1. TRUE or FALSE
(a) A homogenous system with more variables than equations has a nonzero solution.

True (The number of pivots is going to be less than the number of columns and therefore there is a free variable which provides nonzero solutions.)
(b) If \mathbf{x} is a solution to the system of equations $A \mathbf{x}=\mathbf{b}$ for some vector \mathbf{b} then $2 \mathbf{x}$ is also a solution to the same system.
False
(In fact whenever \mathbf{b} is nonzero and \mathbf{x} is a solution to $A \mathbf{x}=\mathbf{b}$ then $A(2 \mathbf{x})=2 A \mathbf{x}=2 \mathbf{b} \neq \mathbf{b}$.)
(c) If A has a zero column then the hogenous system $A \mathbf{x}=\mathbf{0}$ has a nonzero solution.

True (The zero column will contain no pivot and therefore the corresponding variable is free and provides nonzero solutions.)
(d) The only linear transformation which is both one-to-one and onto is the identity map.

False (For example it is easy to see that the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which takes every vector $\mathbf{v} \in \mathbb{R}^{2}$ to $\mathbf{- v}$ is a linear transformation which is both one-to-one and onto.)
2. Find the complete solution set to the system:

Using the row echelon form of the matrix given above, we see that x_{2}, x_{5} are free and we have:

$$
\left\{\begin{array}{l}
2 x_{1}+2 x_{2}+x_{3}+x_{4}-x_{5}=6 \\
3 x_{3}-2 x_{4}+5 x_{5}=-6 \\
x_{4}-2 x_{5}=4
\end{array} \Rightarrow\right.
$$

$$
\left\{\begin{array}{l}
x_{4}=4+2 x_{5} \\
3 x_{3}=-6+2 x_{4}-5 x_{5}=-6+2\left(4+2 x_{5}\right)-5 x_{5}=2+3 x_{5}-x_{5} \\
2 x_{1}=6-2 x_{2}-x_{3}-x_{4}+x_{5}=6-2 x_{2}-(1 / 3)\left(2 \not x_{5}\right)-\left(4+2 x_{5}\right)+x_{5}=4 / 3-2 x_{2}-2 x_{5}
\end{array}\right.
$$

So the general solution is of the form

$$
\left\{\begin{array}{l}
x_{1}=2 / 3-x_{2}-x_{5} x_{5} / 3 \\
x_{3}=2 / 3 \pm x_{5}-x_{5} / 3 \\
x_{4}=4+2 x_{5}
\end{array}\right.
$$

for arbitrary x_{2} and x_{5}.

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x_{1}+2 x_{2}+x_{3}+x_{4}-x_{5}=6 \\
2 x_{1}+2 x_{2}+x_{3}+2 x_{4}-3 x_{5}=10 \\
-2 x_{1}-2 x_{2}+2 x_{3}-3 x_{4}+6 x_{5}=-12
\end{array}\right. \\
& \left(\begin{array}{rrrrr|r}
2 & 2 & 1 & 1 & -1 & 6 \\
2 & 2 & 1 & 2 & -3 & 10 \\
-2 & -2 & 2 & -3 & 6 & -12
\end{array}\right) \rightarrow\left(\begin{array}{rrrrr|r}
2 & 2 & 1 & 1 & -1 & 6 \\
0 & 0 & 0 & 1 & -2 & 4 \\
0 & 0 & 3 & -2 & 5 & -6
\end{array}\right) \rightarrow \\
& \left(\begin{array}{rrrrr|r}
2 & 2 & 1 & 1 & -1 & 6 \\
0 & 0 & 3 & -2 & 5 & -6 \\
0 & 0 & 0 & 1 & -2 & 4
\end{array}\right)
\end{aligned}
$$

3. Find the reduced row echelon matrix which is row equivalent to
now reducing:

$$
\left(\begin{array}{cccc}
3 & 3 & 3 & 3 \\
0 & 1 & 2 & 3 \\
2 & 8 & 14 & 10 \\
1 & 3 & 5 & 12
\end{array}\right)
$$

