Worksheet 6

We recall that given a square matrix A

- an eigenvalue for A is a real number λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$
- the vector \mathbf{x} is then called an eigenvector for A and the value λ
- the set of all eigenvectors for the value λ ($=$ the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$) is called the eigenspace of A for the value λ.

We saw that λ is an eigenvalue for A if and only if it is a root for the characteristic polynomial

$$
p_{A}=\operatorname{det}(A-x I)
$$

that is to say a solution to the equation $\operatorname{det}(A-x I)=0$.
If λ is an eigenvalue for A, then $(x-\lambda)$ is a factor of the polynomial p_{A}. The power of $(x-\lambda)$ in the decomposition of $\operatorname{det}(A-x I)$ is called the multiplicity of the eigenvalue λ.

Problem 1. Find the eigenvalues of the following matrices and compute the multiplicity and eigenspace for each of the eigenvalues.

$$
B=\left(\begin{array}{cc}
0 & -2 \\
-4 & 2
\end{array}\right), \quad C=\left(\begin{array}{cc}
2 & 0 \\
1 & 2
\end{array}\right), \quad D=\left(\begin{array}{ccc}
9 & 3 & -5 \\
-2 & 1 & 2 \\
5 & 3 & -1
\end{array}\right), \quad E=\left(\begin{array}{ccc}
-1 & 4 & 2 \\
-1 & 4 & 0 \\
-1 & 1 & 3
\end{array}\right)
$$

On the examples above we observe that

$$
\begin{array}{|lll}
\hline \text { Multiplicity of the eigenvalue } \lambda \quad \ldots . . \quad \text { Dimension of the eigenspace for } \lambda \\
\hline
\end{array}
$$

Problem 2. Consider the linear transformation T_{A} attached to the matrix $A=\left(\begin{array}{cc}-4 / 5 & 3 / 5 \\ 3 / 5 & 4 / 5\end{array}\right)$.
(1) Find the eigenvalues of A and the corresponding eigenspaces.
(2) Show that there is a basis \mathcal{B} of \mathbb{R}^{2} made of eigenvectors for A.
(3) What is T_{A} ?
(4) Let P be the matrix whose columns are the vectors of \mathcal{B}. Compute $P^{-1} A P$.

