This midterm has 3 questions on 6 pages, for a total of 30 points.

Duration: 50 minutes

- Write your name or your student number on every page.
- You need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space. You also have extra space at the end of the booklet.
- You have to turn in ALL 6 SHEETS of this booklet even if you don't use all of them.
- This is a closed-book examination. None of the following are allowed: documents or electronic devices of any kind (including calculators, cell phones, etc.)

LAST name: \qquad

First name: (including all middle names): \qquad

Student Number: \qquad

Signature: \qquad

Circle the name of your instructor: Rachel Ollivier Justin Tzou

Question:	1	2	3	Total
Points:	10	10	10	30
Score:				

We recall that for a vector field \mathbf{F} in \mathbb{R}^{3}, we have:

$$
\begin{aligned}
& \operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F} \\
& \operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}
\end{aligned}
$$

1. True or False. Circle the right answer. You do not need to justify your answer. No partial credit.

2 marks

2 marks

2 marks

2 marks

2 marks
(a) Let $\mathbf{F}=(P, Q, R)$ be a vector field in \mathbb{R}^{3} and assume that P, Q and R have continuous second order partial derivatives. Then $\operatorname{div}(\operatorname{curl}(\mathbf{F}))=0$.
True

$$
\begin{array}{|l|}
\hline \text { False } \\
\hline
\end{array}
$$

(b) The line integral of the vector field $\langle y z, x z, x y\rangle$ along the triangle with vertices $(1,0,0),(1,-1,0)$ and $(1,1,0)$, traversed in that order, is equal to 0 .

True	False

(c) There exists a vector field \mathbf{G} in \mathbb{R}^{3} such that $\operatorname{curl}(\mathbf{G})=\langle x+y z, y+z x, z+x y\rangle$.

True \quad False
(d) If the curve C is oriented positively and bounds the surface S in the $x-y$ plane, then $\frac{1}{2} \oint_{C} x d x+y d y$ is equal to the area of S.

True
False
(e) The line integral of the vector field $\frac{1}{x^{2}+y^{2}}\langle-y, x\rangle$ along the circle $x^{2}+y^{2}=1$ oriented counterclockwise is zero.

True
False
2. Let $\mathbf{F}=\left\langle 3, x, y^{2}\right\rangle$ and S be the surface $z=x^{2}+y^{2}$ with $0<z<4$.
(a) $\operatorname{Compute} \operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}$.
(b) Give a parametrization of the surface S. Do not forget the domain of definition.
(c) Compute the flux of $\operatorname{curl}(\mathbf{F})$ through S with the upward orientation for S, i.e., compute the double integral

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S} .
$$

(d) Consider the 2-radius circle C centered at $(0,0,4)$ and contained in the plane $z=4$ traversed counterclockwise when seen from above. What is the value of the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$? Justify your answer.
(e) Let S^{\prime} be the disk $x^{2}+y^{2}<4$ with $z=4$. We choose the downward orientation for S^{\prime}. What is the flux of $\operatorname{curl}(\mathbf{F})$ through S^{\prime} ? Justify your answer.
3. We consider the plane with equation $x+2 y+z=5$ and a simple closed curve C on this plane. Suppose that C is oriented counterclockwise when viewed from above. We call \mathcal{A} the area of the surface enclosed by C. Let $\mathbf{F}=\left\langle\frac{z^{2}}{4}, \frac{x^{2}}{2}, y^{2}\right\rangle$.

7 marks
3 marks
(a) Give the expression of the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ as a function of \mathcal{A}.
(b) Compute the line integral $\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$, where C_{1} is the the curve consisting of the three line segments, L_{1} from $(0,0,5)$ to $\left(0, \frac{5}{2}, 0\right)$, then L_{2} from $\left(0, \frac{5}{2}, 0\right)$ to $(5,0,0)$, and finally L_{3} from $(5,0,0)$ to $(0,0,5)$.

