Worksheet 1

Problem 1. Among the following ones, which families of vectors are independent?

(1)
$$\mathbf{u}_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -1\\0\\-1 \end{pmatrix}$$

(2) $\mathbf{u}_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$
(3) $\mathbf{u}_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$

Problem 2. (1) Let $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent (that it to say not independent).

(2) Let $\mathbf{v}_1, \ldots, \mathbf{v}_m$ a family of *m* vectors in \mathbb{R}^n and suppose that m > n. Show that the family is linearly dependent.

Problem 3. Let $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. Is Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ the line with equation y = 3x + 4?

Problem 4. (1) Let
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.
Show that $\operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is the plane with equation $x + y = z$.

(2) Let
$$\mathbf{u}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.
Show that $\operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is \mathbb{R}^3 .
(3) Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 5 \end{pmatrix}$
Is the system $A\mathbf{x} = \begin{pmatrix} 1 \\ 5 \\ 10 \end{pmatrix}$ consistent?
(4) Let $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$
Is the system $B\mathbf{x} = \begin{pmatrix} 1 \\ 5 \\ 10 \end{pmatrix}$ consistent?