$\left(\begin{array}{llll}3 & 3 & 3 & 3 \\ 0 & 1 & 2 & 3 \\ 2 & 8 & 14 & 10 \\ 1 & 3 & 5 & 12\end{array}\right) \longrightarrow\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 6 & 12 & 8 \\ 0 & 2 & 4 & 11\end{array}\right) \longrightarrow\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & -10 \\ 0 & 0 & 0 & 5\end{array}\right) \longrightarrow\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\longrightarrow\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

4. Suppose

$$
A=\left(\begin{array}{rrrrr}
1 & -3 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Find all the solutions to the system of equations

$$
A \mathbf{x}=\left(\begin{array}{r}
2 \\
-4 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Solory for the golem with augmented mativi } \\
& \qquad\left(\begin{array}{ccccc|c}
1 & -3 & 0 & 2 & 0 & 2 \\
0 & 0 & 1 & 3 & -4 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{cccccc|c}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & -3 & 0 & 2 & -1 & 2 \\
0 & 0 & 1 & 3 & 0 & -4
\end{array}\right) \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -2 / 3 & 1 / 3 & -2 / 3 \\
0 & 0 & 1 & 3 & 0 & -4
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Free variable are } & x_{4} \text { and } x_{5} \\
x_{1}=-x_{5} & x_{2}-\frac{2}{3}+2 / 3 x_{4}-\frac{1}{3} x_{5} \quad x_{3}=-4-3 x_{4}
\end{array}
$$

(b) Express the vector

$$
\left(\begin{array}{r}
2 \\
-4 \\
0
\end{array}\right)
$$

as a linear combination of columns of A. We use the solution found in part (a) Set $x_{4}=x_{3}=0$. Then $x_{1}=0, x_{2}=\frac{-2}{3}, x_{3}=-4$. Now woe can chad that.

$$
0\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right)-4\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
0
\end{array}\right)
$$

5. In each of the following cases, determine whether the given vector is in the set spanned by the columns of the given matrix:
(a) $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ with $\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & 0\end{array}\right)$ whose augmented matrix in $:\left(\begin{array}{ccc|c}1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 1 & 1 & 0 & 3\end{array}\right)$

$$
\text { Row reducing: } \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 0
\end{array}\right)
$$

The system is consistent, and therefore the neetor $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right) \xlongequal{\text { is }}$ in the span of the columns of the matins.

$$
\begin{aligned}
& \text { (b) }\left(\begin{array}{r}
4 \\
0 \\
-3
\end{array}\right) \text { with }\left(\begin{array}{rrr}
3 & 2 & -4 \\
1 & -1 & -3 \\
1 & 5 & 3
\end{array}\right) \text { same reavoring as in (a) } \\
& \left(\begin{array}{ccc|c}
3 & 2 & -9 & 4 \\
1 & -1 & -3 & 0 \\
1 & 5 & 3 & -3
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & -3 & 0 \\
0 & 6 & 6 & -3 \\
0 & 5 & 5 & 4
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & -3 & 0 \\
0 & 1 & 1 & -\frac{1}{2} \\
0 & 1 & 1 & 4 / 5
\end{array}\right) \\
& \text { This system is inconsistent, and therefore }\left(\begin{array}{c}
4 \\
0 \\
-3
\end{array}\right) \text { is not a linear } \\
& \text { combination of the columns of the matrix. }
\end{aligned}
$$

6. Determine if the set $S=\left\{\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right\}$ is linearly independent in \mathbb{R}^{3} and explain why.
The set S is linearly independent if and only if

$$
c_{1}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+c_{3}\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { implic that } c_{1}=c_{2}=c_{3}=0 \text {. }
$$

We need to check that the only solution to $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
is the trivial one.
We can how reduce the matrix:
$\longrightarrow\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -1 & -2\end{array}\right) \longrightarrow\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$
As the matrix has a non-prot column er, the system has nontinivial solutions, and therefore the set S is chriarly dependent.
7. Determine if each of the following functions is a linear transformation. If it is the case find the matrix representing the transformation with respect to the standard bases.
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$, with $L\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=-x_{2}-x_{1}$.

