1. TRUE or FALSE:
(a) If A is an $n \times n$ matrix with nonzero determinant and $A B=A C$ then $B=C$. TRUE
(b) A square matrix with zero diagonal entries is never invertible.

FALSE
(c) A linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} is one-to-one if and only if its standard matrix has nonzero determinant.
(d) Every spanning subset of \mathbb{R}^{4} contains a basis for \mathbb{R}^{4}.

TRUE
(e) A linearly independent subset of \mathbb{R}^{n} has at most n elements.

TRUE
(f) Every subspace of \mathbb{R}^{3} contains infinitely many vectors.

FALSE
(g) The system of linear equations $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is in the column space of A.

TRUE
2. Indicate if each of the following is a linear subspace:
(a) The set of all vectors parallel to a fixed vector \mathbf{v}.

SUBSPACE
(b) All the vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ with $x_{1}+x_{3}=1$.

NOT A SUBSPACE
(The zero vector does not belong to the above set!)
(c) The intersection of two subspaces of \mathbb{R}^{n}.

SUBSPACE
(d) The set of vectors in \mathbb{R}^{3} with two equal components.

NOT A SUBSPACE (The vectors \mathbf{e}_{1} and \mathbf{e}_{2} both belong to this set but $2 \mathbf{e}_{1}+\mathbf{e}_{2}$ does not.)
3. Determine if each of the following matrices is invertible? If not, explain why. If so, compute its inverse.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 3 & 0 & -4 \\
3 & -2 & -2 & 8 \\
1 & 1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & -1 & 2 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & -4 & 0 & 1 & 0 & 0 \\
3 & -2 & -2 & 8 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & -1 & 2 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & -4 & 0 & 1 & 0 & 0 \\
0 & -2 & 1 & 2 & -3 & 0 & 1 & 0 \\
0 & 1 & 1 & -2 & -1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & -1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -4 / 3 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 & -2 / 3 & -3 & 2 / 3 & 1 & 0 \\
0 & 0 & 1 & -2 / 3 & -1 & -1 / 3 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & -1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -4 / 3 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 & -2 / 3 & -3 & 2 / 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

The last row is zero which implies the matrix is not invertible.

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 1 & 2 \\
3 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right) \\
\left(\begin{array}{ccc|ccc}
1 & 1 & 2 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 & 1 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & -3 & -5 & -3 & 1 & 0 \\
0 & 2 & 3 & 1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 & 5 / 3 \\
0 & 0 & -1 / 3 & 1 & -1 / 3 & 0 \\
-1 & 2 / 3 & 1
\end{array}\right) \\
\\
\left(\begin{array}{ccc|c|ccc|}
1 & 0 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 & 5 / 3 & 1 & -1 / 3 & 0 \\
0 & 0 & 1 & 3 & -2 & -3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 1 & 1 \\
0 & 1 & 0 & -4 & 3 & 5 \\
0 & 0 & 1 & 3 & -2 & -3
\end{array}\right)
\end{gathered}
$$

This implies the original matrix is invertible and the inverse is:

$$
\left(\begin{array}{ccc}
-1 & 1 & 1 \\
-4 & 3 & 5 \\
3 & -2 & -3
\end{array}\right)
$$

4. Compute the determinant of the following matrices:

$$
\left(\begin{array}{ccc}
0 & 2 & 3 \\
-1 & -1 & 4 \\
2 & -2 & 2
\end{array}\right)
$$

We expand with respect to the first column:

$$
\begin{aligned}
&-(-1)\left|\begin{array}{cc}
2 & 3 \\
-2 & 2
\end{array}\right|+2\left|\begin{array}{cc}
2 & 3 \\
-1 & 4
\end{array}\right|=10+22=32 \\
&\left(\begin{array}{cccc}
0 & 0 & 5 & 5 \\
0 & 2 & 6 & 12 \\
1 & 4 & 7 & 12 \\
2 & 8 & 14 & 15
\end{array}\right)
\end{aligned}
$$

After subtracting twice the third row from the fourth, we get the following matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 5 & 5 \\
0 & 2 & 6 & 12 \\
1 & 4 & 7 & 12 \\
0 & 0 & 0 & -9
\end{array}\right)
$$

which has the same determinant. After expanding with respect to the last row, we can see that the determinant is equal to

$$
-9\left|\begin{array}{lll}
0 & 0 & 5 \\
0 & 2 & 6 \\
1 & 4 & 7
\end{array}\right|
$$

We expand with respect to the first column for the 3×3 and the determinant can be computed by:

$$
(-9)\left|\begin{array}{ll}
0 & 5 \\
2 & 6
\end{array}\right|=90
$$

5. Suppose $A=\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right)$ is an $n \times n$ matrix and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ are the columns of A. For each of the following statements say if they are true or false and justify your answer.
(a) If $\operatorname{det}(A)=0$ then the set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is linearly dependent.

