Worksheet 3

Problem 1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(1) Describe in words the linear transformation T_{A}.
(2) Compute the inverse A^{-1} of A.
(3) Describe in words the linear transformation $T_{A^{-1}}$.

Problem 2. (1) Is there an injective linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$?
(2) Is there a surjective linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$?

Problem 3. (1) Let A, B be two invertible square matrices of size n. Show that $A B$ is invertible and that

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(2) Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$. Compute $A B,(A B)^{-1}, A^{-1}, B^{-1}, A^{-1} B^{-1}$ and $B^{-1} A^{-1}$. Notice that

$$
(A B)^{-1}=B^{-1} A^{-1} \neq A^{-1} B^{-1} .
$$

Problem 4. (1) Let A be a square matrix of size n. Show that if there is a matrix B such that $B A=0$ then A is not invertible.
(2) Let

$$
J=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Compute J^{5}. Is J invertible?

Problem 5. (1) Let M be a square matrix and I the identity matrix of the same size. For a a real number, compute $(I-a M)\left(I+a M+a^{2} M^{2}+a^{3} M^{3}+a^{4} M^{4}\right)$.
(2) Let

$$
A=\left(\begin{array}{ccccc}
1 & -a & 0 & 0 & 0 \\
0 & 1 & -a & 0 & 0 \\
0 & 0 & 1 & -a & 0 \\
0 & 0 & 0 & 1 & -a \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where a is a real number. Show that A is invertible and compute A^{-1}. Hint : express A in terms of the identity matrix I and of J (of the previous problem).

Problem 6. Let

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & -1
\end{array}\right)
$$

(1) Express A^{3} in terms of A and the identity matrix I.
(2) Show that A is invertible and give its inverse.

