7 marks 1. (a) Calculate the work done by the force field $\mathbf{F}=(-a y, b x,-c z)$ on a particle that moves on a path C, where C is composed of
i. a straight line from $(0,-1,0)$ to $(0,1,0)$,
ii. straight lines from $(0,-1,0)$ to $(1,-1,0)$ to $(0,1,0)$.

$$
\begin{gathered}
v_{1}(1,-2,0) \\
\frac{x-1}{1}=\frac{y+1}{-2}
\end{gathered}
$$

3 marks (b) What is the condition on a, b, and c for \mathbf{F} to be conservative? Hint: you may use part (a).
3 marks (c) For $a=2, b=-2$ and $c=1$, evaluate the line integral of \mathbf{F} along the curve C given by $\mathrm{r}(t)=\left(\ln \left(1+t^{5}\right), e^{t^{7}}, t\right)$ with $0 \leq t \leq 1$.

$$
\begin{aligned}
& \text { (a) (i) } r(t)=(0,2 t-1,0) \quad 0 \leq t \leq 1 \\
& r^{\prime}(t)=(0,2,0) \\
& F(r(t))=(-a(2 t-1), 0,0) \\
& \Rightarrow \quad \int_{C} F d r=\int_{0}^{1} F(r(t)) \cdot r^{\prime}(t) d t=0 \\
& \text { (ii) } \quad \tilde{C}=C_{1}+c_{2} \\
& \Rightarrow C_{1}: r_{1}(t)=(t,-1,0) \Rightarrow F_{\left(r_{1}(t)\right)=(a, b t, 0), 0 \leq t \leq 1} \\
& c_{2}: r_{2}(t)=(1-t,-2 t-1,0) \Rightarrow F\left(r_{2}(t)\right)=(-a(2 t-1), b(1-t), 0) \\
& \Rightarrow \int_{\tilde{C}} F d r=\int_{C_{1}+C_{2}} F(r(t)) \cdot r^{\prime}(t) d t: 0 \leq t \leq 11 \\
& =\int_{0}^{1}(a, b t, 0) \cdot(1,0,0)+\int_{0}^{1}(-2 a t+a,-b t+b, 0) \cdot(-1,+2,0) d t \\
& =\int_{0}^{1} a d t+\int_{0}^{1} 2 a t-a-2 b t+2 b d t \\
& =a+\left(a t^{2}-a t-b t^{2}+2 b t\right)_{0}^{1} \\
& =a+a-a-b+2 b \\
& =a+b
\end{aligned}
$$

b) E In order to have a conservative vector field, F must be independent of path ire. for any two paths including C and \tilde{C} (part) with same end paints, we have

$$
O=\int_{c} F \cdot d r=\int_{\tilde{c}} F \cdot d r=a+b
$$

$\Rightarrow a+b=0$ is a necessary condition for F to be conservative. (NOT sufficient)
Now assuming $a+b=0$ we can find a function f such that
and $\nabla f=F \Rightarrow a+b=0$ implies that F is conservative and No condition is required on c.
Or alternatively by $a+b=0$, if $F=\langle P, Q, R\rangle$ we have

$$
\begin{aligned}
& P_{y}=-a=b=Q_{x} \\
& P_{z}=0=R_{x} \\
& Q_{z}=0=R_{y}
\end{aligned}
$$

$$
P_{z}=0=R_{x} \quad \Rightarrow \quad a+b=0 \text { is necessary and }
$$

Sufficient for F to be conservative. Because the field is defined on $R^{\wedge} 3$ which is simply connected.

$$
\begin{aligned}
& F=\nabla f . \\
& f_{x}=-a y \Rightarrow f(x, y, z)=-a x y+g(y, z) \\
& \begin{aligned}
f_{y} & =b x \\
& =-a x
\end{aligned} \quad \Rightarrow \quad f_{y}=-a x+g_{y}=b x \\
& \Rightarrow \quad g_{y}=\left(\frac{a+b}{0}\right) x=0 \Rightarrow g=g(z) \\
& f_{z}=-c z \Rightarrow g^{\prime}(z)=-c z \Rightarrow g(z)=-c / z^{2}+k \operatorname{constant} \\
& \Rightarrow f(x, y, z)=-a x y-c, z^{2}+K
\end{aligned}
$$

(c)
$a=2=-b \stackrel{\text { part (b) }}{\Rightarrow} F$ conservative i.e. $\quad F=\nabla f$
Thus for $a \leq t \leq 1$;

$$
\begin{aligned}
\int_{C} F \cdot d r & =f(r(1))-f(r(0)) \\
& =f(\ln 2, e, 1)-f(0,1,0)
\end{aligned}
$$