TRUE
Solution: Recall that if $\operatorname{det}(A)=0$ then the system of equations $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. But $A \mathbf{x}$ is a just a linear combination of the columns of A. So a nontrivial solution of $A \mathbf{x}=\mathbf{0}$ means a nonzero linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ is zero and therefore $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ is linearly dependent.
(b) If $\operatorname{det}(A)=0$ then \mathbf{a}_{n} is a linear combination of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$.

FALSE
Solution: Not true in general because for example we can choose $\mathbf{a}_{1}=\cdots=\mathbf{a}_{n-1}=\mathbf{0}$ and \mathbf{a}_{n} nonzero. Then $\operatorname{det}(A)=0$ but \mathbf{a}_{n} is not a linear combination of the other vectors.
(c) If $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$ is linearly independent and $\operatorname{det}(A)=0$ then \mathbf{a}_{n} is a linear combination of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$.

TRUE
Solution: By part (a) above we know that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$ is linearly dependent. So there exist scalars c_{1}, \ldots, c_{n}, not all equal to zero, so that $c_{1} \mathbf{a}_{1}+\cdots+c_{n} \mathbf{a}_{n}=\mathbf{0}$. We claim
$c_{n} \neq 0$, otherwise $c_{1} \mathbf{a}_{1}+\cdots+c_{n-1} \mathbf{a}_{n-1}=\mathbf{0}$ and scalars c_{1}, \ldots, c_{n-1} are not all equal to zero. This contradicts the assumption that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$ is linearly independent. So $c_{n} \neq 0$ and we can see:

$$
c_{1} \mathbf{a}_{1}+\cdots+c_{n} \mathbf{a}_{n}=\mathbf{0} \Rightarrow c_{n} \mathbf{a}_{n}=-c_{1} \mathbf{a}_{1}-\cdots-c_{n-1} \mathbf{a}_{n-1}
$$

and therefore

$$
\mathbf{a}_{n}=-\left(c_{1} / c_{n}\right) \mathbf{a}_{1}-\cdots-\left(c_{n-1} / c_{n}\right) \mathbf{a}_{n-1}
$$

(d) If the system of linear equations $A \mathbf{x}=\mathbf{b}$ has a solution then the determinant of the matrix $B=\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n-1} \mathbf{b}\right)$ obtained from replacing the last column by \mathbf{b} is zero. FALSE

Solution: Not necessarily. For example let $A=I_{n}$ be the identity matrix. Then it is easy to see that $A \mathbf{x}=\mathbf{e}_{n}$ has a solution, where \mathbf{e}_{n} is the last column of I_{n}. But replacing the last column by \mathbf{e}_{n} does not change the matrix and the determinant remains equal to 1.
(e) There exists a vector \mathbf{c} which is not in the span of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$.

TRUE
Solution: We have seen that at least n vectors are required to span \mathbb{R}^{n}.
(f) If $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$ is linearly independent then there exists a vector \mathbf{c} such that the determinant of the matrix $C=\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n-1} \mathbf{c}\right)$ obtained from replacing the last column by \mathbf{c} has nonzero determinant.

TRUE
Solution: By part (e), there is a vector \mathbf{c} which is not a linear combination of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}\right\}$. Then by $(c), \operatorname{det}(A) \neq 0$.
6. Given a set of vectors $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ in \mathbb{R}^{n}, if A is the matrix $A=\left(\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right)$, we write

$$
\operatorname{det}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)=\operatorname{det}(A)
$$

(a) Suppose that $\operatorname{det}(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z})=2$ for a set of vectors $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ in \mathbb{R}^{4}. Find:

$$
\operatorname{det}(\mathbf{w}+2 \mathbf{v}, \mathbf{v}, \mathbf{z}, 3 \mathbf{u})
$$

Solution: We notice that the matrix $(\mathbf{w}+2 \mathbf{v}, \mathbf{v}, \mathbf{z}, 3 \mathbf{u})$ is obtained from the matrix $(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z})$ by the following column operations:
$(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}) \rightarrow(3 \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}) \rightarrow(3 \mathbf{u}, \mathbf{v}, \mathbf{w}+2 \mathbf{v}, \mathbf{z}) \rightarrow(\mathbf{w}+2 \mathbf{v}, \mathbf{v}, 3 \mathbf{u}, \mathbf{z}) \rightarrow(\mathbf{w}+2 \mathbf{v}, \mathbf{v}, \mathbf{z}, 3 \mathbf{u})$
The first operation, multiplies a column by 3 , the second adds twice a column to another and the third and fourth interchange two columns. Recall that the first one multiplies the determinant by 3 , the second does not change the determinant and the third and fourth just change the sign. This shows that

$$
\operatorname{det}(\mathbf{w}+2 \mathbf{v}, \mathbf{v}, \mathbf{z}, 3 \mathbf{u})=3(-1)(-1) \operatorname{det}(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z})=6
$$

