Worksheet 7

We recall that given a vector \mathbf{u} and the line L spanned by \mathbf{u}, the orthogonal projection of a vector \mathbf{x} onto L is

$$
\begin{equation*}
\operatorname{proj}_{L}(\mathbf{x})=\frac{\mathbf{x} \cdot \mathbf{u}}{\|\mathbf{u}\|^{2}} \mathbf{u} \tag{1}
\end{equation*}
$$

Now, instead of a line L, consider more generally a subspace W of \mathbb{R}^{n}. We are interested in the orthogonal projection onto W. If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is an orthogonal basis for W, then for any $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{equation*}
\operatorname{proj}_{W}(\mathbf{x})=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|^{2}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{x} \cdot \mathbf{u}_{m}}{\left\|\mathbf{u}_{m}\right\|^{2}} \mathbf{u}_{m} \tag{2}
\end{equation*}
$$

Given a point A of the space \mathbb{R}^{n}, the distance from A to the subspace W is the length

$$
\left\|\overrightarrow{O A}-\operatorname{proj}_{W}(\overrightarrow{O A})\right\|
$$

of the vector $\overrightarrow{O A}-\operatorname{proj}_{W}(\overrightarrow{O A})$.
Drawing :

Problem 1. Let $\mathbf{u}=\binom{1}{2}$ and L the line spanned by \mathbf{u}. Compute the distance to L from the points $\binom{1}{0},\binom{0}{3},\binom{1}{2}$.

Problem 2. Let L be the 1-dimensional subspace of \mathbb{R}^{4} spanned by $\mathbf{u}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}$. We consider

$$
\operatorname{proj}_{L}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}
$$

the orthogonal projection on L.
(A) What is the range of proj_{L} ?
(B) Let A be the matrix of proj_{L} in the standard basis. What is the rank of A ?
(C) Compute the coordinates of the images by proj_{L} of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$.
(D) Compute A.
(E) Give a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ of $L^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{4}\right.$, $\left.\mathbf{x} . \mathbf{u}=0\right\}$.
(F) Consider the matrix P whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{u}. What is $P^{-1} A P$?
(G) Compute A^{100}.

Problem 3. In \mathbb{R}^{3}, consider the plane P with equation $x+z=0$.
(A) Find an orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ for P (that is to say an orthogonal set that is a basis for P).
(B) Find a basis $\left\{\mathbf{u}_{3}\right\}$ for P^{\perp}.
(C) Consider the orthogonal projection $T=\operatorname{proj}_{P \perp}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. It is a linear transformation.
(a) What is the range of T ?
(b) Give the matrix B of T in the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
(c) Compute $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)$.
(d) Give the matrix A of T in the standard basis.
(e) What is the matrix Q such that $B=Q^{-1} A Q$?
(D) (optional) Consider the orthogonal projection $S=\operatorname{proj}_{P}$ on P.
(a) What is $S+T$?
(b) What is the matrix C of S in the standard basis?
(c) Can you retrieve your answer to the previous question using Equation (2) at the beginning of this worksheet?
(E) What is A^{2} ? What is C^{2} ?

Problem 4. Let α be a positive number and L the line in \mathbb{R}^{2} with equation $y=\alpha x$. We consider the (orthogonal) reflection T about L. Let θ be the angle from the vector \mathbf{e}_{1} to the vector $\mathbf{u}_{1}:=\binom{1}{\alpha}$. We want to determine the matrix A of T in the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.
(A) First approach (very optional). Let proj_{L} be the orthogonal projection on L and $\operatorname{proj}_{L^{\perp}}$ the orthogonal projection on L^{\perp}.
(a) Give the matrix M of proj_{L} in the standard basis.
(b) Give a basis $\left\{\mathbf{u}_{2}\right\}$ for L^{\perp} and the matrix N of $\operatorname{proj}_{L^{\perp}}$ in the standard basis.
(c) What is $\operatorname{proj}_{L}-\operatorname{proj}_{L^{\perp}}$?
(d) Give the matrix A of T in the standard basis in terms of α.
(B) Second approach.
(a) Let $\mathbf{u}_{2}:=\binom{-\alpha}{1}$. After checking that $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a basis for \mathbb{R}^{2}, give the matrix D of T in \mathcal{B}.
(b) Consider the matrix P whose columns are \mathbf{u}_{1} and \mathbf{u}_{2}. What is the link between A and D ?
(c) Compute the matrix A in terms of α.
(C) Give the coordinates of the image of \mathbf{e}_{1} by T in terms of θ.
(D) (very optional) What is $\tan (\theta)$ in terms of α ? Prove the following identities :

$$
\cos (2 \theta)=\frac{1-\tan ^{2}(\theta)}{1+\tan ^{2}(\theta)}, \quad \sin (2 \theta)=\frac{2 \tan (\theta)}{1+\tan ^{2}(\theta)} .
$$

NB : one can prove these equalities also by direct computation and using other trigonometric identities.

