		• • •	
	Math 31	17 Midterm — February 10 th 2016	Page 2 of 5
7 marks	1. (a)	Calculate the work done by the force field $\mathbf{F} = (-ay, bx, moves on a path C, where C is composed ofi. a straight line from (0, -1, 0) to (0, 1, 0),$	-cz) on a particle that $\mathcal{O}_1(1, -2, 0)$
3 marks	(b)	11. straight lines from $(0, -1, 0)$ to $(1, -1, 0)$ to $(0, 1, 0)$. What is the condition on a, b , and c for \mathbf{F} to be conservati part (a).	ve ? Hint: you may use
3 marks	(c)	For $a = 2$, $b = -2$ and $c = 1$, evaluate the line integral of F by $\mathbf{r}(t) = (\ln(1+t^5), e^{t^7}, t)$ with $0 \le t \le 1$.	along the curve C given
(a)	(ໍ)	$\begin{aligned} r(t) &= (0, 2t - 1, 0) & 0 \leq t \leq 1 \\ r'(t) &= (0, 2, 0) \\ F(r(t)) &= (-a(2t - 1), 0, 0) \end{aligned}$	
\Rightarrow	SF	$dr = \int_{0}^{1} F(r(t)) \cdot r(t) dt = 0$	
(ii)	\widetilde{C}	$=C_1+C_2$	I
	\Rightarrow ($P_{1}: r_{1}(t) = (t, -1, 0) \Rightarrow F(Y_{1}(t))$	$=(a, bt, o), o \leq t \leq $
	C	$C_2: Y_2(t) = (1-t, -2t-1, 0) \Rightarrow$	$F(r_2(t)) = (-a(2t-1), b(1-t), 0)$
$\Rightarrow \int_{C}$	Fd	$W = \int F(r(t)) \cdot r(t) dt$	$0 \leq t \leq 1$
		$= \int_{0}^{1} (a, bt, 0) \cdot (1, 0, 0) + \int_{0}^{1} (a, bt, 0) \cdot (1, 0, 0) \cdot (1, 0, 0) + \int_{0}^{1} (a, bt, 0) \cdot (1, 0, 0) \cdot (1, 0, 0) + \int_{0}^{1} (a, bt, 0) \cdot (1, 0, 0) \cdot (1, 0, 0) + \int_{0}^{1} (a, bt, 0) \cdot (1, 0, 0) \cdot (1, 0) \cdot (1, 0, 0) + \int_{0}^{1} (a, bt, 0) \cdot (1, 0, 0) \cdot (1, 0, 0) + \int_{0}^{1} (a, bt, 0) \cdot (1, 0, 0) \cdot (1, 0) \cdot $	(2at+a,-bt+b,o),(-1,+2,o)dt
		$= \int_{0}^{1} a dt + \int_{0}^{1} 2at - a - 2bt + 2b$	dt
		$= a + (at^2 - at - bt^2 + 2bt)_0^1$	
		$= \alpha + \alpha - \alpha - b + 2b$	
	· .	= a + b	

b) In order to have a conservative vector field, F must be independent of path i.e. for any two paths including C and \tilde{c} (parta) with same end points, we have $O = \int F \cdot dr = \int F \cdot dr = a + b$ $\Rightarrow a+b=0$ is a necessary condition for F to be conservative. (NOT sufficient) Now assuming a+b=0 we can find a function of such that $F = \nabla f$. $f_{\chi} = -ay \Rightarrow f(x,y,z) = -axy + g(y,z)$ fy = bx \Rightarrow fy = -ax + gy = bx $\Rightarrow \quad g_{y} = (a+b)x = 0 \Rightarrow g = g(z)$ $\Rightarrow \qquad g(z) = -Cz \Rightarrow q(z) = -C_2 z^2 + K \text{ constant}$ $f_z = -cz$ $\Rightarrow f(x,y,z) = -\alpha x y - c_1 z^2 + K$ and $\nabla f = F \Rightarrow a + b = 0$ implies that F is conservative and No condition is required on C. Or alternatively by a+b=0, if $F=\angle P, Q, R \ge bave$ $P_y = -a = b = Q_x$ $P_z = 0 = R_x$ ⇒ a+b=0 is necessary and $Q_z = 0 = Ry$ sufficient for F to be conservative. Because the field is defined on R³ which is simply connected.

