Problem 1. Let $h \in \mathbb{R}$. and

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & h \\ -4 & 4 & -4 \\ 6 & 4 & 0 \end{pmatrix}$$

. Let T_A the linear map attached to A.

- (1) What is the source space of T_A ? The target space?
- (2) Which of the following vectors is in the range of T_A ?

a)
$$\begin{pmatrix} -4\\4\\-4 \end{pmatrix}$$
 b) $\begin{pmatrix} 4\\2\\1+h \end{pmatrix}$ c) $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ d) $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ e) $\begin{pmatrix} 3\\1\\-4\\6 \end{pmatrix}$ f) $\begin{pmatrix} 4\\2\\0\\10 \end{pmatrix}$ g) $\begin{pmatrix} 3\\2\\4\\-2 \end{pmatrix}$ h) $\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$

(3) Is T_A surjective?

- (4) Suppose that h = 0. Is T_A injective?
- (5) (bonus question) Show that T_A is injective for any $h \in \mathbb{R}$.

Problem 2. True/False

- (1) Let A be a 3 x 2 matrix. Suppose that $A\mathbf{x} = \mathbf{0}$ has a unique solution. Then $A\mathbf{x} = \mathbf{b}$ has a solution for any $\mathbf{b} \in \mathbb{R}^3$. False. The first sentence means that the corresponding linear map $T_A : \mathbb{R}^2 \to \mathbb{R}^3$ is injective. It does not imply that T_A is surjective (which is what the second statement means). Counter example : $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
- (2) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is an independent family of vectors then $\{\mathbf{u}, \mathbf{v}\}$ is an independent family of vectors.

True. We discussed it in class.

(3) If $\{\mathbf{u}, \mathbf{v}\}$ is independent, $\{\mathbf{u}, \mathbf{w}\}$ is independent, and $\{\mathbf{v}, \mathbf{w}\}$ is independent, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent. False. We discussed it in class. Counter example : $\begin{pmatrix} 1\\0 \end{pmatrix}$, $\begin{pmatrix} 0 \end{pmatrix}$, $\begin{pmatrix} 1 \end{pmatrix}$

$$\begin{pmatrix} 0\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\1 \end{pmatrix}$.

- (4) The homogeneous system attached to the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ has infinitely many solutions. True.
- (5) The family of vectors $\left\{ \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$ spans \mathbb{R}^3 . True. (6) The family of vectors $\left\{ \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix} \right\}$ is independent but does not span \mathbb{R}^3 .

False. It is independent and it does span \mathbb{R}^3 (take a vector of the form $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ and

show that it is a linear combination of the 3 vectors.)

- (7) The family of vectors $\left\{ \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ is independent but does not span \mathbb{R}^3 . True. For example, $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ is not in the Span of the 3 vectors.
- (8) The homogeneous system attached to the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix}$ has infinitely many solutions. False.
- (9) The homogeneous system attached to the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ has infinitely many solutions. True.

(10) The homogeneous system attached to the matrix $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 3 & -1 \end{pmatrix}$ has infinitely many solutions. True.

- (11) The linear map attached to the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity $\mathbb{R}^2 \to \mathbb{R}^2$. True.
- (12) The linear map attached to the matrix $A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is the orthogonal reflection about the (0, y, z) plane. True.
- (13) The linear map $\mathbb{R}^2 \to \mathbb{R}^2$ attached to the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is the rotation by $\pi/2$. False, it is the rotation by $-\pi/2$.