Problem 1 $\quad \angle$ span $\left.f\left(\begin{array}{l}2\end{array}\right)\right\} \quad \vec{u}=\binom{1}{2} \quad\|\vec{u}\|^{2}=5$

$$
\begin{aligned}
d(A, L)=\left\|\overrightarrow{O A}-\mu_{g}(\overrightarrow{O A})\right\| & =\| \overrightarrow{O A}-\frac{\overrightarrow{O A} \cdot \vec{\mu}}{\| \vec{\mu} /^{2}} \vec{\mu} \\
A=\binom{1}{0} \quad \log _{L}(\overrightarrow{O A})=\frac{1}{5}\binom{1}{2} \quad d(A, L) & =\left\|\binom{1}{0}-\binom{1 / 5}{2 / 5}\right\|=\|(-2 / 5) \\
& =\frac{1}{5} \sqrt{16+4}=\frac{2}{\sqrt{5}}
\end{aligned}
$$

$$
B=\binom{0}{1} \quad \log _{L}(\overrightarrow{O B})=\frac{2}{5}\binom{1}{2} \quad d(B, L)=\left\|\binom{0}{1}\binom{i / 5}{4 / 5}\right\|=\|\binom{-2 / 5}{1 / 5} /
$$

$$
=\frac{1}{\sqrt{5}}
$$

$$
C=\binom{1}{2} \quad \operatorname{pag}_{l}(\overrightarrow{O C})=\overrightarrow{O C} \Rightarrow d(c, L)=0
$$

In the worksheet I gave
I changed B info $\binom{0}{3}=D$

$$
d(D, L)=\left\|(3)-\frac{6}{5}\left(\frac{1}{2}\right)\right\|=\cdots \quad / \begin{aligned}
& \text { I } \\
& \hline
\end{aligned}
$$

Problem 2 $\quad \vec{u}=\left(\begin{array}{l}i \\ 1 \\ 1\end{array}\right) \quad L=\operatorname{Span}(\vec{a})$
(A) Range $\left(\right.$ tog $\left._{L}\right)=1$
(B) The rent of A is the dimension of the range of PhiL (by definition of the ink of a mabrixit
(c) $\quad \operatorname{froj}\left(\overrightarrow{a_{i}}\right)=\frac{\overrightarrow{e_{i}} \cdot \vec{\mu}}{\|\vec{\mu}\|^{2}} \vec{\mu}=\frac{1}{4} \vec{\mu}=\left(\begin{array}{l}1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right)$
(D) $\quad A=\frac{1}{4}\left(\begin{array}{ll}111 \\ 11 & 11 \\ 11 & 1\end{array}\right) \quad$ (We see again that it has raul 1)
(E) $L^{L}=\left\{\left(\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right)\right.$ such that $\left.x_{1}+x_{2}+x_{3}+x_{4}=0\right\}$ A basis for L^{+}is

$$
\frac{\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)}{\overrightarrow{v_{1}}} \underset{\overrightarrow{v_{2}^{\prime}}}{\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)}\left(\begin{array}{c}
1 \\
0 \\
-0 \\
-1 \\
v_{3}^{\prime}
\end{array}\right)
$$

(1) By elefimition, $P^{-1} A P$ is the matrix of the Araunforpenations $P^{\prime} \mathrm{g}_{\mathrm{L}}$ in the basis

$$
\left\{\overrightarrow{v_{1}}, \overline{v_{2}}, \overline{v_{3}} ; \bar{u}\right\}
$$

Bit $\operatorname{qog}_{L}\left(\overrightarrow{v_{i}}\right)=\operatorname{prg}_{L}\left(\overrightarrow{v_{2}}\right)=\operatorname{qug}_{L}\left(\overrightarrow{v_{s}}\right)=\overrightarrow{0}$.

$$
\begin{aligned}
& \mu_{\text {giL }}(\mu)=\begin{array}{lll}
\mu & D \\
P^{-1} A P & =\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{array}
\end{aligned}
$$

