Math 221: Matrix Algebra Midterm 2

- (1) Indicate whether each of the following hold by writing the complete word True or False (you will lose points for simply writing T or F). You do not need to justify your answers.
 - (a) If A and B are $n \times n$ matrices, and AB = 0, then either A = 0 or B = 0.
 - (b) Every $n \times n$ invertible matrix is row equivalent to the $n \times n$ identity matrix.
 - (c) Every matrix is the standard matrix of a linear transformation.
 - (d) If A and B are invertible $n \times n$ matrices, then $(AB)^{-1} = A^{-1}B^{-1}$.
 - (e) If a set S of vectors spans \mathbb{R}^n , then S is linearly dependent. False
 - (f) If A is not invertible, then A^T is not invertible.
- (2) Indicate whether or not each of the following is a linear subspace by writing either yes, if it is a linear subspace, and otherwise no. You do not need to justify your answers.

(a)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 + x_2 - x_3 = 0 \right\}.$$

- (b) The union of two subspaces of \mathbb{R}^n .
- (c) The set $\{0\}$ consisting of the zero vector in \mathbb{R}^n .
- (d) The set of vectors in \mathbb{R}^4 whose third coordinate is 1. \nearrow \bigcirc

- (3) Answer each of the following:
 - (a) Compute the determinant of the following matrix A:

$$A = \begin{pmatrix} 1 & -1 & 2 & 1/3 \\ 0 & 0 & 1 & -5 \\ -1 & 2 & 1 & 7 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
expanding along the last now.
$$\det(A) = 3 \begin{vmatrix} 1 & -1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = -3$$

$$\begin{vmatrix} 1 & -1 & 2 \\ -1 & 2 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 2 \\ -1 & 2 & 1 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} = (-1) (2-1) = -1$$
Instention that this is the metric A in Part (1).

(b) Is the following matrix B invertible? If not, explain why. If so, compute its inverse.

(4) Let $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5)$ be the 4×5 matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$, and \mathbf{a}_5 in \mathbb{R}^4 . Suppose the reduced echelon form of A is

$$REF(A) = \begin{pmatrix} 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- (a) What is the rank of A? 3
- (b) What is the dimension of the nullspace of A?
- (c) Give a basis for the column space of A. $\{\vec{a}_1, \vec{a}_3, \vec{a}_5\}$
- (d) Give a basis for the nullspace of A.

$$x_{1} = x_{2} + x_{4} \quad x_{3} = x_{4} \quad x_{5} = 0$$

$$Null(A) = \left\{ \begin{pmatrix} x_{2} + x_{4} \\ x_{2} \\ x_{4} \end{pmatrix} : x_{2}, x_{4} \in \mathbb{R} \right\} = \left\{ x_{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_{4} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} : x_{2}, x_{4} \in \mathbb{R} \right\}$$
Therefore $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$ is a basis for Null(A).