This midterm has 3 questions on 6 pages, for a total of 30 points.

Duration: 50 minutes

- Write your name or your student number on **every** page.
- You need to show enough work to justify your answers.
- Continue on the **back of the previous page** if you run out of space. You also have extra space at the end of the booklet.
- You have to turn in **ALL 6 SHEETS** of this booklet even if you don't use all of them.
- This is a closed-book examination. None of the following are allowed: documents or electronic devices of any kind (including calculators, cell phones, etc.)

LAST name:
First name: (including all middle names):
Student Number:
Signature:

Circle the name of your instructor: Rachel Ollivier Justin Tzou

Question:	1	2	3	Total
Points:	10	10	10	30
Score:				

We recall that for a vector field \mathbf{F} in \mathbb{R}^3 , we have:

$$\operatorname{\mathbf{curl}}(\mathbf{F}) = \nabla \times \mathbf{F}$$

 $\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F}$

- 1. True or False. Circle the right answer. You do not need to justify your answer. No partial credit.
- 2 marks (a) Let $\mathbf{F} = (P, Q, R)$ be a vector field in \mathbb{R}^3 and assume that P, Q and R have continuous second order partial derivatives. Then $\operatorname{div}(\operatorname{curl}(\mathbf{F})) = 0$.

True

False

2 marks (b) The line integral of the vector field $\langle yz, xz, xy \rangle$ along the triangle with vertices (1, 0, 0), (1, -1, 0) and (1, 1, 0), traversed in that order, is equal to 0.

True	False	
		X /

2 marks (c) There exists a vector field **G** in \mathbb{R}^3 such that $\operatorname{curl}(\mathbf{G}) = \langle x + yz, y + zx, z + xy \rangle$.

True

- 2 marks (d) If the curve C is oriented positively and bounds the surface S in the x y plane, then $\frac{1}{2} \oint_C x dx + y dy$ is equal to the area of S.
 - True

2 marks

(e) The line integral of the vector field $\frac{1}{x^2+y^2}\langle -y,x\rangle$ along the circle $x^2+y^2=1$ oriented counterclockwise is zero.

False

False

False

True	

1 mark

2 marks

3 marks

- 2. Let $\mathbf{F} = \langle 3, x, y^2 \rangle$ and S be the surface $z = x^2 + y^2$ with 0 < z < 4.
- (a) Compute $\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F}$.
- (b) Give a parametrization of the surface S. Do not forget the domain of definition.
- (c) Compute the flux of $\operatorname{curl}(\mathbf{F})$ through S with the upward orientation for S, i.e., compute the double integral

$$\iint_{S} \mathbf{curl}(\mathbf{F}) \cdot d\mathbf{S}.$$

- 2 marks (d) Consider the 2-radius circle C centered at (0, 0, 4) and contained in the plane z = 4 traversed counterclockwise when seen from above. What is the value of the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$? Justify your answer.
- 2 marks (e) Let S' be the disk $x^2 + y^2 < 4$ with z = 4. We choose the downward orientation for S'. What is the flux of **curl(F)** through S'? Justify your answer.

- 3. We consider the plane with equation x + 2y + z = 5 and a simple closed curve C on this plane. Suppose that C is oriented counterclockwise when viewed from above. We call \mathcal{A} the area of the surface enclosed by C. Let $\mathbf{F} = \langle \frac{z^2}{4}, \frac{x^2}{2}, y^2 \rangle$.
- 7 marks 3 marks
- (a) Give the expression of the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ as a function of \mathcal{A} .
- (b) Compute the line integral $\oint_{C_1} \mathbf{F} \cdot d\mathbf{r}$, where C_1 is the the curve consisting of the three line segments, L_1 from (0, 0, 5) to $(0, \frac{5}{2}, 0)$, then L_2 from $(0, \frac{5}{2}, 0)$ to (5, 0, 0), and finally L_3 from (5, 0, 0) to (0, 0, 5).