Worksheet 7

We recall that given a vector \mathbf{u} and the line L spanned by \mathbf{u} , the orthogonal projection of a vector \mathbf{x} onto L is

(1)
$$\operatorname{proj}_{L}(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{u}}{\|\mathbf{u}\|^{2}} \mathbf{u}.$$

Now, instead of a line L, consider more generally a subspace W of \mathbb{R}^n . We are interested in the orthogonal projection onto W. If $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is an **orthogonal** basis for W, then for any $\mathbf{x} \in \mathbb{R}^n$

(2)
$$\operatorname{proj}_{W}(\mathbf{x}) = \frac{\mathbf{x}.\mathbf{u}_{1}}{\|\mathbf{u}_{1}\|^{2}} \ \mathbf{u}_{1} + \dots + \frac{\mathbf{x}.\mathbf{u}_{m}}{\|\mathbf{u}_{m}\|^{2}} \ \mathbf{u}_{m}.$$

Given a point A of the space \mathbb{R}^n , the distance from A to the subspace W is the length

$$||OA - \operatorname{proj}_W(OA)||$$

of the vector $\overrightarrow{OA} - \operatorname{proj}_W(\overrightarrow{OA})$.

Drawing :

Problem 1. Let $\mathbf{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and L the line spanned by \mathbf{u} . Compute the distance to L from the points $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

1

Problem 2. Let *L* be the 1-dimensional subspace of \mathbb{R}^4 spanned by $\mathbf{u} = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4$. We consider $\operatorname{proj}_L : \mathbb{R}^4 \to \mathbb{R}^4$

the orthogonal projection on L.

- (A) What is the range of proj_L ?
- (B) Let A be the matrix of proj_L in the standard basis. What is the rank of $A\,?$
- (C) Compute the coordinates of the images by proj_L of \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , \mathbf{e}_4 .
- (D) Compute A.
- (E) Give a basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ of $L^{\perp} = \{\mathbf{x} \in \mathbb{R}^4, \mathbf{x}.\mathbf{u} = 0\}.$
- (F) Consider the matrix P whose columns are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ and \mathbf{u} . What is $P^{-1}AP$?
- (G) Compute A^{100} .

 $\mathbf{2}$

Problem 3. In \mathbb{R}^3 , consider the plane P with equation x + z = 0.

- (A) Find an orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for P (that is to say an orthogonal set that is a basis for P).
- (B) Find a basis $\{\mathbf{u}_3\}$ for P^{\perp} .
- (C) Consider the orthogonal projection $T = \operatorname{proj}_{P^{\perp}} : \mathbb{R}^3 \to \mathbb{R}^3$. It is a linear transformation.
 - (a) What is the range of T?
 - (b) Give the matrix B of T in the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
 - (c) Compute $T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3)$.
 - (d) Give the matrix A of T in the standard basis.
 - (e) What is the matrix Q such that $B = Q^{-1}AQ$?
- (D) (optional) Consider the orthogonal projection $S = \text{proj}_P$ on P.
 - (a) What is S + T?
 - (b) What is the matrix C of S in the standard basis?
 - (c) Can you retrieve your answer to the previous question using Equation (2) at the beginning of this worksheet?
- (E) What is A^2 ? What is C^2 ?

Problem 4. Let α be a positive number and L the line in \mathbb{R}^2 with equation $y = \alpha x$. We consider the (orthogonal) reflection T about L. Let θ be the angle from the vector \mathbf{e}_1 to the vector $\mathbf{u}_1 := \begin{pmatrix} 1 \\ \alpha \end{pmatrix}$. We want to determine the matrix A of T in the standard basis $\{\mathbf{e}_1, \mathbf{e}_2\}$.

- (A) First approach (very optional). Let proj_L be the orthogonal projection on L and $\operatorname{proj}_{L^{\perp}}$ the orthogonal projection on L^{\perp} .
 - (a) Give the matrix M of proj_L in the standard basis.
 - (b) Give a basis $\{\mathbf{u}_2\}$ for L^{\perp} and the matrix N of $\operatorname{proj}_{L^{\perp}}$ in the standard basis.
 - (c) What is $\operatorname{proj}_L \operatorname{proj}_{L^{\perp}}$?
 - (d) Give the matrix A of T in the standard basis in terms of α .
- (B) Second approach.
 - (a) Let $\mathbf{u}_2 := \begin{pmatrix} -\alpha \\ 1 \end{pmatrix}$. After checking that $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis for \mathbb{R}^2 , give the matrix D of T in \mathcal{B} .
 - (b) Consider the matrix P whose columns are \mathbf{u}_1 and \mathbf{u}_2 . What is the link between A and D?
 - (c) Compute the matrix A in terms of α .
- (C) Give the coordinates of the image of \mathbf{e}_1 by T in terms of θ .
- (D) (very optional) What is $tan(\theta)$ in terms of α ? Prove the following identities :

$$\cos(2\theta) = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}, \quad \sin(2\theta) = \frac{2\tan(\theta)}{1 + \tan^2(\theta)}$$

NB : one can prove these equalities also by direct computation and using other trigonometric identities.

