Worksheet 2

Problem 1. Let $h \in \mathbb{R}$. and

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
1 & 1 & h \\
-4 & 4 & -4 \\
6 & 4 & 0
\end{array}\right)
$$

. Let T_{A} the linear map attached to A.
(1) What is the source space of T_{A} ? The target space?
(2) Which of the following vectors is in the range of T_{A} ?
а) $\left(\begin{array}{c}-4 \\ 4 \\ -4\end{array}\right)$
b) $\left(\begin{array}{c}4 \\ 2 \\ 1+h\end{array}\right)$ c) $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ d)
d) $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ e
e) $\left(\begin{array}{c}3 \\ 1 \\ -4 \\ 6\end{array}\right)$
f) $\left(\begin{array}{c}4 \\ 2 \\ 0 \\ 10\end{array}\right)$
g) $\left(\begin{array}{c}3 \\ 2 \\ 4 \\ -2\end{array}\right)$ h) $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
(3) Is T_{A} surjective?
(4) Suppose that $h=0$. Is T_{A} injective?
(5) (bonus question) Show that T_{A} is injective for any $h \in \mathbb{R}$.

Problem 2. True/False

(1) Let A be a 3×2 matrix. Suppose that $A \mathbf{x}=\mathbf{0}$ has a unique solution. Then $A \mathbf{x}=\mathbf{b}$ has a solution for any $\mathbf{b} \in \mathbb{R}^{3}$. False. The first sentence means that the corresponding linear map $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective. It does not imply that T_{A} is surjective (which is what the second statement means). Counter example : $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$
(2) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is an independent family of vectors then $\{\mathbf{u}, \mathbf{v}\}$ is an independent family of vectors.

True. We discussed it in class.
(3) If $\{\mathbf{u}, \mathbf{v}\}$ is independent, $\{\mathbf{u}, \mathbf{w}\}$ is independent, and $\{\mathbf{v}, \mathbf{w}\}$ is independent, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent. False. We discussed it in class. Counter example : $\binom{1}{0}$, $\binom{0}{1}$ and $\binom{1}{1}$.
(4) The homogeneous system attached to the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ has infinitely many solutions. True.
(5) The family of vectors $\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$ spans \mathbb{R}^{3}. True.
(6) The family of vectors $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)\right\}$ is independent but does not span \mathbb{R}^{3}. False. It is independent and it does span \mathbb{R}^{3} (take a vector of the form $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ and show that it is a linear combination of the 3 vectors.)
(7) The family of vectors $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ is independent but does not span \mathbb{R}^{3}. True. For example, $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ is not in the Span of the 3 vectors.
(8) The homogeneous system attached to the matrix $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 3\end{array}\right)$ has infinitely many solutions. False.
(9) The homogeneous system attached to the matrix $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right)$ has infinitely many solutions. True.
(10) The homogeneous system attached to the matrix $A=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 3 & -1\end{array}\right)$ has infinitely many solutions. True.
(11) The linear map attached to the matrix $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. True.
(12) The linear map attached to the matrix $A=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is the orthogonal reflection about the $(0, y, z)$ plane. True.
(13) The linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ attached to the matrix $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ is the rotation by $\pi / 2$. False, it is the rotation by $-\pi / 2$.

