Worksheet 4

Given a $m \times n$ matrix A, and the corresponding linear transformation

$$
T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

we recall :

- the Rank of A is the dimension of the Range of T_{A}, i.e the dimension of the vector space spanned by the columns of A.
- the Null space of A, also called the Kernel of T_{A}, is the set of $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{0}$.

We admit the following formula (which you have to know) :

$$
n=\operatorname{Rank}(A)+\operatorname{dim}(\operatorname{Null}(A))
$$

Problem 1. Let

$$
A=\left(\begin{array}{lll}
2 & 3 & 1 \\
0 & 2 & 2 \\
1 & 2 & 1
\end{array}\right)
$$

(1) Find a basis of the Null space of A.
(2) What is the rank of A ?
(3) Show that the Range of T_{A} is the plane with equation $2 x+y-4 z=0$ (this is harder than an exam question).
(4) Find a basis of the Range of T_{A}.

Problem 2. Let A be a square matrix. Show that A is invertible $\Leftrightarrow \operatorname{Null}(A)=\{0\} \Leftrightarrow \operatorname{Rank}(A)=n$

Problem 3. (1) Show that the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 6\end{array}\right)$ is invertible.
(2) Compute its determinant.