(Iou can double check arithowt confuting P^{-1}) by clacking $A P=P D$
(G) $A=P D P^{-1}$

$$
\text { thane } P=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
0-1 & 0 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

$$
A^{100}=P D^{100} P^{-1}=P D P^{-1}=A \text { since } D^{2}=D
$$

$$
\text { So } D^{100}=D \text {. }
$$

Peoblean B: (A) $\overline{\mu_{1}}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right) \quad \overline{\mu_{2}}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
(B) $\overline{\mu_{3}}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
(c) $T=\operatorname{lng}_{\neq 1}$
(a) Ronge $(T)=P^{1}$
(b) $T\left(\frac{\mu_{r}}{\mu_{r}}\right)=\overrightarrow{0}$
(c)

$$
\begin{array}{ll}
T\left(\overrightarrow{\mu_{1}}\right)=\overrightarrow{0} \\
T\left(\overrightarrow{\mu_{2}}\right)=\overrightarrow{0} & \text { so } \quad B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
T\left(\overrightarrow{\mu_{3}}\right)=\overrightarrow{\mu_{3}} & \overrightarrow{a_{1}} \cdot \overrightarrow{\mu_{3}}
\end{array}
$$

$$
\begin{aligned}
& T\left(\overrightarrow{e_{1}}\right)=\frac{\overrightarrow{a_{2}} \cdot \overrightarrow{\mu_{3}}}{\left\|\overrightarrow{\mu_{3}}\right\|^{2}} \overline{\mu_{3}}=\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& T\left(\overrightarrow{e_{2}}\right)=\frac{\overrightarrow{e_{2}} \cdot \overrightarrow{\mu_{3}}}{\left\|\overrightarrow{\mu_{3}}\right\|^{2}}=\overrightarrow{0} \\
& T\left(\overrightarrow{e_{3}}\right)=\frac{\overrightarrow{e_{3}} \cdot \overrightarrow{\mu_{3}}}{\left\|\cdot \overrightarrow{\mu_{3}}\right\|^{2}}=\frac{1}{2}\binom{1}{0}
\end{aligned}
$$

(d) $\quad A=\left(\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 0 & 0 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right)$
(e) P is the mataiy with columo

$$
\left\{\overrightarrow{\mu_{7}}, \frac{c}{\mu_{2}}, \overline{\mu_{3}}\right\}
$$

$$
P=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

To double cheek that $B=P^{-1} P$ juct
(D) $S=\operatorname{pug}_{\mathcal{p}} \cdot(a) S+T=i d_{\mathbb{R}^{3}}$ verify
(b)

$$
\begin{aligned}
C+A=I \quad C & =I-A \\
& =\left(\begin{array}{ccc}
1 / 2 & 0 & -1 / 2 \\
0 & 1 & 0 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right)
\end{aligned}
$$

 Since $\left\{\bar{u}_{1}, \overline{\mu_{3}}\right\}$ is an orthogonal basis for P,
we have

$$
S\left(\overrightarrow{e_{i}}\right)=\frac{\overrightarrow{e_{i}} \cdot \overrightarrow{\mu_{1}}}{\left\|\overrightarrow{\mu_{1}}\right\|^{2}} \overrightarrow{\mu_{1}}+\frac{e_{i} \cdot \mu_{2}}{\left\|\overrightarrow{\mu_{2}}\right\|} \overrightarrow{\mu_{2}}
$$

Recall $\overline{\mu_{1}}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right) \quad \overrightarrow{\mu_{2}}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

$$
\left.\begin{array}{ll}
S\left(\overrightarrow{e_{1}}\right)=\frac{1}{2} \overrightarrow{u_{1}}=\left(\begin{array}{c}
1 / 2 \\
0 \\
-1 / 2
\end{array}\right) & \quad \delta_{0} \\
S\left(\overrightarrow{e_{2}}\right)=\overrightarrow{u_{2}}=\left(\begin{array}{ccc}
0 \\
1 \\
0
\end{array}\right) \\
S\left(\overrightarrow{e_{3}}\right)=\frac{-1}{2} \overrightarrow{u_{1}}=\left(\begin{array}{ccc}
1 / 2 & 0 & -1 / 2 \\
0 & 1 & 0 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right) \\
0 \\
1 / 2
\end{array}\right) \quad l
$$

(E) \dot{A}^{2} is the matrix of $T 0 T$ in the standaral basis Since $T_{0} T O T$ we have $A^{2}=A$

