This midterm has 4 questions on 6 pages, for a total of 40 points.

Duration: 50 minutes

- Write your name or your student number on every page.
- You need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space. You also have extra space at the end of the booklet.
- You have to turn in ALL 6 SHEETS of this booklet even if you don't use all of them.
- This is a closed-book examination. None of the following are allowed: documents or electronic devices of any kind (including calculators, cell phones, etc.)

LAST name: \qquad

First name: (including all middle names): \qquad

Student Number: \qquad

Signature: \qquad

Circle the name of your instructor: Rachel Ollivier Justin Tzou

Question:	1	2	3	4	Total
Points:	13	7	7	13	40
Score:					

7 marks 1. (a) Calculate the work done by the force field $\mathbf{F}=(-a y, b x,-c z)$ on a particle that moves on a path C, where C is composed of
i. a straight line from $(0,-1,0)$ to $(0,1,0)$,
ii. straight lines from $(0,-1,0)$ to $(1,-1,0)$ to $(0,1,0)$.
(b) What is the condition on a, b, and c for \mathbf{F} to be conservative? Hint: you may use part (a). (Be careful, you have to prove that the condition you find is necessary AND sufficient.)
(c) For $a=2, b=-2$ and $c=1$, evaluate the line integral of \mathbf{F} along the curve C given by $\mathbf{r}(t)=\left(\ln \left(1+t^{5}\right), e^{t^{7}}, t\right)$ with $0 \leq t \leq 1$.

7 marks 2. Compute the line integral of the vector field

$$
\mathbf{F}(x, y)=\left(y e^{x y}, x e^{x y}+x\right)
$$

along the curve $x(t)=\cos (t), y(t)=4 \sin (t)$ where $0 \leq t \leq 2 \pi$. Hint: decompose \mathbf{F} as a sum of two vectors fields, and justify that one of them is conservative.

7 marks 3. Calculate the arc length of the curve parameterized by

$$
x(t)=\frac{1}{2} t+\frac{1}{2} \cos t \sin t, \quad y(t)=\frac{1}{2} \sin ^{2} t ; \quad 0 \leq t \leq \pi
$$

Suggestion: you may use the formulas $\sin (2 t)=2 \sin (t) \cos (t)$ and then $1+\cos (2 t)=$ $2 \cos ^{2}(t)$ to simplify the calculations.
4. Consider the curve C given by $\mathbf{r}(t)=e^{-t} \cos (t) \mathbf{i}+e^{-t} \sin (t) \mathbf{j}+\sqrt{2} e^{-t} \mathbf{k}$.
3 marks

1 mark
1 mark
3 marks

4 marks
1 mark
(a) Let $L(t)$ denote the arc length of the curve from the point $(1,0, \sqrt{2})$ to the point with parameter t. Compute $\lim _{t \rightarrow+\infty} L(t)$.
(b) Compute the unit tangent vector $\mathbf{T}(t)$.
(c) Compute the unit normal vector $\mathbf{N}(t)$ and check that $\mathbf{N}(0)=(-\sqrt{2} / 2,-\sqrt{2} / 2,0)$.
(d) Give the coordinates of the center of the osculating circle at parameter $t=0$. We recall that the curvature at parameter t is given by $\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$ and that the osculating circle at parameter t has radius $1 / \kappa(t)$.
(e) Give the equation of the osculating plane at parameter $t=0$.
(f) Is C a plane curve?

Extra space. Continue your work here.

