\qquad

Math 221: Matrix Algebra Midterm 2

(1) Indicate whether each of the following hold by writing the complete word True or False (you will lose points for simply writing T or F). You do not need to justify your answers.
(a) If A and B are $\quad n \times n$ matrices, and $A B=0$, then either $A=0$ or $B=0$. False
(b) Every $n \times n$ invertible matrix is row equivalent to the $n \times n$ identity matrix. True
(c) Every matrix is the standard matrix of a linear transformation. True
(d) If A and B are invertible $n \times n$ matrices, then $(A B)^{-1}=A^{-1} B^{-1}$. Fall
(e) If a set S of vectors spans \mathbb{R}^{n}, then S is linearly dependent.

(f) If A is not invertible, then A^{T} is not invertible.

(2) Indicate whether or not each of the following is a linear subspace by writing either yes, if it is a linear subspace, and otherwise no. You do not need to justify your answers.
(a) $\left\{\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3}: x_{1}+x_{2}-x_{3}=0\right\}$. ye e
(b) The union of two subspaces of \mathbb{R}^{n}. 0
(c) The set $\{\mathbf{0}\}$ consisting of the zero vector in \mathbb{R}^{n}. yes
(d) The set of vectors in \mathbb{R}^{4} whose third coordinate is 1. ИO
(3) Answer each of the following:
(a) Compute the determinant of the following matrix A :

$$
A=\left(\begin{array}{cccc}
1 & -1 & 2 & 1 / 3 \\
0 & 0 & 1 & -5 \\
-1 & 2 & 1 & 7 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

expanding along the last now:

$$
\operatorname{det}(A)=3\left|\begin{array}{ccc}
1 & -1 & 2 \\
0 & 0 & 1 \\
-1 & 2 & 1
\end{array}\right|=-3
$$

$$
\left|\begin{array}{ccc}
1 & -1 & 2 \\
0 & 0 & 1 \\
-1 & 2 & 1
\end{array}\right|=(-1)\left|\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right|=(-1)(2-1)=-1
$$

note that this is the matrix A in Part (b).
(b) Is the following matrix B invertible? If not, explain why. If so, compute its inverse.

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 0 & 1 \\
-1 & 2 & 1
\end{array}\right) \begin{aligned}
& \text { from a computation in (a), ire } \\
& \text { sow is int } \operatorname{det}(A) \neq 0, \text { so }
\end{aligned}
$$

To compute A^{-1}, un sow reduce

$$
\left(\begin{array}{ccc|ccc}
1 & -1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
-1 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -5 & 1 \\
0 & 1 & 0 & 1 & -3 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Therefore the inverse of A is

$$
1-1=\left(\begin{array}{ccc}
2 & -5 & 1 \\
1 & -3 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(4) Let $A=\left(\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{a}_{4} \mathbf{a}_{5}\right)$ be the 4×5 matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}$, and \mathbf{a}_{5} in \mathbb{R}^{4}. Suppose the reduced echelon form of A is

$$
\operatorname{REF}(A)=\left(\begin{array}{rrrrr}
1 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) What is the rank of A ? 3
(b) What is the dimension of the nullspace of A ? 2
(c) Give a basis for the column space of $A . \quad\left\{\vec{a}, \vec{a}_{3}, \frac{a_{5}}{a_{5}}\right\}$
(d) Give a basis for the nullspace of A.

$$
\begin{aligned}
& x_{1}=x_{2}+x_{4} \quad x_{3}=x_{4} \quad x_{5}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefore }\left\{\left(\begin{array}{l}
(0)
\end{array}\right) /\left[\begin{array}{l}
0 \\
0
\end{array}\right\} \text { is a basis for } \operatorname{Nall}(A)\right. \text {. }
\end{aligned}
$$

