg 4 (1926), 47-72.
[Ar2] E. Artin, Theory of braids, Annals of Math. 48 (1946), 101-126.
[Bi1] J.S. Birman, On braid groups, Comm. Pure Appl. Math. 22 (1969), 41-72.
[Bi2] J.S. Birman, "Braids, links, and mapping class groups", Annals of Math. Studies 82, Princeton University Press, 1973.
[Bi3] J.S. Birman, Mapping class groups of surfaces, Contemporary Mathematics 78 (1988), 13-43.
[Br] K.S. Brown, "Cohomology of groups", Springer-Verlag, New York, 1982.
[Ch] W. Chow, On the algebraic braid group, Annals of Math. 49 (1948), 654-658.
[Co] R. Cohen, Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemporary Mathematics 78 (1988), 167-206.
[Ep] D.B.A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
[FaN] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118.
[FoN] R. H. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126.
[FaV] E. Fadell and J. Van Buskirk, The braid groups of E^{2} and S^{2}, Duke Math. J. 29 (1962), 243-258.
[FRZ] R. Fenn, D. Rolfsen and J. Zhu, Centralisers in the braid group and singular braid monoid, L'Enseignement Math. 42 (1996), 75-96.
[Ga] F.A. Garside, The braid groups and other groups, Oxford Q. J. Math. 20 (1969), 235-254.
[Go] C.H. Goldberg, An exact sequence of braid groups, Math. Scand. 33 (1973), 69-82.
[GV] R. Gillette and J. Van Buskirk, The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc. 131 (1968), 277-296.
[LS] R.C. Lyndon and P.E. Schupp, "Combinatorial group theory", SpringerVerlag, Berlin, 1977.
[Ro] D. Rolfsen, Braid subgroup normalisers and commensurators and induced representations, Invent. Math. 130 (1997), 575-587.
[Sc] G.P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc. 68 (1970), 605-617.
[Se] J.P. Serre, "Arbres, amalgames, $S L_{2}$ ", Astérisque 46, Société Math. France, 1977.
[Va] J. Van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc 122 (1966), 81-97.

Authors addresses

Luis Paris	Dale Rolfsen
Université de Bourgogne	Department of Mathematics
Laboratoire de Topologie	University of British Columbia
UMR 5584 du CNRS	Vancouver
BP 400	British Columbia V6T 1Z2
21011 Dijon Cedex	CANADA
FRANCE	
	rolfsen@math.ubc.ca
lparis@satie.u-bourgogne.fr	