Solution: Suppose $\mathbf{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ are vectors in \mathbb{R}^{3} and $c \in \mathbb{R}$ is a scalar. Then

$$
\begin{aligned}
L(c \mathbf{x}) & =L\left(\left(\begin{array}{l}
c x_{1} \\
c x_{2} \\
c x_{3}
\end{array}\right)\right)=-c x_{2}-c x_{1}=c\left(-x_{2}-x_{1}\right) \\
& =c L(\mathbf{x})
\end{aligned}
$$

Also

$$
\begin{aligned}
L(\mathbf{x}+\mathbf{y}) & =L\left(\left(\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right)\right)=-\left(x_{2}+y_{2}\right)-\left(x_{1}+y_{1}\right)=\left(-x_{2}-x_{1}\right)+\left(-y_{2}-y_{1}\right) \\
& =L(\mathbf{x})+L(\mathbf{y})
\end{aligned}
$$

These show that L is linear. Also we can see that $L\left(\mathbf{e}_{\mathbf{1}}\right)=-1, L\left(\mathbf{e}_{\mathbf{2}}\right)=-1$ and $L\left(\mathbf{e}_{\mathbf{3}}\right)=0$ for the standard vectors in \mathbb{R}^{3}, which shows that the standard matrix is the 1×3 matrix $\left(\begin{array}{lll}-1 & -1 & 0\end{array}\right)$.
(b) $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with $L\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{1} x_{2}}{x_{2}}$.

Solution: L is not linear. For example we can see that $L\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)=\binom{1}{1}$. But

$$
\begin{aligned}
L\left(\mathbf{e}_{1}\right)=\binom{0}{0} \text { and } L\left(\mathbf{e}_{2}\right)= & \binom{0}{1}, \text { so } \\
& L\left(\mathbf{e}_{1}+L\left(\mathbf{e}_{2}\right) \neq L\left(\mathbf{e}_{1}\right)+L\left(\mathbf{e}_{2}\right)\right.
\end{aligned}
$$

which shows that L is not linear.
(c) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $L\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=1$.

Solution: L is not linear. For example $L\left(2 \mathbf{e}_{1}\right)=1 \neq 2 L\left(\mathbf{e}_{1}\right)$.
(d) $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $L\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{2}-x_{1}}{0}$.

Solution: It is easy to check like part (a) above to see that L is linear. To find the standard matrix, we have

$$
L\left(\mathbf{e}_{\mathbf{1}}\right)=\binom{-1}{0}=(-1) \mathbf{e}_{1}+0 \mathbf{e}_{2} \quad \text { and } \quad L\left(\mathbf{e}_{2}\right)=\binom{1}{0}=\mathbf{e}_{1}+0 \mathbf{e}_{2}
$$

So the standard matrix of L is $\left(\begin{array}{rr}-1 & 1 \\ 0 & 0\end{array}\right)$.
8. For the following linear transformations, find the standard matrix and also determine if they are one-to-one or onto.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $T\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=x_{2}$.

Solution: It follows from the definition of T that $T\left(\mathbf{e}_{1}\right)=T\left(\mathbf{e}_{3}\right)=0$ and $T\left(\mathbf{e}_{2}\right)=1$. So the standard matrix of T is the 1×3 matrix $A_{T}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$.
T is onto because for every $b \in \mathbb{R}, T\left(\left(\begin{array}{l}0 \\ b \\ 0\end{array}\right)\right)=b$. In other terms, $A_{T} \mathbf{x}=b$ is consistent for every $b \in \mathbb{R}$.
T is not one-to-one, since $T\left(\mathbf{e}_{1}\right)=T(\mathbf{0})=0$, or in other terms $A_{T} \mathbf{x}=0$ has more than one solution.
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with $T\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}+\mathbf{e}_{3}$ and $T\left(\mathbf{e}_{2}\right)=-\mathbf{e}_{1}+\mathbf{e}_{2}$.