Problem L= Span $\left\{ \binom{1}{2} \right\}$ $u = \binom{1}{2}$ $\|u\|^2 = 5$ $d(A,L) = \| \overline{OA} - \mu_{0j}(OA)\| = \| \overline{OA}, \overline{OA, \mu} - \mu_{0j}(OA)\| = \| \overline{OA$ $= \frac{1}{5} \sqrt{\frac{16+4}{15^{-7}}} = \frac{2}{15^{-7}}$ $\mu_{0}(\overline{OB}) = \frac{2}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad d(B, L) = \frac{1}{5} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \frac{2}{5} \begin{pmatrix} -2/5 \\ 4/5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -2/5 \\ 4/5 \end{pmatrix}$ $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ______ In the work sheet I gave B 1/15/ I changed B into (3) = D. 2/15 $d(\mathbf{D}, L) = \left| \begin{pmatrix} 0 \\ 3 \end{pmatrix} - \frac{e}{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right|^{2} = \dots$ Problem 2. In = (i) L = Span (in) (A) Range (poj_) = ((B) He rank of A is the dimension of the lange of poj_ (by difinition of the rank of a mateix) bo rank (A) = 1 $(c) froj_{2}(\vec{e}) = \frac{ei \cdot u}{||\vec{u}||^{2}} + \frac{1}{||\vec{u}||^{2}} + \frac$

· .

(D) A = //1/1/ (We see 4 (1111) has & that it. Such Hat 22 23 24 24 2c + 22 + 23 + 24 = 0 $\overline{\mathcal{V}}_{i}$ 10 Lt is the the matrix of finition Tasis_____ But proje (v2) profe D 0 <u>ick withou</u> 1P=PD n double ch checking computing | | -100 -<u>10</u> -1 Cere 3 -1 100 p-1 (0) H== n 100

Peoble m 0 0 hojt P (c) ra. B = So <u>e</u>. <u>U3</u> <u>|| <u>U3</u> ||²</u> Tiz I c è, <u>lis</u> 1/2 ez. ·liz' <u>JI3</u> <u>JI3</u> = es. 1 #3 l3 1/2 0 1/2 0 0 0 1/2 1/2 0 (e) Columo 113 10 Ċh ver PB = id_R3 ___) 1 1/2 0 1/2 -1/2 0 0 | 0

(c) We can retrieve lt by computing Sles) Since fur orthogo real basis liz to. its au <u>li</u>. <u>lu</u> <u>u</u> + <u>|| <u>lu</u> ||²</u> e°. uz // uz // Jz. Stei /0 Decall in= , , _____ / 12 0 S(e, 1 m 11/2 0 -1/2 0 ь So S(ez -/2 = $-\frac{1}{u_1}$ $-\frac{1}{u_1}$ $-\frac{1}{u_1}$ S(e3 À 2 the standard Ĕ of 2 ave A \sim bourse D

L Problem 4 14 = $\overline{e_1} \cdot \overline{u_1} = \frac{1}{\|\underline{u_1}\|^2}$ 1+22 €2° · lu ly 1+ à VIta 2 d/Ita 2 М 2/1/d 2 2 d/1. $\frac{-q}{1}$ Schar e1 . M2 // M2//2 -9 The Is 1+ d2 E2 . Th2 11 Th2/12 1+d2 1 2 2 1 + a 2 - d/1+d 2 $N \doteq$ proj ai 22 1+22 1-22 1+22 2d 17d 2

(B) (a) T(m) 100 D = T/uz - - 112 F - 9 $\mathcal{P}_{\mathcal{A}}^{-\prime}$ D -(c)PD A \mathcal{P} \mathcal{P}^{-1} Hod 2 1+0 2 - ~ 17d / 17d 1/1+22 a/, d 1-d2 2d 1722 170 22 $\frac{1-d^2}{1+d^2}$ 1722 (c)T(ei) 7 CO5(28) ei -J0 Sign (20) e, · Tan (8 Th st column oj F Å e C 1- 2² 1+ 2² Cos (20 1-tau(0) 1 + tan2 (0-2 tan (2) Sim (20) 1+ tan2 O