(2)

(c) $a = 2 = -b \implies F$ conservative i.e. $F = \nabla f$ Thus for o < t < 1; $\int F \cdot dr = f(r(n)) - f(r(n))$ $= f(\ln 2, e, 1) - f(o, 1, o)$ Finding the potential : $f_{\chi} = -2\gamma$ $\Rightarrow f(x,y,z) = - \lambda x y + g(z)$ fy = -ax $f_z = -Z \qquad \Rightarrow f_z = g(z) = -Z \Rightarrow g(z) = -\frac{Z^2}{2}$ $\Rightarrow f(x,y,z) = -2xy - \frac{1}{2}z^2$ $\Rightarrow \int F \cdot dr = -2e \ln 2 - \frac{1}{2}$ = f(r(1)) - f(r(0)) by the fundamental theorem for vector fields.

Math 317

7 marks 2. Compute the line integral of the vector field

$$\mathbf{F}(x,y) = (ye^{xy}, xe^{xy} + x)$$

along the curve $x(t) = \cos(t)$, $y(t) = 4\sin(t)$ where $0 \le t \le 2\pi$. Hint: decompose **F** as a sum of two vectors fields, and justify that one of them is conservative. P

$$F(z,y) = (ye^{zy}, ze^{zy}) + (0, z)$$

$$F_{1} \qquad F_{2}$$

$$F_{1} \quad is \quad conservative \quad since \begin{cases} P_{y} = e^{zy} + zye^{zy} = Q_{z} \\ and \quad domain F = R^{2} \quad simply \quad connected \end{cases}$$

$$C: \quad r(t) = (C_{ont}, 4 \quad sint)$$

$$v(t) = (C_{ont}, 4 \quad sint) \Rightarrow r(t) = r(2\pi) \Rightarrow closed \quad curve$$

$$\Rightarrow \quad \int_{C} F_{1} \quad dr = 0$$

$$\int_{C} F_{2} \quad dr = \int_{C}^{2\pi} (v, C_{ont}) \cdot (-sint, 4C_{ont}) dt$$

$$= \int_{0}^{2\pi} 4C_{on}^{2}t \quad dt$$

$$= \int_{0}^{2\pi} 2(1+C_{on}2t) \quad dt$$

$$= 4\pi + singt |_{0}^{2\pi}$$

$$\Rightarrow \quad \int_{C} F \quad dr = 4\pi$$

_

Math 317

7 marks 3. Calculate the arc length of the curve parameterized by

$$x(t) = \frac{1}{2}t + \frac{1}{2}\cos t\sin t$$
, $y(t) = \frac{1}{2}\sin^2 t$; $0 \le t \le \pi$.

Suggestion: you may use the formulas $\sin(2t) = 2\sin(t)\cos(t)$ and then $1 + \cos(t) = 2\sin(t)\cos(t)$ $2\cos^2(t)$ to simplify the calculations.

$$\begin{aligned} i\gamma(t) &= \left(\frac{V_{2}t}{4} + \frac{V_{1}}{4} \sin 2t\right), \quad \frac{V_{2}}{2} \sin^{2}t\right) & \text{this typo had been end end the en$$

Math 3	17
--------	----

 $t \rightarrow + \infty$

٢

8 I I K

4. Consider the curve *C* given by
$$r(t) = e^{-t} \cos(t)\mathbf{i} + e^{-t} \sin(t)\mathbf{j} + \sqrt{2}e^{-t}\mathbf{k}$$
.
3 marks
(a) Let $L(t)$ denote the arc length of the curve from the point $(1, 0, \sqrt{2})$ to the point with parameter *t*. Compute $\lim_{t \to +\infty} L(t)$.
1 mark
(b) Compute the unit tangent vector $\mathbf{T}(t)$.
(c) Compute the unit normal vector $\mathbf{N}(t)$ and check that $\mathbf{N}(0) = (-\sqrt{2}/2, -\sqrt{2}/2, 0)$.
3 marks
(d) Give the coordinates of the centro of the osculating circle at parameter $t = 0$. We recall that the curvature at parameter *t* is given by $\kappa(t) = \frac{|\mathbf{P}(0)|}{|\mathbf{P}(0)|}$ and that the cosculating circle at parameter $t = 0$. We recall that the curvature at parameter *t* has radius $1/\kappa(t)$.
4 marks
(e) Give the equation of the osculation plane at parameter $t = 0$.
1 mark
(f) Is *C* a plane curve?
 $\mathbf{Y}(t) = \left(-e^{-t}C_{on}t - e^{-t}S_{in}t + -e^{-t}S_{in}t + e^{-t}C_{on}t + -\sqrt{2}e^{-t}\right)$
 $point
(1, 0, \sqrt{2}) \quad corresponds \quad to \quad t = 0$
 $|\mathbf{Y}(t)| = \left[e^{-2t}C_{on}^{-2}t + e^{-2t}S_{in}^{-2}t + 2e^{-2t}S_{in}tC_{on}t + e^{-2t}S_{in}^{-2}t + 2e^{-2t}S_{in}tC_{on}t + 2e^{-2t}\right]^{1/2}$
 $= \left(4e^{-2t}\right)^{1/2} = 2e^{-t}$
(a)
 $\mathbf{L}(t) = \int_{-\infty}^{t} |\mathbf{Y}(s)| \, ds = \int_{-\infty}^{t} 2e^{-s} \, ds = -2e^{-s} \left|_{0}^{t} - 2e^{-t} + 2e^{-2t} \right|_{0}^{t}$
 $= -2e^{-t} + 2e^{-t} + 2e^{-t}$