Leikavise $e^{2}=C$

Problem 4

(A) (a) $\operatorname{pog}_{L}\left(\overrightarrow{e_{1}}\right)=\frac{\overrightarrow{e_{1}} \cdot \bar{\mu}}{\left\|\overline{\mu_{1}}\right\|^{2}} \overrightarrow{\mu_{1}}=\frac{1}{1+\alpha^{2}}\binom{1}{e_{1}}$

$$
\mu g_{2}^{\prime}\left(\vec{e}_{\alpha}^{\prime}\right)=\frac{\overline{e_{2}} \cdot \overline{\mu_{1}}}{\left\|\overline{\mu_{1}}\right\|^{2}} \overrightarrow{\mu_{1}}=\frac{\alpha}{1+\alpha^{2}}\left(\frac{1}{\alpha}\right)
$$

$$
M=\left(\begin{array}{cc}
1 / 1+\alpha^{2} & \alpha / 1+\alpha^{2} \\
\alpha / 1+\alpha^{2} & \alpha^{2} / 1+\alpha^{2}
\end{array}\right)
$$

(b) $L \pm=\operatorname{Sopan}\left\{\binom{-\gamma}{1}\right\} \quad \overline{\mu_{2}}=\binom{-\alpha}{1}$

$$
\begin{aligned}
& \operatorname{\mu og}_{L}\left(\overrightarrow{e_{1}}\right)=\frac{\frac{\vec{e}}{1} \cdot \overrightarrow{\mu_{2}}}{\left\|\overrightarrow{\mu_{2}}\right\|^{2}} \vec{\mu}_{2}=\frac{-\alpha}{1+\alpha^{2}}\binom{-\alpha}{1} \\
& \mu_{\dot{\prime}}\left(\overrightarrow{e_{2}}\right)=\frac{\overrightarrow{e_{2}} \cdot \overrightarrow{\mu_{2}}}{\| \vec{\mu}_{2}}=\frac{1}{1+\alpha^{2}}\binom{-\alpha}{1} \\
& N=\left(\begin{array}{cc}
\frac{\alpha^{2}}{1+\alpha^{2}} & -\alpha / 1+\alpha^{2} \\
-\alpha / 1+\alpha^{2} & 1 / 1+\alpha^{2}
\end{array}\right)
\end{aligned}
$$

(c) $\operatorname{pog}_{L}-\operatorname{\mu og}_{L}^{\prime} 1=T$
(d) So $M-N=A$ and

$$
A=\left(\begin{array}{cc}
\frac{1-\alpha^{2}}{1+\alpha^{2}} & \frac{2 \alpha}{1+\alpha^{2}} \\
\frac{2 \alpha}{1+\alpha^{2}} & -\frac{1-\alpha^{2}}{1+\alpha^{2}}
\end{array}\right)
$$

$(B)(a)$

$$
\begin{aligned}
& I\left(\overline{\mu_{1}}\right)=\overline{\mu_{1}} \\
& I\left(\overrightarrow{\mu_{2}}\right)=-\overline{\mu_{2}} \quad-s_{0} \quad D=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

(b) $P=\left(\begin{array}{cc}1 & -\alpha \\ \alpha & 1\end{array}\right)$

$$
D=P^{-1} A P
$$

(c) $\quad A=P D P^{-1}$

$$
P^{-1}=\left(\begin{array}{cc}
\frac{1}{1+\alpha^{2}} & \frac{\alpha}{1+\alpha^{2}} \\
\frac{-\alpha}{1+\alpha^{2}} & \frac{1}{1+\alpha^{2}}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
1 & -\alpha \\
\alpha & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
\alpha & -1
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 / 1+\alpha^{2} & \alpha / 1+\alpha^{2} \\
-\alpha / 1+\alpha^{2} & 1 / 1+\alpha^{2}
\end{array}\right)^{1+}
$$

$$
T\left(\overline{e_{1}}\right)=\binom{\cos (2 \theta)}{\sin (2 \theta)}
$$

(D) $\operatorname{Tan}(\theta)=\alpha$

The first colusux of A is $T\left(e_{r}\right)$

$$
\begin{array}{r}
\cos (2 \theta)=\frac{1-\alpha^{2}}{1+\alpha^{2}}=\frac{1-\tan ^{2}(\theta)}{1+\tan ^{2}(\theta)} \\
\sin (2 \theta)=\frac{2 \tan (\theta)}{1+\tan ^{2} \theta}
\end{array}
$$