Solution: The definition of T immediately shows that the standard matrix of T is $A_{T}=\left(\begin{array}{rr}0 & -1 \\ 1 & 1 \\ 1 & 0\end{array}\right)$
T is not onto because there is no vector $\mathbf{x} \in \mathbb{R}^{2}$ so that $T(\mathbf{x})=\mathbf{e}_{1}$, or in other terms $A_{T} \mathbf{x}=\mathbf{e}_{1}$ is inconsistent.
T is one-to-one. Recall that to prove this one only needs to show that the homogenous system $A_{T} \mathbf{x}=\mathbf{0}$ has only the trivial solution. This can be seen by finding the row echelon form of the matrix has two pivots.
(c) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{1}+x_{2}}{-x_{1}-x_{2}}$.

Solution: $T\left(\mathbf{e}_{1}\right)=\binom{1}{-1}=\mathbf{e}_{1}-\mathbf{e}_{2}$ and $T\left(\mathbf{e}_{2}\right)=\binom{1}{-1}=\mathbf{e}_{1}-\mathbf{e}_{2}$. So the standard matrix of T is $A_{T}=\left(\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right)$.
T is not onto, because $T(\mathbf{x})=\mathbf{e}_{1}$ has no solutions, or in other terms $A_{T} \mathbf{x}=\mathbf{e}_{1}$ is inconsistent.
T is not one-to-one either, because $T\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)=T(\mathbf{0})=\mathbf{0}$, in other terms $A_{T} \mathbf{x}=\mathbf{0}$ has more than one solutions.
9. Suppose the following vectors in \mathbb{R}^{3} are given

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

(a) Determine if the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.

Solution: Recall that to check that S is linearly independent, we need to check if the equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{0}$ has a nonzero solution. Equivalently we need to check
if the homogenous system of equations $A \mathbf{x}=\mathbf{0}$ has a nonzero solution, where

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

To show this system has no nonzero solution, it is enough to find the reduced row echelon form of A and see that it has exactly three pivots.

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right) \rightarrow \\
& \left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Hence S is linearly independent.
(b) Determine if S spans \mathbb{R}^{3}.

Solution: To prove S spans \mathbb{R}^{3}, we need to show the system of linear equations $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{3}$. But we saw that A has three pivots and therefore every row contains a pivot. This implies that $A \mathbf{x}=\mathbf{b}$ is consistent.
(c) Express the vector

$$
\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)
$$

as a linear combination of elements of the vectors in S.
Solution: We need to find a solution to the system of equations

$$
\begin{gathered}
A \mathbf{x}=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) \\
\left(\begin{array}{lll|l}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & -1 & 2
\end{array}\right) \rightarrow \\
\left(\begin{array}{rrr|r}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & -2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & -1 / 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 0 & 3 / 2 \\
0 & 1 & 0 & 3 / 2 \\
0 & 0 & 1 & -1 / 2
\end{array}\right)
\end{gathered}
$$

This shows

$$
\left(\begin{array}{c}
1 \\
1 \\
3
\end{array}\right)=\frac{3}{2} \mathbf{v}_{1}+\frac{3}{2} \mathbf{v}_{2}-\frac{1}{2} \mathbf{v}_{3} .
$$

10. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation which is not onto. Answer the following questions and explain your answers.
(a) What is the size of the standard matrix for T ?

$$
n \times n
$$

(b) How many pivots does the standard matrix of T has?
\qquad matrix of T is strictly les than the number of it rows, n, as T is not onto.
(c) Can T be one-to-one?

Since the standard matrix has less than a prats (as observed in (b)), it does not
have a pivot in every column. Therefore T cannot be one-to-one.