6

(b)
$$T(t) = \frac{r(t)}{|r(t)|} = \frac{1}{2e^{t}} \left(-e^{t} (C_{ont} + C_{int}), e^{t} (C_{ont} - S_{int}), -\sqrt{2} e^{t} \right)$$

$$= \frac{1}{2} \left(-C_{ont} - S_{int}, C_{ont} - S_{int}, -\sqrt{2} \right)$$
(c) $N(t) = \frac{T(t)}{|T(t)|}$
 $T(t) = \frac{1}{2} \left(+S_{int} - C_{ont}, -S_{int} - C_{ont}, 0 \right)$
 $|T(t)| = \frac{1}{2} \left(+S_{int} + C_{on}^{2}t - 2S_{int}^{2}t - 2S_{int}^{2}t + C_{on}^{2}t + 2S_{in}^{2}t + 2S_{in}^{$

(d) center : P + RN $K_{(t)} = \frac{|T'(t)|}{|r(t)|} = \frac{\sqrt{2}/2}{2e^{-t}} = \sqrt{2}/4 e^{t}$ $\frac{t=0}{-2} \quad K(0) = \sqrt{2}/4 \Rightarrow R = 4/\sqrt{2}$ $r(0) = (1, 0, \sqrt{2}) = P \Rightarrow Center = (1, 0, \sqrt{2}) + \frac{4}{\sqrt{2}} (-\sqrt{2}/2, -\sqrt{2}/2, 0)$ $= (-1, -2, \sqrt{2})$

e je je

(e) $B(t) = T(t) \times N(t)$

$$\Rightarrow \quad \mathfrak{B}(\mathfrak{o}) = \left(-\frac{1}{2}, \frac{1}{2}, -\sqrt{2}\frac{1}{2}\right)$$

$$\times \left(-\sqrt{2}\frac{1}{2}, -\sqrt{2}\frac{1}{2}, 0\right)$$

$$= \left(-\frac{1}{2}, \frac{1}{2}, \sqrt{2}\frac{1}{2}\right)$$

$$P\left(1, \mathfrak{o}, \sqrt{2}\right) \Rightarrow -\frac{1}{2}\left((\mathfrak{x}-1)\right) + \frac{1}{2}\frac{\mathfrak{g}}{\mathfrak{g}} + \frac{\sqrt{2}}{2}\left((\mathfrak{z}-\sqrt{2})\right) = 0$$

$$\Rightarrow \quad -\mathfrak{A} + \frac{\mathfrak{g}}{\mathfrak{g}} + \sqrt{2}\mathfrak{z} = 1$$
(f) For C tonorbe a plane curve, we need to show that there exists a "t" such that
$$-e^{-t}\operatorname{Cont} + e^{-t}\operatorname{Sint} + 2e^{-t} \neq 1$$

$$\frac{\operatorname{Dat} - \operatorname{cohere} + e^{-t}\operatorname{Sint} + 2e^{-t} \neq 1$$

$$\frac{-1}{2} + 2 = 1 \neq 1$$

If C was a plane curve that is to say a curve contained in a plane P, then at every parameter t the osculating plane to the curve would be equal to the plane R.

In the previous question, we computed the osculating plane to the curve at parameter t=0. If the curve was a plane curve, it would be contained in the plane with equation $-x + y + \sqrt{2} z = 1$. To prove that the curve is not a plane curve, it is enough to find a parameter t such that the corresponding point of the curve is not on this plane: we look for t such that

-e^{-t} cos(t)+ e^{-t} sin(t)+ 2 e^{-t} ≠1

We "check" (admittedly you may need a calculator or the knowledge of the value of e to really check it, but you got full credit for thinking of something like this) for example: at $t = \pi$: $3e^{-1} \neq 1$.