Math 221: Matrix Algebra Midterm I - Sample Questions - January, 2013

1. TRUE or FALSE
(a) A homogenous system with more variables than equations has a nonzero solution.
(b) If \mathbf{x} is a solution to the system of equations $A \mathbf{x}=\mathbf{b}$ for some vector \mathbf{b} then $2 \mathbf{x}$ is also a solution to the same system.
(c) If A has a zero column then the homenous system $A \mathbf{x}=\mathbf{0}$ has a nonzero solution.
(d) The only linear transformation which is both one-to-one and onto is the identity map.
2. Find the complete solution set to the system:

$$
\left\{\begin{array}{l}
2 x_{1}+2 x_{2}+x_{3}+x_{4}-x_{5}=6 \\
2 x_{1}+2 x_{2}+x_{3}+2 x_{4}-3 x_{5}=10 \\
-2 x_{1}-2 x_{2}+2 x_{3}-3 x_{4}+6 x_{5}=-12
\end{array}\right.
$$

3. Find the reduced row echelon matrix which is row equivalent to

$$
\left(\begin{array}{cccc}
3 & 3 & 3 & 3 \\
0 & 1 & 2 & 3 \\
2 & 8 & 14 & 10 \\
1 & 3 & 5 & 12
\end{array}\right)
$$

4. Suppose

$$
A=\left(\begin{array}{rrrrr}
1 & -3 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Find all the solutions to the system of equations

$$
A \mathbf{x}=\left(\begin{array}{r}
2 \\
-4 \\
0
\end{array}\right)
$$

(b) Express the vector

$$
\left(\begin{array}{r}
2 \\
-4 \\
0
\end{array}\right)
$$

as a linear combination of columns of A.
5. In each of the following cases, determine whether the given vector is in the set spanned by the columns of the given matrix:
(a) $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ with $\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{r}4 \\ 0 \\ -3\end{array}\right)$ with $\left(\begin{array}{rrr}3 & 2 & -4 \\ 1 & -1 & -3 \\ 1 & 5 & 3\end{array}\right)$
6. Determine if the set $S=\left\{\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right\}$ is linearly independent in \mathbb{R}^{3} and explain why.
7. Determine if each of the following functions is a linear transformation. If it is the case find the matrix representing the transformation with respect to the standard bases.
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$, with $L\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=-x_{2}-x_{1}$.
(b) $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with $L\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{1} x_{2}}{x_{2}}$.
(c) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $L\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=1$.
(d) $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $L\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{2}-x_{1}}{0}$.
8. For the following linear transformations, find the standard matrix and also determine if they are one-to-one or onto.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $T\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=x_{2}$.
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with $T\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}+\mathbf{e}_{3}$ and $T\left(\mathbf{e}_{2}\right)=-\mathbf{e}_{1}+\mathbf{e}_{2}$.
(c) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{1}+x_{2}}{-x_{1}-x_{2}}$.
9. Suppose the following vectors in \mathbb{R}^{3} are given

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

(a) Determine if the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
(b) Determine if S spans \mathbb{R}^{3}.
(c) Express the vector

$$
\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)
$$

as a linear combination of elements of the vectors in S.
10. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation which is not onto. Answer the following questions and explain your answers.
(a) What is the size of the standard matrix for T ?
(b) How many pivots does the standard matrix of T has?
(c) Can T be one-to-one?