Finding the potential:

$$
\begin{aligned}
& f_{x}=-2 y \\
& f_{y}=-2 x
\end{aligned} \begin{aligned}
& \Rightarrow f(x, y, z)=-2 x y+g(z) \\
& f_{z}=-z \quad \Rightarrow f_{z}=g^{\prime}(z)=-z \Rightarrow g(z)=-z^{2} / 2 \\
& \Rightarrow f(x, y, z)=-2 x y-1 / 2 z^{2} \\
& \Rightarrow \int_{C} F \cdot d r=-2 e \ln 2-1 / 2
\end{aligned}
$$

7 marks 2. Compute the line integral of the vector field

$$
\mathbf{F}(x, y)=\left(y e^{x y}, x e^{x y}+x\right)
$$

along the curve $x(t)=\cos (t), y(t)=4 \sin (t)$ where $0 \leq t \leq 2 \pi$. Hint: decompose \mathbf{F} as a sum of two vectors fields, and justify that one of them is conservative.

$$
F(x, y)=(\overbrace{F_{1}}^{\left(y e^{x y}\right.}, \overbrace{F_{2}}^{x y})+(0, x)
$$

$$
\begin{aligned}
& C: \quad r(t)=(\cos t, 4 \sin t) \\
& 0 \leqslant t \leqslant 2 \pi \quad \Rightarrow r(0)=r(2 \pi) \Rightarrow \text { closed curve } \\
& \Rightarrow \int_{C} F_{1} d r=0 \\
& \int_{C} F_{2} d r=\int_{0}^{2 \pi}(0, \cos t) \cdot(-\sin t, 4 \cos t) d t \\
& =\int_{0}^{2 \pi} 4 \cos ^{2} t d t \\
& =\int_{0}^{2 \pi} 2(1+\cos 2 t) d t \\
& =4 \pi+\left.\sin _{0} \alpha t\right|_{0} ^{2 \pi} \\
& =4 \pi \Rightarrow \int_{c} F d r=4 \pi
\end{aligned}
$$

7 marks 3. Calculate the arc length of the curve parameterized by

$$
x(t)=\frac{1}{2} t+\frac{1}{2} \cos t \sin t, \quad y(t)=\frac{1}{2} \sin ^{2} t ; \quad 0 \leq t \leq \pi .
$$

Suggestion: you may use the formulas $\sin (2 t)=2 \sin (t) \cos (t)$ and then $1+\cos ^{\mathrm{p}}(\mathrm{t})=$ $2 \cos ^{2}(t)$ to simplify the calculations.
this typo had been edited before the

$$
\begin{aligned}
& r(t)=\left(1 / 2 t+1 / 4 \sin 2 t, 1 / 2 \sin ^{2} t\right) \\
& r^{\prime}(t)=(1 / 2+1 / 2 \cos 2 t, \quad 1 / 2 \sin 2 t) \\
& \text { midterm date. } \\
& L=\int_{0}^{\pi}\left|r^{\prime}(t)\right| d t=\int_{0}^{\pi} \sqrt{1 / 4+1 / 4 \cos ^{2} 2 t+1 / 2 \cos 2 t+1 / 4 \sin ^{2} 2 t} d t \\
& =\int_{0}^{\pi} \sqrt{1 / 2+1 / 2 \cos 2 t} d t \\
& \text { wing the identity }=\int_{0}^{n} \sqrt{1 / 2\left(2 \operatorname{con}^{2} t\right)} d t \\
& =\int_{0}^{R}|\cos t| d t \\
& =\int_{0}^{\pi / 2} \cos t d t+\int_{\pi / 2}^{\pi}-\cos t d t \\
& =\left.\sin t\right|_{0} ^{\pi / 2}-\left.\sin t\right|_{\pi / 2} ^{\pi} \\
& =1+1=2
\end{aligned}
$$

4. Consider the curve C given by $\mathbf{r}(t)=e^{-t} \cos (t) \mathbf{i}+e^{-t} \sin (t) \mathbf{j}+\sqrt{2} e^{-t} \mathbf{k}$.

3 marks (a) Let $L(t)$ denote the arc length of the curve from the point $(1,0, \sqrt{2})$ to the point with parameter t. Compute $\lim _{t \rightarrow+\infty} L(t)$.
1 mark (b) Compute the unit tangent vector $\mathbf{T}(t)$.
1 mark
(c) Compute the unit normal vector $\mathbf{N}(t)$ and check that $\mathrm{N}(0)=(-\sqrt{2} / 2,-\sqrt{2} / 2,0)$.

