Worksheet 1

Problem 1. Among the following ones, which families of vectors are independent?
(1) $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right)$
(2) $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
(3) $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.

Problem 2. (1) Let $\mathbf{v}_{1}=\binom{1}{4}, \mathbf{v}_{2}=\binom{3}{2}, \mathbf{v}_{3}=\binom{-1}{2}$. Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent (that it to say not independent).
(2) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ a family of m vectors in \mathbb{R}^{n} and suppose that $m>n$. Show that the family is linearly dependent.

Problem 3. Let $\mathbf{v}_{1}=\binom{1}{4}, \mathbf{v}_{2}=\binom{3}{2}$. Is Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ the line with equation $y=3 x+4$?

Problem 4. (1) Let $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.
Show that $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is the plane with equation $x+y=z$.
(2) Let $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 5\end{array}\right)$.

Show that $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is \mathbb{R}^{3}.
(3) Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 5\end{array}\right)$

Is the system $A \mathrm{x}=\left(\begin{array}{c}1 \\ 5 \\ 10\end{array}\right)$ consistent?
(4) Let $B=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1\end{array}\right)$

Is the system $B \mathbf{x}=\left(\begin{array}{c}1 \\ 5 \\ 10\end{array}\right)$ consistent ?

