This midterm has 4 questions on 6 pages, for a total of 40 points.

Duration: 50 minutes

- Write your name or your student number on **every** page.
- You need to show enough work to justify your answers.
- Continue on the **back of the previous page** if you run out of space. You also have extra space at the end of the booklet.
- You have to turn in ALL 6 SHEETS of this booklet even if you don't use all of them.
- This is a closed-book examination. None of the following are allowed: documents or electronic devices of any kind (including calculators, cell phones, etc.)

LAST name:
First name: (including all middle names):
Student Number:
Signature:

Circle the name of your instructor: Rachel Ollivier Justin Tzou

Question:	1	2	3	4	Total
Points:	13	7	7	13	40
Score:					

- 7 marks 1. (a) Calculate the work done by the force field $\mathbf{F} = (-ay, bx, -cz)$ on a particle that moves on a path C, where C is composed of
 - i. a straight line from (0, -1, 0) to (0, 1, 0),
 - ii. straight lines from (0, -1, 0) to (1, -1, 0) to (0, 1, 0).
- 3 marks (b) What is the condition on a, b, and c for **F** to be conservative? Hint: you may use part (a). (Be careful, you have to prove that the condition you find is necessary AND sufficient.)
- 3 marks (c) For a = 2, b = -2 and c = 1, evaluate the line integral of **F** along the curve *C* given by $\mathbf{r}(t) = (\ln(1+t^5), e^{t^7}, t)$ with $0 \le t \le 1$.

7 marks 2. Compute the line integral of the vector field

$$\mathbf{F}(x,y) = (ye^{xy}, xe^{xy} + x)$$

along the curve $x(t) = \cos(t)$, $y(t) = 4\sin(t)$ where $0 \le t \le 2\pi$. Hint: decompose **F** as a sum of two vectors fields, and justify that one of them is conservative.

7 marks 3. Calculate the arc length of the curve parameterized by

$$x(t) = \frac{1}{2}t + \frac{1}{2}\cos t\sin t$$
, $y(t) = \frac{1}{2}\sin^2 t$; $0 \le t \le \pi$.

Suggestion: you may use the formulas $\sin(2t) = 2\sin(t)\cos(t)$ and then $1 + \cos(2t) = 2\cos^2(t)$ to simplify the calculations.

- 4. Consider the curve C given by $\mathbf{r}(t) = e^{-t}\cos(t)\mathbf{i} + e^{-t}\sin(t)\mathbf{j} + \sqrt{2}e^{-t}\mathbf{k}$.
- 1 mark1 mark3 marks

3 marks

- (a) Let L(t) denote the arc length of the curve from the point $(1, 0, \sqrt{2})$ to the point with parameter t. Compute $\lim_{t\to+\infty} L(t)$.
- (b) Compute the unit tangent vector $\mathbf{T}(t)$.
- (c) Compute the unit normal vector $\mathbf{N}(t)$ and check that $\mathbf{N}(0) = (-\sqrt{2}/2, -\sqrt{2}/2, 0)$.
- (d) Give the coordinates of the center of the osculating circle at parameter t = 0. We recall that the curvature at parameter t is given by $\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$ and that the osculating circle at parameter t has radius $1/\kappa(t)$.
- (e) Give the equation of the osculating plane at parameter t = 0.
- 1 mark

4 marks

(f) Is C a plane curve?

Extra space. Continue your work here.