3 marks
(d) Give the coordinates of the center of the osculating circle at parameter $t=0$. We recall that the curvature at parameter t is given by $\kappa(t)=\frac{\left|\mathrm{T}^{\prime}(t)\right|}{\left|\mathrm{r}^{\prime}(t)\right|}$ and that the osculating circle at parameter t has radius $1 / \kappa(t)$.
4 marks
1 mark
(e) Give the equation of the osculation plane at parameter $t=0$.
(f) Is C a plane curve?
(a)

$$
r^{\prime}(t)=\left(-e^{-t} \cos t-e^{-t} \sin t,-e^{-t} \sin t+e^{-t} \operatorname{con} t,-\sqrt{2} e^{-t}\right)
$$

print $(1,0, \sqrt{2})$ corresponds to $t=0$

$$
\begin{aligned}
&\left|r^{\prime}(t)\right|= {\left[\begin{array}{l}
-2 t \operatorname{con}^{2} t+e^{-2 t} \sin ^{2} t+2 e^{-2 t} \sin t \operatorname{con} t \\
\\
\\
+e^{-2 t} \sin ^{2} t+e^{-2 t} \operatorname{con}^{2} t-2 e^{-2 t} \\
\\
\left.+2 e^{-2 t}\right]^{1 / 2} \\
=
\end{array}\right.} \\
&\left(4 e^{-2 t}\right)^{1 / 2}=2 e^{-t}
\end{aligned}
$$

$$
\begin{aligned}
L(t)=\int_{0}^{t}\left|r^{\prime}(s)\right| d s=\int_{0}^{t} 2 e^{-s} d s & =-\left.2 e^{-s}\right|_{0} ^{t} \\
& =-2 e^{-t}+2
\end{aligned}
$$

$$
\Rightarrow \lim _{t \rightarrow+\infty} L(t)=2
$$

(b)

$$
\begin{aligned}
T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|} & =\frac{1}{2 e^{-t}}\left(-e^{-t}(\cos t+\sin t), e^{-t}(\cos t-\sin t),-\sqrt{2} e^{-t}\right) \\
& =\frac{1}{2}(-\cos t-\sin t, \cos t-\sin t,-\sqrt{2})
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { c) } \begin{aligned}
& N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|} \\
& T^{\prime}(t)=1 / 2(+\sin t-\operatorname{con} t,-\sin t-\cos t, 0) \\
&\left|T_{(t)}^{\prime}\right|=1 / 2\left(\sin ^{2} t+\cos ^{2} t-2 \sin t / C_{a n} t+\sin ^{2} t+\cos ^{2} t+2 \sin t \operatorname{con} t\right)^{1 / 2} \\
&=\sqrt{2} / 2 \\
& \Rightarrow N(t)=\frac{1}{\sqrt{2}}(\sin t-\cos t,-\sin t-\operatorname{con} t, 0) \\
&\left.\Rightarrow N(0)=\frac{1 / \sqrt{2}}{} \Rightarrow-1,-1,0\right)=(-\sqrt{2} / 2,-\sqrt{2} / 2,0)
\end{aligned}
\end{aligned}
$$

(d) center: $P+R N$

$$
\begin{aligned}
& k(t)=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}=\frac{\sqrt{2} / 2}{2 e^{-t}}=\sqrt{2} / 4 e^{t} \\
& \xrightarrow{t=0} k(0)=\sqrt{2} / 4 \Rightarrow R=4 / \sqrt{2} \\
& r(0)=(1,0, \sqrt{2})=P \Rightarrow \text { Center: }(1,0, \sqrt{2})+\frac{4}{\sqrt{2}}(-\sqrt{2} / 2,-\sqrt{2} / 2,0) \\
&
\end{aligned}
$$

(e) $B(t)=T(t) \times N(t)$

$$
\begin{aligned}
& \Rightarrow B(0)=(-1 / 2,1 / 2,-\sqrt{2} / 2) \\
& \times(-\sqrt{2} / 2,-\sqrt{2} / 2,0) \\
&=(-1 / 2,1 / 2, \sqrt{2} / 2) \\
& P(1,0, \sqrt{2}) \Rightarrow-1 / 2(x-1)+1 / 2 y+\sqrt{2} / 2(z-\sqrt{2})=0 \\
& \Rightarrow \quad-x+y+\sqrt{2} z=1
\end{aligned}
$$

(f)

For C tonorbe
a plane curve, we need to show that there exists a "t" such that

$$
-e^{-t} \cos t+e^{-t} \sin t+2 e^{-t} \neq 1
$$

If C was a plane curve that is to say a curve contained in a plane P, then at every parameter t the osculating plane to the curve would be equal to the plane R .

In the previous question, we computed the osculating plane to the curve at parameter $t=0$. If the curve was a plane curve, it would be contained in the plane with equation $-x+y+\sqrt{ } 2 z=1$. To prove that the curve is not a plane curve, it is enough to find a parameter t such that the corresponding point of the curve is not on this plane: we look for t such that

$$
-e \wedge\{-t\} \cos (t)+e \wedge\{-t\} \sin (t)+2 e \wedge\{-t\} \neq 1
$$

We "check" (admittedly you may need a calculator or the knowledge of the value of e to really check it, but you got full credit for thinking of something like this) for example: at $t=\pi: 3 e^{\wedge}\{-\pi\} \neq 1$.

